/usr/share/acl2-8.0dfsg/books/misc/bash.lisp is in acl2-books-source 8.0dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 | ; Copyright (C) 2013, Regents of the University of Texas
; Written by Matt Kaufmann (original date October, 2006)
; License: A 3-clause BSD license. See the LICENSE file distributed with ACL2.
(in-package "ACL2")
(include-book "xdoc/top" :dir :system)
(program)
(set-state-ok t)
(defun simplify-with-prover (form hints ctx state)
; This is patterned after (define-pc-primitive prove ...).
(let ((wrld (w state))
(ens (ens state))
(name-tree 'bash))
(er-let*
((thints (translate-hints
name-tree
; Keep the following in sync with the definition of the proof-builder :bash
; command.
(append
*bash-skip-forcing-round-hints*
(add-string-val-pair-to-string-val-alist
"Goal"
:do-not
(list 'quote '(generalize eliminate-destructors fertilize
eliminate-irrelevance))
(add-string-val-pair-to-string-val-alist!
"Goal"
:do-not-induct
name-tree
hints))
(default-hints wrld))
ctx wrld state))
(tterm (translate form t t t ctx wrld state)))
(mv-let (erp ttree state)
(state-global-let*
((guard-checking-on nil)
(in-prove-flg t))
(pc-prove tterm form thints t ens wrld ctx state))
(cond (erp (mv t nil state))
(t (let ((clauses (unproved-pc-prove-clauses ttree)))
(cond ((and (eql (length clauses) 1)
(eql (length (car clauses)) 1)
(eql (caar clauses) tterm))
(mv 'no-change nil state))
(t (value clauses))))))))))
(defun bash-fn (form hints verbose ctx state)
; Keep this in sync with bash-term-to-dnf.
(mv-let
(erp clauses state)
(cond (verbose
(simplify-with-prover form hints ctx state))
(t
(state-global-let*
((inhibit-output-lst *valid-output-names*))
(simplify-with-prover form hints ctx state))))
(cond
(erp
(pprogn
(warning$ ctx "bash"
"Unable to simplify the input term~@0"
(cond ((eq erp 'no-change)
".")
(t (msg " because an error occurred.~@0"
(cond
(verbose "")
(t " Try setting the verbose flag to t in ~
order to see what is going on."))))))
(value (list form))))
(t
(value (prettyify-clause-lst clauses (let*-abstractionp state) (w state)))))))
(defmacro bash (term &key verbose hints)
`(bash-fn ',term ',hints ',verbose 'bash state))
; Dave Greve has contributed the following (only slightly modified here), to
; create a variant bash-term-to-dnf of bash-fn. This example may suggest other
; variants; feel free to contribute yours to Matt Kaufmann,
; kaufmann@cs.utexas.edu.
(defun goals-to-cnf (goals)
(cond ((endp goals) nil)
(t (cons (append (access goal (car goals) :hyps)
(list (dumb-negate-lit (access goal (car goals)
:conc))))
(goals-to-cnf (cdr goals))))))
(defun untranslate-lst-lst (list iff-flg wrld)
(cond
((endp list)
nil)
(t (cons (untranslate-lst (car list) iff-flg wrld)
(untranslate-lst-lst (cdr list) iff-flg wrld)))))
(defun bash-term-to-dnf (form hints verbose untranslate-flg state)
; Keep this in sync with bash-fn.
(let ((ctx 'bash-term-to-dnf))
(mv-let
(erp clauses state)
(cond (verbose
(simplify-with-prover form hints ctx state))
(t
(state-global-let*
((gag-mode nil set-gag-mode-fn)
(inhibit-output-lst *valid-output-names*)
(print-clause-ids nil))
(simplify-with-prover form hints ctx state))))
(cond
(erp
(cond ((eq verbose :all)
(pprogn
(warning$ ctx "bash"
"Unable to simplify the input term~@0"
(cond ((eq erp 'no-change)
".")
(t (msg " because an error occurred.~@0"
(cond
(verbose "")
(t " Try setting the verbose flag to ~
t in order to see what is going ~
on."))))))
(value (list (list form)))))
(t
(value (list (list form))))))
(untranslate-flg
(value (untranslate-lst-lst clauses t (w state))))
(t
(value clauses))))))
;; When we call bash with hints we may modify the enabled structure.
;; If we do this inside of a computed hint it may result in slow array
;; access warnings. By wrapping the outermost state modifying call
;; with preserve-pspv you can protect the state.
(defmacro preserve-pspv (call &key (pspv 'pspv))
`(let ((pspv ,pspv))
(let* ((old-ens (access rewrite-constant
(access prove-spec-var pspv :rewrite-constant)
:current-enabled-structure))
(old-name (access enabled-structure old-ens :array-name)))
(mv-let (err val state) ,call
(let ((ens (compress1 old-name (access enabled-structure old-ens :theory-array))))
(declare (ignore ens))
(mv err val state))))))
(defxdoc bash
:parents
(proof-automation)
:short "<tt>Bash</tt> is a tool that simplifies a term, producing a list of
simplified terms such that if all output terms are theorems, then so is the
input term."
