This file is indexed.

/usr/share/acl2-8.0dfsg/books/meta/meta-times-equal.lisp is in acl2-books-source 8.0dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
; ACL2 books on arithmetic metafunctions
; Copyright (C) 1997  Computational Logic, Inc.
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.

; Written by:  Matt Kaufmann and John Cowles
; Computational Logic, Inc.
; 1717 West Sixth Street, Suite 290
; Austin, TX 78703-4776 U.S.A.

(in-package "ACL2")

(include-book "term-defuns")

(local (include-book "term-lemmas"
                     :load-compiled-file nil))

(local (include-book "arithmetic/equalities" :dir :system
                     :load-compiled-file nil))

(defevaluator ev-times-equal ev-times-equal-list
  ((binary-* x y)
   (fix x)
   (equal x y)
   (acl2-numberp x)
   (if x y z)))

(defun cancel_times-equal$1 (x)
  (declare (xargs :guard (and (pseudo-termp x)
                              (consp x))))

; Not all of

; (and (consp (cadr x))
;      (eq (car (cadr x)) 'binary-*)
;      (consp (caddr x))
;      (eq (car (caddr x)) 'binary-*))

; hold.

  (mv-let
   (elt term)
   (cond ((and (consp (cadr x))
               (eq (car (cadr x)) 'binary-*))
          (mv (caddr x) (cadr x)))
         ((and (consp (caddr x))
               (eq (car (caddr x)) 'binary-*))
          (mv (cadr x) (caddr x)))
         (t (mv nil nil)))
   (cond
    ((and elt (fringe-occur 'binary-* elt term))
     (list 'if
           (list 'acl2-numberp elt)
           (list 'if
                 (list 'equal elt *0*)
                 *t*
                 (list 'equal
                       *1*
                       (binary-op_tree
                        'binary-*
                        1
                        'fix
                        (del elt (binary-op_fringe 'binary-* term)))))
           *nil*))
    (t x))))

(defun formal-some-zerop (lst)
  (declare (xargs :guard (and (consp lst)
                              (true-listp lst))))
  (cond
   ((endp (cdr lst))
    (list 'equal *0* (list 'fix (car lst))))
   ((memb (car lst) (cdr lst))
    (formal-some-zerop (cdr lst)))
   (t (list 'if
            (list 'equal *0* (list 'fix (car lst)))
            *t*
            (formal-some-zerop (cdr lst))))))

(defun cancel_times-equal (x)
  (declare (xargs :guard (pseudo-termp x)))
  (if (and (consp x)
	   (eq (car x) 'equal))
      (cond
       ((and (consp (cadr x))
             (eq (car (cadr x)) 'binary-*)
             (consp (caddr x))
             (eq (car (caddr x)) 'binary-*))
        (let* ((lt-side (binary-op_fringe 'binary-* (cadr x)))
               (rt-side (binary-op_fringe 'binary-* (caddr x)))
               (int (bagint lt-side rt-side)))
          (if int
              (list 'if
                    (formal-some-zerop int)
                    *t*
                    (list 'equal
                          (binary-op_tree 'binary-*
                                          1
                                          'fix
                                          (bagdiff lt-side int))
                          (binary-op_tree 'binary-*
                                          1
                                          'fix
                                          (bagdiff rt-side int))))
            x)))
       (t (cancel_times-equal$1 x)))
    x))

(local
 (defthm acl2-numberp-ev-times-equal
   (acl2-numberp (ev-times-equal (binary-op_tree 'binary-* 1 'fix fringe) a))
   :rule-classes :type-prescription))

(local (in-theory (disable binary-op_tree)))

(local
 (defthm ev-times-equal-binary-op_tree-append
   (equal (ev-times-equal (binary-op_tree 'binary-*
                                         1 'fix
                                         (append fringe1 fringe2))
                         a)
          (* (ev-times-equal (binary-op_tree 'binary-*
                                            1 'fix
                                            fringe1)
                            a)
             (ev-times-equal (binary-op_tree 'binary-*
                                            1 'fix
                                            fringe2)
                            a)))
   :hints (("Goal" :induct (append fringe1 fringe2)))))

(local
 (defthm ev-times-equal-binary-op_tree-fringe
   (equal (ev-times-equal (binary-op_tree 'binary-*
                                         1 'fix
                                         (binary-op_fringe 'binary-* x))
                         a)
          (fix (ev-times-equal x a)))))

(local
 (defthm times-cancel-left
   (equal (equal (* x y) (* x z))
          (or (equal (fix x) 0)
              (equal (fix y) (fix z))))))

