/usr/share/acl2-8.0dfsg/books/misc/beta-reduce.lisp is in acl2-books-source 8.0dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 | ;; Contributed by David Greve
;; The following book provides a proof of correctness for a simple
;; beta-reduction routine for a generic ACL2 evaluator. Any user
;; defined ACL2 evaluator should support functional instantiation of
;; this result, allowing this beta reduction routine to be used
;; with any ACL2 evaluator, for example in proving a :meta rule.
(in-package "ACL2")
(defevaluator beta-eval beta-eval-list
nil)
(defun pseudo-termp-key (arg term)
(declare (type t arg term))
(if arg (pseudo-term-listp term)
(pseudo-termp term)))
(local
(encapsulate nil
(local (defun pos-ac-ind (x n)
(if (endp x) n
(list (pos-ac-ind (cdr x) (+ 1 n))
(pos-ac-ind (cdr x) 1)))))
(defthm position-equal-ac-iff-zero
(implies (and n
(syntaxp (not (equal n ''0))))
(iff (position-equal-ac k x n)
(position-equal-ac k x 0)))
:hints (("goal" :induct (pos-ac-ind x n))))
(local (defthm blah
(implies (syntaxp (and (quotep a) (quotep b)))
(equal (+ a b c)
(+ (+ a b) c)))))
(local (defun pos-ac-ind2 (x n)
(if (endp x) n
(list (pos-ac-ind2 (cdr x) (+ 1 n))
(pos-ac-ind2 (cdr x) 0)))))
(defthm position-equal-ac-redef
(equal (position-equal-ac k x n)
(cond ((endp x) nil)
((equal k (car x)) n)
(t (let ((res (position-equal-ac k (cdr x) 0)))
(and res (+ 1 n res))))))
:hints (("goal" :induct (pos-ac-ind2 x n)))
:rule-classes ((:definition :clique (position-equal-ac)
:controller-alist ((position-equal-ac nil t nil)))))
(defthm position-equal-ac-iff-member
(implies n
(iff (position-equal-ac k x n)
(member k x))))
(defthm nth-of-position-is-assoc-of-pairlis
(implies (member k x)
(equal (nth (position-equal-ac k x 0) y)
(cdr (assoc k (pairlis$ x y)))))
:hints (("goal" :induct (pairlis$ x y))))))
(defun beta-reduce-term (arg term keys vals)
(declare (type (satisfies true-listp) keys vals))
(declare (xargs :guard (pseudo-termp-key arg term)))
(cond
(arg
(cond
((endp term) nil)
(t (cons (beta-reduce-term nil (car term) keys vals)
(beta-reduce-term arg (cdr term) keys vals)))))
(t
(cond
((and (symbolp term) term)
(mbe :logic
(if (member term keys)
(cdr (assoc-eq term (pairlis$ keys vals)))
'(quote nil))
:exec (let ((pos (position-eq term keys)))
(if pos (nth pos vals) '(quote nil)))))
((atom term) term)
((eq (car term) 'quote) term)
((consp (car term))
(cons (car term) (beta-reduce-term t (CDR term) keys vals)))
(t
(cons (car term) (beta-reduce-term t (cdr term) keys vals)))))))
(defun lambda-expr-p (term)
(declare (type t term))
(and (consp term)
(consp (car term))
(equal (len (car term)) 3)))
(local
(encapsulate
()
(defun beta-eval-key (arg term alist)
(cond
(arg
(cond
((endp term) nil)
(t (cons (beta-eval-key nil (car term) alist)
(beta-eval-key arg (cdr term) alist)))))
(t
(cond
((and (symbolp term) term)
(cdr (assoc-eq term alist)))
((eq (car term) 'quote) (CAR (CDR term)))
((consp (car term))
(beta-eval (CAR (CDR (CDR (CAR term))))
(PAIRLIS$ (CAR (CDR (CAR term)))
(BETA-EVAL-key t (CDR term) alist))))
(t (beta-eval term alist))))))
(defthmd beta-eval-key-reduction
(equal (beta-eval-key arg term alist)
(if arg (beta-eval-list term alist)
(beta-eval term alist))))
(defun wf-beta-term (arg term)
(cond
(arg
(cond
((endp term) t)
(t (and (wf-beta-term nil (car term))
(wf-beta-term arg (cdr term))))))
(t
(cond
((symbolp term) t)
((atom term) nil)
((eq (car term) 'quote) t)
((consp (car term))
(wf-beta-term t (CDR term)))
(t (wf-beta-term t (cdr term)))))))
(defthm append-nil-fix
(equal (beta-eval-list (append list nil) a1)
(beta-eval-list list a1)))
(defthm late-binding-reduction
(implies
(equal (len keys) (len vals))
(equal (beta-eval (cdr (assoc-eq term (pairlis$ keys vals))) a1)
(if (member term keys)
(cdr (assoc-eq term (pairlis$ keys (beta-eval-list vals a1))))
(beta-eval nil a1)))))
(defthm assoc-eq-pairlis$-non-member
(implies
(not (member term keys))
(equal (assoc-eq term (pairlis$ keys vals))
nil)))
(defthmd beta-eval-key-beta-reduce-term
(implies
(and
(wf-beta-term arg term)
(equal (len keys) (len vals)))
(equal (beta-eval-key arg (beta-reduce-term arg term keys vals) a1)
(beta-eval-key arg term (pairlis$ keys
(beta-eval-key t vals a1)))))
:hints (("Goal" :do-not '(generalize eliminate-destructors)
:do-not-induct t
:induct (beta-reduce-term arg term keys vals)
:expand (:free (x) (hide x))
:in-theory (e/d (beta-eval-constraint-0
beta-eval-key-reduction)
nil))))
;; does lambda-expr need to do anything interesting in the case of
;; a lambda application?
