This file is indexed.

/usr/share/acl2-8.0dfsg/books/ihs/math-lemmas.lisp is in acl2-books-source 8.0dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
; math-lemmas.lisp -- more math lemmas for IHS
; Copyright (C) 1997  Computational Logic, Inc.
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.

;;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
;;;
;;;    math-lemmas.lisp
;;;
;;;    Arthur Flatau
;;;    Computational Logic, Inc.
;;;    1717 West 6th Street, Suite 290
;;;    Austin, Texas 78703
;;;    (512) 322-9951
;;;    flatau@cli.com
;;;
;;;    Modified for ACL2 Version_2.6 by:
;;;    Jun Sawada, IBM Austin Research Lab. sawada@us.ibm.com
;;;    Matt Kaufmann, kaufmann@cs.utexas.edu
;;;
;;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

;; This book is greatly simplified from the book that Bishop Brock used
;; with the same name.  Instead of constructing different lemmas than
;; Matt Kaufmann does for the arithmetic libriaries, we just use his
;; arithmetic libraries to the extent we can.  There are a few lemmas from
;; the original math-lemmas.lisp.

; Modified by Jared Davis, October 2014, to port documentation to xdoc.

(in-package "ACL2")

(include-book "arithmetic/top" :dir :system)
(include-book "ihs-init")
(include-book "std/util/defrule" :dir :system)

(defxdoc math-lemmas
  :parents (ihs)
  :short "A book of theories about +, -, *, /, and EXPT, built on the
  arithmetic package of Matt Kaufmann.")

(local (xdoc::set-default-parents math-lemmas))

(defrule cancel-equal-+-*
  :short "Rewrite: @('(equal (+ x y) x)') and @('(equal (* x y) x)');
          also commutative forms."
  (and (equal (equal (+ x y) x)
	      (and (acl2-numberp x) (equal (fix y) 0)))
       (equal (equal (+ y x) x)
	      (and (acl2-numberp x) (equal (fix y) 0)))
       (equal (equal (* x y) x)
	      (and (acl2-numberp x)
		   (or (equal x 0) (equal y 1))))
       (equal (equal (* x y) y)
	      (and (acl2-numberp y)
		   (or (equal y 0) (equal x 1)))))
  :enable equal-*-x-y-x)

(defrule normalize-equal-0
  :short "Rewrite @('(equal (- x) 0)'), @('(equal (+ x y) 0)'), and
@('(equal (* x y) 0)')."
  (and (equal (equal (- x) 0) (equal (fix x) 0))
       (equal (equal (+ x y) 0) (equal (fix x) (- y)))
       (equal (equal (* x y) 0) (or (equal (fix x) 0) (equal (fix y) 0)))))

(defsection acl2-numberp-algebra
  :short "A basic theory of algebra for all @(see acl2-numberp)s."

  :long "<p>The ACL2-NUMBERP-ALGEBRA theory is designed to be a simple, compact basis
  for building other theories.  This theory contains a minimal set of rules
  for basic algebraic manipulation including associativity and commutativity,
  simplification, cancellation, and normalization.  It is extended by the
  theories RATIONALP-ALGEBRA and INTEGERP-ALGEBRA to include selected linear
  rules and rules for integers respectively.  This theory also contains the
  DEFUN-THEORY (which see) of all built-in function symbols that would
  normally occur during reasoning about the ACL2-NUMBERPs.</p>

  <p>We used keep this theory (and book) separate but roughly equal to the
  books maintained by Matt K. in order to have a solid, simple, and predictable
  foundation on which to build the rest of the books in the IHS hierarchy.
  However it was decided that this was too much trouble and we just select the
  rules of Matt K. that we want.</p>"

  (deftheory acl2-numberp-algebra
    (union-theories
     (defun-theory
       '(EQUAL EQL = /= IFF FORCE BINARY-+ BINARY-* UNARY-- UNARY-/
               ACL2-NUMBERP
               ;; 1+ 1- ; removed in 1.8
               ZEROP FIX ZP ZIP))
     '(eqlablep-recog
       commutativity-of-+ COMMUTATIVITY-OF-* inverse-of-+
       associativity-of-+ associativity-of-* commutativity-2-of-+
       commutativity-2-of-* unicity-of-0 functional-self-inversion-of-minus
       unicity-of-1 default-*-1 default-*-2
       default-<-1 default-<-2 default-+-1 default-+-2
       inverse-of-* functional-self-inversion-of-/ minus-cancellation-on-right
       minus-cancellation-on-left /-cancellation-on-left
       /-cancellation-on-right
       equal-*-x-y-y cancel-equal-+-* normalize-equal-0
       left-cancellation-for-* left-cancellation-for-+
       equal-minus-0 zero-is-only-zero-divisor
       equal-minus-minus equal-/-/ default-unary-minus equal-/ equal-*-/-2
       functional-commutativity-of-minus-*-left
       functional-commutativity-of-minus-*-right
       reciprocal-minus equal-minus-minus distributivity-of-/-over-*
       distributivity
       distributivity-of-minus-over-+))))

