This file is indexed.

/usr/share/acl2-8.0dfsg/books/meta/meta-plus-lessp.lisp is in acl2-books-source 8.0dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
; ACL2 books on arithmetic metafunctions
; Copyright (C) 1997  Computational Logic, Inc.
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.

; Written by:  Matt Kaufmann and John Cowles
; Computational Logic, Inc.
; 1717 West Sixth Street, Suite 290
; Austin, TX 78703-4776 U.S.A.

(in-package "ACL2")

(include-book "term-defuns")

(local (include-book "term-lemmas" :load-compiled-file nil))

(defevaluator ev-plus-lessp ev-plus-lessp-list
  ((binary-+ x y)
   (< x y)
   (if x y z)))

(defun cancel_plus-lessp$1 (x)
  (declare (xargs :guard (and (pseudo-termp x)
                              (consp x)
                              (not (equal (car x) 'quote)))
                  :guard-hints (("Goal" :expand
                                 ((pseudo-termp
                                   (list* x1 (cons 'binary-+ x6) x4)))))))
  (cond ((and (consp (cadr x))
              (eq (car (cadr x)) 'binary-+))
         (cond
          ((fringe-occur 'binary-+ (caddr x) (cadr x))
           (list '<
                 (binary-op_tree-simple
                  'binary-+
                  0
                  (del (caddr x) (binary-op_fringe 'binary-+ (cadr x))))
                 *0*))
          (t x)))
        ((and (consp (caddr x))
              (eq (car (caddr x)) 'binary-+))
         (cond
          ((fringe-occur 'binary-+ (cadr x) (caddr x))
           (list '<
                 *0*
                 (binary-op_tree-simple
                  'binary-+
                  0
                  (del (cadr x) (binary-op_fringe 'binary-+ (caddr x))))))
          (t x)))
        (t x)))

(defun cancel_plus-lessp (x)
  (declare (xargs :guard (pseudo-termp x)))
  (if (and (consp x)
	   (eq (car x) '<))
      (cond
       ((and (consp (cadr x))
             (eq (car (cadr x)) 'binary-+)
             (consp (caddr x))
             (eq (car (caddr x)) 'binary-+))
        (let* ((lt-side (binary-op_fringe 'binary-+ (cadr x)))
               (rt-side (binary-op_fringe 'binary-+ (caddr x)))
               (int (bagint lt-side rt-side)))
          (if int
              (list '<
                    (binary-op_tree-simple 'binary-+
                                           0
                                           (bagdiff lt-side int))
                    (binary-op_tree-simple 'binary-+
                                           0
                                           (bagdiff rt-side int)))
            x)))
       (t (cancel_plus-lessp$1 x)))
    x))

(local (in-theory (disable binary-op_tree-simple)))

(local
 (defthm ev-plus-lessp-binary-op_tree-simple-append
   (implies (and (consp fringe1) (consp fringe2))
            (equal (ev-plus-lessp (binary-op_tree-simple 'binary-+
                                                         0
                                                         (append fringe1 fringe2))
                                  a)
                   (+ (ev-plus-lessp (binary-op_tree-simple 'binary-+
                                                            0
                                                            fringe1)
                                     a)
                      (ev-plus-lessp (binary-op_tree-simple 'binary-+
                                                            0
                                                            fringe2)
                                     a))))
   :hints (("Goal" :induct (append fringe1 fringe2)))))

(local
 (defthm ev-plus-lessp-binary-op_tree-simple-fringe
   (equal (ev-plus-lessp (binary-op_tree-simple
                          'binary-+
                          0
                          (binary-op_fringe 'binary-+ x))
                         a)
          (ev-plus-lessp x a))))

(local (defthm equal-iff
         (implies (and (booleanp x) (booleanp y))
                  (iff (equal x y)
                       (iff x y)))))

(local
 (defthm plus-cancel-left
   (equal (< (+ x y) (+ x z))
          (< (fix y) (fix z)))))

(local
 (defthm binary-op_tree-simple-plus-fringe-del-lemma
   (implies (memb summand fringe)
            (equal (+ (ev-plus-lessp summand a)
                      (ev-plus-lessp (binary-op_tree-simple
                                      'binary-+
                                      0
                                      (del summand fringe))
                                     a))
                   (fix (ev-plus-lessp (binary-op_tree-simple
                                        'binary-+ 0 fringe)
                                       a))))
   :rule-classes nil
   :hints (("Goal" :expand ((binary-op_tree-simple 'binary-+
                                                   0
                                                   (cdr fringe)))))))

(local
 (defthm binary-op_tree-simple-plus-fringe-del-1
   (implies (memb summand fringe)
            (equal (< y
                      (ev-plus-lessp (binary-op_tree-simple
                                      'binary-+
                                      0
                                      (del summand fringe))
                                     a))
                   (< (+ y (ev-plus-lessp summand a))
                      (ev-plus-lessp (binary-op_tree-simple
                                      'binary-+ 0 fringe)
                                     a))))
   :hints (("Goal" :use binary-op_tree-simple-plus-fringe-del-lemma))))