(defun para-lambda-expr-p (term keys vals expr)
(declare (type t term))
(and (consp expr)
(consp (car expr))
(equal (len (car expr)) 3)
(equal (cadr (car expr)) keys)
(equal (caddr (car expr)) term)
(equal (cdr expr) vals)))
(defun para-map-lambda-p (term keys vals expr)
(declare (type t term))
(if (consp term)
(and (consp expr)
(para-lambda-expr-p (car term) keys vals (car expr))
(para-map-lambda-p (cdr term) keys vals (cdr expr)))
(not (consp expr))))
(defun para-lambda-expr-key-p (arg term keys vals expr)
(declare (type t term))
(if arg (para-map-lambda-p term keys vals expr)
(para-lambda-expr-p term keys vals expr)))
(defthm beta-eval-key-lambda-expr
(implies
(para-lambda-expr-key-p arg term keys vals expr)
(equal (beta-eval-key arg expr a1)
(beta-eval-key arg term (pairlis$ keys (beta-eval-key t vals a1)))))
:hints (("Goal" :in-theory (enable beta-eval-key-reduction))))
(defthmd lambda-expr-p-to-para-lambda-expr-key-p
(equal (lambda-expr-p term)
(para-lambda-expr-key-p nil (CAR (CDR (CDR (CAR term)))) (CAR (CDR (CAR term))) (cdr term) term))
:hints (("goal" :in-theory (enable lambda-expr-p para-lambda-expr-key-p))))
(in-theory (disable lambda-expr-p para-lambda-expr-key-p))
(defthmd beta-eval-lambda-expr-helper
(implies
(lambda-expr-p term)
(equal (beta-eval-key nil term a1)
(beta-eval-key nil (CAR (CDR (CDR (CAR term))))
(pairlis$ (CAR (CDR (CAR term)))
(beta-eval-key t (cdr term) a1)))))
:hints (("Goal"
:in-theory
(e/d (lambda-expr-p-to-para-lambda-expr-key-p) (beta-eval-key)))))
(defthm beta-eval-lambda-expr
(implies
(lambda-expr-p term)
(equal (beta-eval term a1)
(beta-eval (CAR (CDR (CDR (CAR term))))
(pairlis$ (CAR (CDR (CAR term)))
(beta-eval-list (cdr term) a1)))))
:hints (("Goal" :use beta-eval-lambda-expr-helper
:in-theory (enable beta-eval-key-reduction))))
(defthm pseudo-termp-key-implies-wf-beta-term
(implies
(pseudo-termp-key arg term)
(wf-beta-term arg term))
:hints (("Goal" :induct (wf-beta-term arg term))))
(defthm beta-eval-beta-reduce-term
(implies
(and
(wf-beta-term nil term)
(equal (len keys) (len vals)))
(equal (beta-eval (beta-reduce-term nil term keys vals) a1)
(beta-eval term (pairlis$ keys (beta-eval-list vals a1)))))
:hints (("Goal" :use (:instance beta-eval-key-beta-reduce-term
(arg nil))
:in-theory (enable beta-eval-key-reduction))))
(defthm beta-eval-to-beta-reduce-term
(implies
(and
(lambda-expr-p term)
(pseudo-termp term))
(equal (beta-eval term a1)
(beta-eval (beta-reduce-term nil (CAR (CDR (CDR (CAR term))))
(CAR (CDR (CAR term)))
(cdr term)) a1))))
))
(defund beta-reduce-lambda-expr (term)
(declare (type (satisfies lambda-expr-p) term)
(type (satisfies pseudo-termp) term)
(xargs :guard-hints (("Goal" :in-theory (enable lambda-expr-p)))))
(beta-reduce-term nil (CAR (CDR (CDR (CAR term))))
(CAR (CDR (CAR term)))
(cdr term)))
(defthm beta-eval-to-beta-reduce-lambda-expr
(implies
(and
(lambda-expr-p term)
(pseudo-termp term))
(equal (beta-eval term a1)
(beta-eval (beta-reduce-lambda-expr term) a1)))
:hints (("Goal" :in-theory (e/d (beta-reduce-lambda-expr)
(beta-reduce-term)))))
(local
(encapsulate
()
;; Here we show that it can be used to create a meta rule if only we
;; could trigger :meta rules on calls of lambdas.