(local
 (defthm binary-op_tree-times-fringe-del-lemma
   (implies (memb summand fringe)
            (equal (* (ev-times-equal summand a)
                      (ev-times-equal (binary-op_tree 'binary-*
                                                     1 'fix
                                                     (del summand fringe))
                                     a))
                   (ev-times-equal (binary-op_tree 'binary-*
                                                  1 'fix
                                                  fringe)
                                  a)))
   :rule-classes nil
   :hints (("Goal" :expand ((binary-op_tree 'binary-*
                                            1 'fix
                                            (cdr fringe)))))))

(local
 (encapsulate
  ()

  (local
   (defthm times-cancel-left-better
     (implies (equal left (* x y))
              (equal (equal left (* x z))
                     (or (equal (fix x) 0)
                         (equal (fix y) (fix z)))))))

  (defthm binary-op_tree-times-fringe-del
    (implies (and (memb summand fringe)
                  (acl2-numberp y)
                  (not (equal (fix (ev-times-equal summand a)) 0)))
             (equal (equal y
                           (ev-times-equal (binary-op_tree 'binary-*
                                                           1 'fix
                                                           (del summand fringe))
                                           a))
                    (equal (* (ev-times-equal summand a) y)
                           (ev-times-equal (binary-op_tree 'binary-*
                                                           1 'fix
                                                           fringe)
                                           a))))
    :hints (("Goal" :use binary-op_tree-times-fringe-del-lemma
             :in-theory (disable commutativity-of-*))))))

(local
 (defthm memb-of-fringe-non-zero
   (implies (and (memb x (binary-op_fringe 'binary-* term))
                 (acl2-numberp (ev-times-equal term a))
                 (not (equal (ev-times-equal term a) 0)))
            (and (not (equal (ev-times-equal x a) 0))
                 (acl2-numberp (ev-times-equal x a))))))

(local
 (defthm cancel_times-equal$1-property
   (implies (and (consp x)
                 (equal (car x) 'equal))
            (equal (ev-times-equal (cancel_times-equal$1 x) a)
                   (ev-times-equal x a)))))

(local
 (in-theory (disable cancel_times-equal$1)))

(local
 (defthm ev-times-equal-binary-op_tree-is-zero
   (implies (and (memb x fringe)
                 (equal (fix (ev-times-equal x a)) 0))
            (equal (ev-times-equal (binary-op_tree 'binary-* 1 'fix fringe)
                                   a)
                   0))))

(local
 (defthm ev-times-equal-binary-op_tree-is-zero-from-del
   (implies (equal (ev-times-equal (binary-op_tree 'binary-* 1 'fix (del x fringe))
                                   a)
                   0)
            (equal (ev-times-equal (binary-op_tree 'binary-* 1 'fix fringe)
                                   a)
                   0))
   :hints (("Goal" :expand ((binary-op_tree 'binary-* 1 'fix fringe)
                            (binary-op_tree 'binary-* 1 'fix (cdr fringe)))))))

(local
 (encapsulate
  ()

  (local
   (defthm binary-op_tree-opener-extra-1
     (implies (and (consp fringe)
                   (not (consp (cdr fringe))))
              (equal (binary-op_tree 'binary-* 1 op fringe)
                     (list op (car fringe))))))

  (local
   (defthm cancel_equal-times-correct-lemma-1-lemma
     (implies (memb x fringe)
              (equal (* (ev-times-equal x a)
                        (ev-times-equal (binary-op_tree 'binary-*
                                                        1 'fix
                                                        (del x fringe))
                                        a))
                     (fix (ev-times-equal (binary-op_tree 'binary-*
                                                          1 'fix
                                                          fringe)
                                          a))))
     :hints (("Goal" :use
              ((:instance
                binary-op_tree-times-fringe-del
                (summand x)
                (y (ev-times-equal (binary-op_tree 'binary-*
                                                   1 'fix
                                                   (del x fringe))
                                   a))
                (fringe fringe)
                (a a)))
              :in-theory (disable binary-op_tree-times-fringe-del)))))

  (defthm cancel_equal-times-correct-lemma-1
    (implies (subbagp fringe2 fringe1)
             (equal
              (* (ev-times-equal (binary-op_tree
                                  'binary-*
                                  1
                                  'fix
                                  fringe2)
                                 a)
                 (ev-times-equal (binary-op_tree
                                  'binary-*
                                  1
                                  'fix
                                  (bagdiff fringe1 fringe2))
                                 a))
              (ev-times-equal (binary-op_tree
                               'binary-*
                               1
                               'fix
                               fringe1)
                              a)))
    :hints (("Goal" :expand ((binary-op_tree 'binary-*
                                             1 'fix
                                             fringe2)))))))