:long "<p>This utility is defined in community book
<tt>\"misc/bash.lisp\"</tt>. If you submit <tt>(bash term)</tt> then roughly
speaking, the result is a list of goals produced by ACL2's simplification
process. That is, ACL2 might reasonably be expected to produce these goals
when simplifying <tt>term</tt> during a proof attempt. In particular, if the
result is <tt>nil</tt>, then <tt>term</tt> is a theorem. More accurately:
<tt>(bash term)</tt> returns an @(see error-triple), @('(mv nil val state)')
where <tt>val</tt> is a list of terms, in untranslated (user-level) form, whose
provability implies the provability of the input term. If ACL2 cannot simplify
the input term (e.g., if there is a translation error), then it prints a
warning and returns <tt>(mv nil input-term state)</tt>.</p>
<p>For related utilities, see @(see bash-term-to-dnf) and @(see simp).</p>
<h3>Examples</h3>
<p>First we execute:
@({(include-book \"misc/bash\" :dir :system)})
Then:
@({
ACL2 !>(bash (equal (append x y) (append (car (cons x a)) z)))
Goal'
((EQUAL (APPEND X Y) (APPEND X Z)))
ACL2 !>(set-gag-mode nil) ; optional; turns off printing of goal names
<state>
ACL2 !>(bash (equal (append x y) (append (car (cons x a)) z)))
((EQUAL (APPEND X Y) (APPEND X Z)))
ACL2 !>(bash (equal (car (cons x y)) x))
NIL
ACL2 !>(bash (implies (true-listp x) (equal (append x y) zzz))
:hints ((\"Goal\" :expand ((true-listp x)
(true-listp (cdr x))
(append x y)))))
((EQUAL Y ZZZ)
(IMPLIES (AND (CONSP X)
(CONSP (CDR X))
(TRUE-LISTP (CDDR X)))
(EQUAL (LIST* (CAR X)
(CADR X)
(APPEND (CDDR X) Y))
ZZZ))
(IMPLIES (AND (CONSP X) (NOT (CDR X)))
(EQUAL (CONS (CAR X) Y) ZZZ)))
ACL2 !>(bash (equal x y))
ACL2 Warning [bash] in BASH: Unable to simplify the input term.
((EQUAL X Y))
ACL2 !>(bash (equal x))
ACL2 Warning [bash] in BASH: Unable to simplify the input term because
an error occurred. Try setting the verbose flag to t in order to see
what is going on.
((EQUAL X))
ACL2 !>(bash (equal x) :verbose t)
ACL2 Error in BASH: EQUAL takes 2 arguments but in the call (EQUAL X)
it is given 1 argument. The formal parameters list for EQUAL is (X Y).
ACL2 Warning [bash] in BASH: Unable to simplify the input term because
an error occurred.
((EQUAL X))
ACL2 !>
})</p>
<p>Here is how we might use this tool to simplify hypotheses. First execute:
@({
(defstub p1 (x) t)
(defstub p2 (x) t)
(defun p3 (x) (if (atom x) (p2 x) (p1 (car x))))
(include-book
\"misc/bash\" :dir :system)
})
Then:
@({
ACL2 !>(bash (implies (and (p1 x) (p3 x))
(hide aaa)))
((IMPLIES (AND (P1 X) (CONSP X) (P1 (CAR X)))
(HIDE AAA))
(IMPLIES (AND (P1 X) (NOT (CONSP X)) (P2 X))
(HIDE AAA)))
ACL2 !>
})</p>
<h3>More details</h3>
<p>This utility is similar to the @(see proof-builder)'s <tt>bash</tt> command,
but for use in the top-level loop. The input term can have user-level syntax;
it need not be translated. The output is an error triple <tt>(mv nil termlist
state)</tt> such that either <tt>termlist</tt> is a one-element list containing
the input term, or else <tt>termlist</tt> is a list of term such that if each
term in this list is a theorem, then the input term is a theorem. In practice,
these terms are produced by calling the prover with non-simplification
processes --- <tt>generalize</tt>, <tt>eliminate-destructors</tt>,
<tt>fertilize</tt> (heuristic use of equalities), and
<tt>eliminate-irrelevance</tt>, as well as induction --- turned off, and with
forcing rounds skipped (at least the first 15 of them). A keyword argument,
<tt>:hints</tt>, can specify @(see hints) using their usual syntax, as with
@(see defthm). The other keyword argument, <tt>:verbose</tt>, is <tt>nil</tt>
by default, to suppress output; use a non-<tt>nil</tt> value if you want
output, including the proof attempt. The keyword values are not evaluated, so
for example <tt>:hints</tt> could be of the form <tt>((\"Goal\" ...))</tt> but
not <tt>'((\"Goal\" ...))</tt>.</p>
<p>We conclude with an note on the use of @(see hints) that may be important if
you use computed hints (see @(see computed-hints)). Consider the following
example, supplied courtesy of Harsh Raju Chamarthi.
