This file is indexed.

/usr/share/acl2-8.0dfsg/books/meta/meta-plus-equal.lisp is in acl2-books-source 8.0dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
; ACL2 books on arithmetic metafunctions
; Copyright (C) 1997  Computational Logic, Inc.
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.

; Written by:  Matt Kaufmann and John Cowles
; Computational Logic, Inc.
; 1717 West Sixth Street, Suite 290
; Austin, TX 78703-4776 U.S.A.

(in-package "ACL2")

(include-book "term-defuns")

(local (include-book "term-lemmas" :load-compiled-file nil))

(defevaluator ev-plus-equal ev-plus-equal-list
  ((binary-+ x y)
   (fix x)
   (equal x y)
   (acl2-numberp x)
   (if x y z)))

(defun cancel_plus-equal$1 (x)
  (declare (xargs :guard (and (pseudo-termp x)
                              (consp x))))

; Not all of

; (and (consp (cadr x))
;      (eq (car (cadr x)) 'binary-+)
;      (consp (caddr x))
;      (eq (car (caddr x)) 'binary-+))

; hold.

  (mv-let
   (elt term)
   (cond ((and (consp (cadr x))
               (eq (car (cadr x)) 'binary-+))
          (mv (caddr x) (cadr x)))
         ((and (consp (caddr x))
               (eq (car (caddr x)) 'binary-+))
          (mv (cadr x) (caddr x)))
         (t (mv nil nil)))
   (cond
    ((and elt (fringe-occur 'binary-+ elt term))
     (list 'if
           (list 'acl2-numberp elt)
           (list 'equal
                 *0*
                 (binary-op_tree 'binary-+
                                 0
                                 'fix
                                 (del elt (binary-op_fringe 'binary-+ term))))
           *nil*))
    (t x))))

(defun cancel_plus-equal (x)
  (declare (xargs :guard (pseudo-termp x)))
  (if (and (consp x)
	   (eq (car x) 'equal))
      (cond
       ((and (consp (cadr x))
             (eq (car (cadr x)) 'binary-+)
             (consp (caddr x))
             (eq (car (caddr x)) 'binary-+))
        (let* ((lt-side (binary-op_fringe 'binary-+ (cadr x)))
               (rt-side (binary-op_fringe 'binary-+ (caddr x)))
               (int (bagint lt-side rt-side)))
          (if int
              (list 'equal
                    (binary-op_tree 'binary-+
                                    0
                                    'fix
                                    (bagdiff lt-side int))
                    (binary-op_tree 'binary-+
                                    0
                                    'fix
                                    (bagdiff rt-side int)))
            x)))
       (t (cancel_plus-equal$1 x)))
    x))

(local
 (defthm acl2-numberp-ev-plus-equal
   (acl2-numberp (ev-plus-equal (binary-op_tree 'binary-+ 0 'fix fringe) a))
   :rule-classes :type-prescription))

(local (in-theory (disable binary-op_tree)))

(local
 (defthm ev-plus-equal-binary-op_tree-append
   (equal (ev-plus-equal (binary-op_tree 'binary-+
                                         0 'fix
                                         (append fringe1 fringe2))
                         a)
          (+ (ev-plus-equal (binary-op_tree 'binary-+
                                            0 'fix
                                            fringe1)
                            a)
             (ev-plus-equal (binary-op_tree 'binary-+
                                            0 'fix
                                            fringe2)
                            a)))
   :hints (("Goal" :induct (append fringe1 fringe2)))))

(local
 (defthm ev-plus-equal-binary-op_tree-fringe
   (equal (ev-plus-equal (binary-op_tree 'binary-+
                                         0 'fix
                                         (binary-op_fringe 'binary-+ x))
                         a)
          (fix (ev-plus-equal x a)))))

(local
 (defthm plus-cancel-left
   (equal (equal (+ x y) (+ x z))
          (equal (fix y) (fix z)))))