(defrule rewrite-linear-equalities-to-iff
  :short "Rewrite: @('(EQUAL (< w x) (< y z))') &rarr; @('(IFF (< w x) (< y z))')."
  :long "<p>Some proofs of linear equalities don't work when presented as
  equalities because they need to be proved by linear arithmetic, but linear
  arithmetic only works at the literal level.  This lemma allows you to state
  the equality as an equality rewrite rule, but breaks the equality into
  literals for the proof.</p>"
  (equal (equal (< w x) (< y z))
         (iff (< w x) (< y z))))

(defrule normalize-<-minus-/
  :short "Rewrite inequalities between 0 and negated or reciprocal terms, and
  @('(< (- x) (- y))')."
  (and (equal (< (- x) 0)     (< 0 x))
       (equal (< 0 (- x))     (< x 0))

       (equal (< (- x) (- y)) (> x y))

       (implies (real/rationalp x)
		(and (equal (< 0 (/ x)) (< 0 x))
		     (equal (< (/ x) 0) (< x 0))))))

(defsection rationalp-algebra
  :short "A basic theory of algebra for all @(see rationalp)s."
  :long "<p>This theory includes the @(see acl2-numberp-algebra) theory along
with additional lemmas about the rationals.</p>

<p>This theory extends ACL2-NUMBERP-ALGEBRA to include theorems about NUMERATOR
and DENOMINATOR, and simple cancellation and normalization theorems and other
simple theorems for inequalities.</p>"

  (deftheory rationalp-algebra
    (union-theories
     (theory 'ACL2-NUMBERP-ALGEBRA)
     (union-theories
      (defun-theory '(NUMERATOR DENOMINATOR < ABS PLUSP MINUSP MIN MAX SIGNUM
                                RFIX))
      '(equal-*-/-1 *-r-denominator-r
                    default-denominator numerator-minus
                    equal-denominator-1 numerator-when-integerp
                    <-y-*-y-x <-*-y-x-y <-*-/-right <-*-/-right-commuted
                    <-*-/-left <-*-/-left-commuted
                    <-*-left-cancel <-0-minus /-preserves-positive /-preserves-negative
                    rewrite-linear-equalities-to-iff
                    normalize-<-minus-/
                    <-unary-/-negative-left <-unary-/-negative-right
                    <-unary-/-positive-left <-unary-/-positive-right)))))

(defrule normalize-<-/-to-*
  :parents (math-lemmas prefer-*-to-/)
  :short "Rewrite: Replace @('x < 1/y') with @('x*y < 1') or @('x*y > 1'),
  based on the sign of y."
  (implies (and (real/rationalp x)
		(real/rationalp y)
		(not (equal y 0)))
	   (and (equal (< x (/ y)) (if (< y 0) (< 1 (* x y)) (< (* x y) 1)))
		(equal (< (/ y) x) (if (< y 0) (< (* x y) 1) (< 1 (* x y)))))))

(defrule normalize-<-/-to-*-3
  :parents (math-lemmas prefer-*-to-/)
  :short "Rewrite: Replace @('x < y/z') and @('x > y/z') with @('x*z < y') or
  @('x*z > y'), depending on the sign of z."
  (implies (and (real/rationalp x)
		(real/rationalp y)
		(real/rationalp z)
		(not (equal z 0)))
	   (and (equal (< x (* y (/ z)))
		       (if (< z 0) (< y (* x z)) (< (* x z) y)))
		(equal (< x (* (/ z) y))
		       (if (< z 0) (< y (* x z)) (< (* x z) y)))
		(equal (< (* y (/ z)) x)
		       (if (< z 0) (< (* x z) y) (< y (* x z))))
		(equal (< (* (/ z) y) x)
		       (if (< z 0) (< (* x z) y) (< y (* x z))))))
  ;;  Disable base lemmas and use cancel-<-* instead.
  :disable (<-unary-/-negative-left <-unary-/-negative-right
                                    <-unary-/-positive-left <-unary-/-positive-left
                                    <-*-right-cancel)
  :use (:instance <-*-right-cancel (x (* x z)) (y y) (z (/ z))))

(defrule normalize-equal-/-to-*
  :parents (math-lemmas prefer-*-to-/)
  :short "Rewrite: Replace @('x = y/z') with @('x*z = y')."
  (implies (and (acl2-numberp z)
		(not (equal z 0)))
	   (and (equal (equal x (* y (/ z)))
		       (and (acl2-numberp x)
			    (equal (* x z) (fix y))))
		(equal (equal x (* (/ z) y))
		       (and (acl2-numberp x)
			    (equal (* x z) (fix y)))))))

(defsection prefer-*-to-/
  :short "A small theory of lemmas that eliminate / in favor of *."