@({
(defun drop (n l)
(if (zp n)
l
(drop (1- n) (cdr l))))
(include-book \"misc/bash\" :dir :system)
; Occur-fn returns the term that has fn has its function symbol.
(mutual-recursion
(defun occur-fn (fn term2)
(cond ((variablep term2) nil)
((fquotep term2) nil)
(t (or (and (eq fn (ffn-symb term2)) term2)
(occur-fn-lst fn (fargs term2))))))
(defun occur-fn-lst (fn args2)
(cond ((endp args2) nil)
(t (or (occur-fn fn (car args2))
(occur-fn-lst fn (cdr args2)))))))
; Doesn't work as you might expect (see below):
(bash (drop 3 x)
:verbose t
:hints ((if (occur-fn-lst 'drop clause)
`(:computed-hint-replacement
t
:expand
(,(occur-fn-lst 'drop clause)))
nil)))
})
The preceding call of <tt>bash</tt>, at the end of the displayed list of forms
above, causes the theorem prover to use destructor elimination, even though
that proof process is presumably turned off by <tt>bash</tt>. What happened?
The problem is that the user-supplied hints are put in front of the hints
generated by <tt>bash</tt> to form the full list of hints given to the prover,
which cases the <tt>:do-not</tt> hint on \"Goal\" to be ignored. Here is a
solution.
@({
(bash (drop 3 x)
:verbose t
:hints ((if (occur-fn-lst 'drop clause)
`(:computed-hint-replacement
t
:do-not-induct :bash
:do-not (set-difference-eq *do-not-processes*
'(preprocess simplify))
:expand (,(occur-fn-lst 'drop clause)))
'(:do-not-induct
:bash
:do-not
(set-difference-eq *do-not-processes*
'(preprocess simplify))))))
})</p>")
(defxdoc bash-term-to-dnf
:parents
(proof-automation)
:short "<tt>Bash-term-to-dnf</tt> is a tool that simplifies a term, producing
a list of clauses such that if all output clauses are theorems, then so is the
input term."
:long "<p>This utility is defined in community book
<tt>\"misc/bash.lisp\"</tt>. We assume here familiarity with the @('bash')
tool defined in that book, focusing below on how the present tool differs from
that one.</p>
<p>If you submit <tt>(bash-term-to-dnf term)</tt> then the result is a list of
goals produced by ACL2's simplification process, much as for the result of
<tt>(bash term)</tt>; see @('bash'). However, unlike <tt>bash</tt>,
<tt>bash-term-to-dnf</tt> returns a list of <i>clauses</i>, where each clause
is a list of terms that represents the disjunction of those terms, and the list
of clauses is implicitly conjoined.</p>
<p>Again: For related utilities, see @(see simp) and @(see bash).</p>
<h3>Example</h3>
<p>First we execute:
@({(include-book \"misc/bash\" :dir :system)})
Then:
@({
ACL2 !>(bash-term-to-dnf
'(implies (true-listp x) (equal (append x y) zzz))
'((\"Goal\" :expand ((true-listp x)
(true-listp (cdr x))
(append x y))))
nil t state)
(((EQUAL Y ZZZ))
((NOT (CONSP X))
(NOT (CONSP (CDR X)))
(NOT (TRUE-LISTP (CDDR X)))
(EQUAL (LIST* (CAR X)
(CADR X)
(APPEND (CDDR X) Y))
ZZZ))
((NOT (CONSP X))
(CDR X)
(EQUAL (CONS (CAR X) Y) ZZZ)))
ACL2 !>
})</p>
<h3>General Form:</h3>
<p>@({(bash-term-to-dnf form hints verbose untranslate-flg state)})
returns a list of clauses, each of which is a list of terms, where:
<ul>
<li><tt>form</tt> is a user-level (untranslated) term;</li>
<li><tt>hints</tt>, if supplied, is a @(see hints) structure (as for
@('defthm'));</li>
<li><tt>verbose</tt> is <tt>nil</tt> by default, in which case output is
inhibited; on the other extreme, if <tt>verbose</tt> is <tt>:all</tt> then a
warning is printed when no simplification takes place; and</li>
<li><tt>untranslate-flg</tt> is <tt>nil</tt> by default, in which case each
term in each returned clause is a term in internal (translated) form and
otherwise, each such term is in user-level (untranslated) form;</li>
</ul>
If each returned clause (viewed as a disjunction) is a theorem, then the input
<tt>form</tt> is a theorem.</p>"
)
|