(local
 (defthm binary-op_tree-plus-fringe-del-lemma
   (implies (memb summand fringe)
            (equal (+ (ev-plus-equal summand a)
                      (ev-plus-equal (binary-op_tree 'binary-+
                                                     0 'fix
                                                     (del summand fringe))
                                     a))
                   (ev-plus-equal (binary-op_tree 'binary-+
                                                  0 'fix
                                                  fringe)
                                  a)))
   :rule-classes nil
   :hints (("Goal" :expand ((binary-op_tree 'binary-+
                                            0 'fix
                                            (cdr fringe)))))))

(local
 (defthm binary-op_tree-plus-fringe-del
   (implies (and (memb summand fringe)
                 (acl2-numberp y))
            (equal (equal y
                          (ev-plus-equal (binary-op_tree 'binary-+
                                                         0 'fix
                                                         (del summand fringe))
                                         a))
                   (equal (+ y (ev-plus-equal summand a))
                          (ev-plus-equal (binary-op_tree 'binary-+
                                                         0 'fix
                                                         fringe)
                                         a))))
   :hints (("Goal" :use binary-op_tree-plus-fringe-del-lemma))))

(local
 (defthm cancel_plus-equal$1-property
   (implies (and (consp x)
                 (equal (car x) 'equal))
            (equal (ev-plus-equal (cancel_plus-equal$1 x) a)
                   (ev-plus-equal x a)))))

(local
 (in-theory (disable cancel_plus-equal$1)))

(local
 (encapsulate
  ()

  (local
   (defthm binary-op_tree-opener-extra-1
     (implies (and (consp fringe)
                   (not (consp (cdr fringe))))
              (equal (binary-op_tree 'binary-+ 0 op fringe)
                     (list op (car fringe))))))

  (defthm cancel_equal-plus-correct-lemma-1
    (implies (subbagp fringe2 fringe1)
             (equal
              (+ (ev-plus-equal (binary-op_tree
                                 'binary-+
                                 0
                                 'fix
                                 (bagdiff fringe1 fringe2))
                                a)
                 (ev-plus-equal (binary-op_tree
                                 'binary-+
                                 0
                                 'fix
                                 fringe2)
                                a))
              (ev-plus-equal (binary-op_tree
                              'binary-+
                              0
                              'fix
                              fringe1)
                             a)))
    :rule-classes nil)))

(local
 (defthm cancel_equal-plus-correct-lemma
   (equal
    (equal
     (ev-plus-equal (binary-op_tree
                     'binary-+
                     0
                     'fix
                     (bagdiff (binary-op_fringe 'binary-+ x1)
                              (bagint (binary-op_fringe 'binary-+ x1)
                                      (binary-op_fringe 'binary-+ x2))))
                    a)
     (ev-plus-equal (binary-op_tree
                     'binary-+
                     0
                     'fix
                     (bagdiff (binary-op_fringe 'binary-+ x2)
                              (bagint (binary-op_fringe 'binary-+ x1)
                                      (binary-op_fringe 'binary-+ x2))))
                    a))
    (equal (fix (ev-plus-equal x1 a))
           (fix (ev-plus-equal x2 a))))
   :hints (("Goal" :use
            ((:instance cancel_equal-plus-correct-lemma-1
                        (fringe1 (binary-op_fringe 'binary-+ x1))
                        (fringe2 (bagint (binary-op_fringe 'binary-+ x1)
                                         (binary-op_fringe 'binary-+ x2))))
             (:instance cancel_equal-plus-correct-lemma-1
                        (fringe1 (binary-op_fringe 'binary-+ x2))
                        (fringe2 (bagint (binary-op_fringe 'binary-+ x1)
                                         (binary-op_fringe 'binary-+ x2)))))))))

(defthm cancel_plus-equal-correct
  (equal (ev-plus-equal x a)
         (ev-plus-equal (cancel_plus-equal x) a))
  :rule-classes ((:meta :trigger-fns (equal))))