  :long "<p>This is a small theory of rules that eliminate / from equalites and
  inequalities in favor of *, e.g., @('x < y/z') is rewritten to @('x*y < z')
  for positive z.  This theory is compatible with the ALGEBRA theories, i.e.,
  it should not cause looping.</p>

  <p>These rules are not included in @(see rationalp-algebra) because it is not
  clear that we should prefer @('x*y < z') to @('x < y/z'), or @('x*y = z') to
  @('x = y/z'). In the case of the lemma @(see normalize-equal-/-to-*), there
  is no reason to suspect that `y' is a better term than `x'; in fact, the
  whole point of the proofs using these libraries may have to do with a
  representation involving /.  So, unless someone provides a convincing reason
  to the contrary, these rules will remain separate from the @(see
  rationalp-algebra) theory.</p>

  <p>Note, however, that in certain cases this theory is just the thing that
  needs to be ENABLEd to make the proofs work.  Keep it in mind.</p>"

  (deftheory prefer-*-to-/
    '(normalize-<-/-to-*
      normalize-<-/-to-*-3
      normalize-equal-/-to-*)))

(in-theory (disable prefer-*-to-/))

(defrule integerp-+-minus-*
  :short "Rewrite: -i, i + j, i - j, and i * j are integers, when i and j are
  integers."
  :long "<p>The system has powerful enough type reasoning to `get' these facts
  automatically most of the time.  There are cases, however, where we need to
  bring the full power of the rewriter to bear on the problem.  In general one
  would like to keep lemmas like this to a minimum so as to avoid swamping the
  rewriter.</p>"
  (and (implies (integerp i)
                (integerp (- i)))
       (implies (and (integerp i)
                     (integerp j))
                (and (integerp (+ i j))
                     (integerp (- i j))
                     (integerp (* i j))))))

(defsection integerp-algebra
  :parents (math-lemmas ihs-math)
  :short "A basic theory of algebra for all INTEGERPs."
  :long "<p>this theory consists of the @(see acl2-numberp-algebra) and @(see
  rationalp-algebra) theories, along with additional lemmas about the
  integers.</p>"

  (deftheory integerp-algebra
    (union-theories
     (theory 'RATIONALP-ALGEBRA)
     (union-theories
      (defun-theory '(INTEGERP INTEGER-ABS))
      '(integerp-+-minus-* integerp==>denominator=1 <-minus-zero natp-rw posp-rw)))))


(defsection expt-algebra
  :parents (math-lemmas ihs-math)
  :short "A theory of EXPT which is compatible with the ALGEBRA theories."
  :long "<p>This theory contains :TYPE-PRESCRIPTIONS, simpification,
  normalization and selected :LINEAR rules for @(tsee EXPT).  This theory will
  not be useful unless the @(see integerp-algebra) theory, or something similar
  is ENABLEd.</p>"

  (deftheory expt-algebra
    '((expt) (:type-prescription expt)
      expt-type-prescription-nonzero
      expt-type-prescription-positive
      expt-type-prescription-integerp
      right-unicity-of-1-for-expt functional-commutativity-of-expt-/-base
      expt-minus exponents-add exponents-multiply
      expt->-1
      expt-is-increasing-for-base>1 expt-is-decreasing-for-pos-base<1
      expt-is-weakly-increasing-for-base>1
      expt-is-weakly-decreasing-for-pos-base<1)))

(defsection ihs-math
  :short "The default theory of +, -, *, /, and EXPT for the IHS library."
  :long "<p>This theory simply consists of the theories @(see INTEGERP-ALGEBRA)
and @(see EXPT-ALGEBRA).</p>

<p>This theory is the default theory exported by the @('ihs/math-lemmas') book.
This theory will normally be ENABLEd by every book in the IHS library.</p>"

  (deftheory ihs-math
    (union-theories (theory 'integerp-algebra)
                    (theory 'expt-algebra))))