(local
 (defthm binary-op_tree-simple-plus-fringe-del-2
   (implies (memb summand fringe)
            (equal (< (ev-plus-lessp (binary-op_tree-simple
                                      'binary-+
                                      0
                                      (del summand fringe))
                                     a)
                      y)
                   (< (ev-plus-lessp (binary-op_tree-simple
                                      'binary-+ 0 fringe)
                                     a)
                      (+ y (ev-plus-lessp summand a)))))
   :hints (("Goal" :use binary-op_tree-simple-plus-fringe-del-lemma))))

(local
 (defthm cancel_plus-lessp$1-property
   (implies (and (consp x)
                 (equal (car x) '<))
            (equal (ev-plus-lessp (cancel_plus-lessp$1 x) a)
                   (ev-plus-lessp x a)))))

(local
 (in-theory (disable cancel_plus-lessp$1)))

(local
 (defthm binary-op_tree-simple-plus-fringe-del
   (implies (and (memb summand fringe)
                 (acl2-numberp y))
            (equal (equal y
                          (ev-plus-lessp (binary-op_tree-simple
                                          'binary-+
                                          0
                                          (del summand fringe))
                                         a))
                   (and (acl2-numberp (ev-plus-lessp (binary-op_tree-simple
                                                      'binary-+
                                                      0
                                                      (del summand fringe))
                                                     a))
                        (equal (+ y (ev-plus-lessp summand a))
                               (fix (ev-plus-lessp (binary-op_tree-simple
                                                    'binary-+ 0 fringe)
                                                   a))))))
   :hints (("Goal" :use binary-op_tree-simple-plus-fringe-del-lemma))))

(local
 (defthm binary-op_tree-simple-plus-fringe-del-not-acl2-numberp
   (implies (and (not (acl2-numberp
                       (ev-plus-lessp (binary-op_tree-simple
                                       'binary-+
                                       0
                                       (del summand fringe))
                                      a)))
                 (memb summand fringe))
            (equal (ev-plus-lessp
                    (binary-op_tree-simple
                     'binary-+
                     0
                     fringe)
                    a)
                   (fix (ev-plus-lessp summand a))))
   :hints (("Goal" :expand ((del summand fringe)
                            (del summand (cdr fringe))
                            (binary-op_tree-simple 'binary-+
                                                   0 fringe))))))

(local
 (encapsulate
  ()

  (local
   (defthm binary-op_tree-simple-opener-extra-1
     (implies (and (consp fringe)
                   (not (consp (cdr fringe))))
              (equal (binary-op_tree-simple 'binary-+ 0 fringe)
                     (car fringe)))))

  (defthm cancel_plus-lessp-correct-lemma-1
    (implies (subbagp fringe2 fringe1)
             (equal
              (+ (ev-plus-lessp (binary-op_tree-simple
                                 'binary-+
                                 0
                                 (bagdiff fringe1 fringe2))
                                a)
                 (ev-plus-lessp (binary-op_tree-simple
                                 'binary-+
                                 0
                                 fringe2)
                                a))
              (fix (ev-plus-lessp (binary-op_tree-simple
                                   'binary-+
                                   0
                                   fringe1)
                                  a))))
    :rule-classes nil)))

(local
 (defthm cancel_plus-lessp-correct-lemma
   (equal
    (<
     (ev-plus-lessp (binary-op_tree-simple
                     'binary-+
                     0
                     (bagdiff (binary-op_fringe 'binary-+ x1)
                              (bagint (binary-op_fringe 'binary-+ x1)
                                      (binary-op_fringe 'binary-+ x2))))
                    a)
     (ev-plus-lessp (binary-op_tree-simple
                     'binary-+
                     0
                     (bagdiff (binary-op_fringe 'binary-+ x2)
                              (bagint (binary-op_fringe 'binary-+ x1)
                                      (binary-op_fringe 'binary-+ x2))))
                    a))
    (< (ev-plus-lessp x1 a)
       (ev-plus-lessp x2 a)))
   :hints (("Goal" :use
            ((:instance cancel_plus-lessp-correct-lemma-1
                        (fringe1 (binary-op_fringe 'binary-+ x1))
                        (fringe2 (bagint (binary-op_fringe 'binary-+ x1)
                                         (binary-op_fringe 'binary-+ x2))))
             (:instance cancel_plus-lessp-correct-lemma-1
                        (fringe1 (binary-op_fringe 'binary-+ x2))
                        (fringe2 (bagint (binary-op_fringe 'binary-+ x1)
                                         (binary-op_fringe 'binary-+ x2)))))))))

(defthm cancel_plus-lessp-correct
  (equal (ev-plus-lessp x a)
         (ev-plus-lessp (cancel_plus-lessp x) a))
  :rule-classes ((:meta :trigger-fns (<))))