(local
 (encapsulate
  ()

  (local
   (defthm times-cancel-right-left-better
     (implies (equal left (* y x))
              (equal (equal left (* x z))
                     (or (equal (fix x) 0)
                         (equal (fix y) (fix z)))))))

  (defthm cancel_equal-times-correct-lemma-2
    (implies (and (subbagp fringe2 fringe1)
                  (not (equal (ev-times-equal
                               (binary-op_tree
                                'binary-*
                                1
                                'fix
                                fringe2)
                               a)
                              0))
                  (acl2-numberp y))
             (equal
              (equal y
                     (ev-times-equal (binary-op_tree
                                      'binary-*
                                      1
                                      'fix
                                      (bagdiff fringe1 fringe2))
                                     a))
              (equal (* (ev-times-equal
                         (binary-op_tree
                          'binary-*
                          1
                          'fix
                          fringe2)
                         a)
                        y)
                     (ev-times-equal (binary-op_tree
                                      'binary-*
                                      1
                                      'fix
                                      fringe1)
                                     a))))
    :hints (("Goal" :use cancel_equal-times-correct-lemma-1
             :in-theory (disable cancel_equal-times-correct-lemma-1))))))

(local
 (defthm acl2-numberp-ev-times-equal-again
   (acl2-numberp (ev-times-equal (cons 'binary-* x8)
                                 a))
   :rule-classes :type-prescription))

(local
 (defthm ev-times-equal-binary-op_tree-is-zero-alternate
   (implies (and (memb x fringe)
                 (equal (fix (ev-times-equal x a)) 0))
            (ev-times-equal (formal-some-zerop fringe)
                            a))))

(local
 (defthm ev-times-equal-formal-some-zerop-0
   (implies (consp fringe)
            (equal (ev-times-equal
                    (formal-some-zerop fringe)
                    a)
                   (equal
                    (fix (ev-times-equal (binary-op_tree 'binary-*
                                                         1 'fix
                                                         fringe)
                                         a))
                    0)))
   :hints (("Goal" :expand ((binary-op_tree 'binary-* 1 'fix fringe))
            :restrict ((ev-times-equal-binary-op_tree-is-zero-alternate
                        ((x (car fringe)))))))))

(local
 (defthm consp-bagint
   (iff (consp (bagint x y))
        (bagint x y))))

(local
 (defthm cancel_equal-times-correct-lemma
   (let ((int (bagint (binary-op_fringe 'binary-* x1)
                      (binary-op_fringe 'binary-* x2))))
     (implies
      (and int
           (not (ev-times-equal (formal-some-zerop int) a)))
      (equal
       (equal
        (ev-times-equal (binary-op_tree
                         'binary-*
                         1
                         'fix
                         (bagdiff (binary-op_fringe 'binary-* x1)
                                  int))
                        a)
        (ev-times-equal (binary-op_tree
                         'binary-*
                         1
                         'fix
                         (bagdiff (binary-op_fringe 'binary-* x2)
                                  int))
                        a))
       (equal (fix (ev-times-equal x1 a))
              (fix (ev-times-equal x2 a))))))
   :hints (("Goal" :use
            ((:instance cancel_equal-times-correct-lemma-1
                        (fringe1 (binary-op_fringe 'binary-* x1))
                        (fringe2 (bagint (binary-op_fringe 'binary-* x1)
                                         (binary-op_fringe 'binary-* x2))))
             (:instance cancel_equal-times-correct-lemma-1
                        (fringe1 (binary-op_fringe 'binary-* x2))
                        (fringe2 (bagint (binary-op_fringe 'binary-* x1)
                                         (binary-op_fringe 'binary-* x2)))))))))
(local
 (defthm formal-some-zerop-bagint-yields-0
   (implies
    (and (ev-times-equal (formal-some-zerop fringe)
                         a)
         (subbagp fringe (binary-op_fringe 'binary-*
                                           term))
         (acl2-numberp (ev-times-equal term a))
         (consp fringe))
    (equal (ev-times-equal term a)
           0))))

(defthm cancel_times-equal-correct
  (equal (ev-times-equal x a)
         (ev-times-equal (cancel_times-equal x) a))
  :rule-classes ((:meta :trigger-fns (equal)))
  :hints (("Goal" :in-theory (disable ev-times-equal-constraint-6
                                      ev-times-equal-formal-some-zerop-0))))