(defun beta-reduce-wrapper (term)
(declare (type (satisfies pseudo-termp) term))
(if (lambda-expr-p term)
(beta-reduce-lambda-expr term)
term))
(defthm *meta*-beta-reduce-hide
(implies
(pseudo-termp term)
(equal (beta-eval term a)
(beta-eval (beta-reduce-wrapper term) a)))
:rule-classes
;; ((:meta :trigger-fns nil))
nil
)
))
;; The primary theorem exported from this file can be instantiated
;; with any ACL2 evaluator to produce the desired result.
;;
(defmacro beta-reduction-theorem (ev ev-lst)
(let ((name (packn-pos (list ev "-TO-BETA-REDUCE-LAMBDA-EXPR") ev)))
`(defthm ,name
(implies
(and
(lambda-expr-p term)
(pseudo-termp term))
(equal (,ev term a1)
(,ev (beta-reduce-lambda-expr term) a1)))
:hints (("Goal"
:in-theory (enable ,(packn (list ev "-CONSTRAINT-0")))
:use (:functional-instance
beta-eval-to-beta-reduce-lambda-expr
(beta-eval ,ev)
(beta-eval-list ,ev-lst)))))))
;;
;; Now call beta-reduction-theorem on an evaluator and the -list
;; version of the evaluator, as illsutrated below, and you get the
;; correctness of beta reduction for that evaluator.
;;
(local
(encapsulate
()
(defevaluator test test-list
nil)
(beta-reduction-theorem test test-list)
))
(encapsulate
()
(local
(defun pseudo-term-alistp (alist)
(declare (type t alist))
(if (consp alist)
(let ((entry (car alist)))
(and (consp entry)
(pseudo-termp (cdr entry))
(pseudo-term-alistp (cdr alist))))
(null alist))))
(local
(defthm pseudo-termp-cdr-assoc-pseudo-term-alistp
(implies
(pseudo-term-alistp alist)
(pseudo-termp (cdr (assoc key alist))))))
(local
(defthm pseudo-term-alistp-pairlis$
(implies
(pseudo-term-listp vals)
(pseudo-term-alistp (pairlis$ keys vals)))
:rule-classes (:rewrite
(:forward-chaining :trigger-terms ((pairlis$ keys vals))))))
(local
(defthm length-to-len
(implies
(true-listp x)
(equal (length x) (len x)))))
(local (in-theory (disable length)))
(local
(defthm open-pseudo-termp-on-cons
(equal (pseudo-termp (cons a list))
(let ((x (cons a list)))
(cond ((equal (car x) 'quote)
(and (consp (cdr x))
(equal (cddr x) nil)))
((true-listp x)
(and (pseudo-term-listp (cdr x))
(cond ((symbolp (car x)) t)
((true-listp (car x))
(and (equal (len (car x)) 3)
(equal (caar x) 'lambda)
(symbol-listp (cadar x))
(pseudo-termp (caddar x))
(equal (len (cadar x))
(len (cdr x)))))
(t nil))))
(t nil))))))
(defthm len-beta-reduce-term
(implies
arg
(equal (len (acl2::beta-reduce-term arg term keys vals))
(len term))))
(defthm pseudo-termp-key-beta-reduce-term
(implies
(and
(pseudo-term-listp vals)
(acl2::pseudo-termp-key arg term))
(acl2::pseudo-termp-key arg (acl2::beta-reduce-term arg term keys vals)))
:rule-classes (:rewrite
(:forward-chaining :trigger-terms ((acl2::beta-reduce-term arg term keys vals)))))
(local
(defthm pseudo-termp-key-implies-pseudo-termp
(implies
(acl2::pseudo-termp-key nil term)
(pseudo-termp term))
:rule-classes (:rewrite :forward-chaining)))
(local
(defthm pseudo-termp-key-implies-pseudo-term-listp
(implies
(acl2::pseudo-termp-key t list)
(pseudo-term-listp list))
:rule-classes (:rewrite :forward-chaining)))
(defthm pseudo-termp-beta-reduce-lambda-expr
(implies
(pseudo-termp term)
(pseudo-termp (acl2::beta-reduce-lambda-expr term)))
:hints (("Goal" :in-theory (enable acl2::beta-reduce-lambda-expr))))
(defun beta-reduce-pseudo-termp-switch (arg term)
(declare (xargs :guard (acl2::pseudo-termp-key arg term)
:verify-guards nil))
(cond
(arg
(cond
((endp term) nil)
(t (cons (beta-reduce-pseudo-termp-switch nil (car term))
(beta-reduce-pseudo-termp-switch arg (cdr term))))))
(t
(cond
((symbolp term) term)
((atom term) term)
((eq (car term) 'quote) term)
((consp (car term))
(acl2::beta-reduce-lambda-expr `((lambda ,(cadr (car term)) ,(beta-reduce-pseudo-termp-switch nil (caddr (car term))))
,@(beta-reduce-pseudo-termp-switch t (CDR term)))))
(t
(cons (car term) (beta-reduce-pseudo-termp-switch t (cdr term))))))))
(defthm len-beta-reduce-pseudo-termp-switch
(implies
arg
(equal (len (beta-reduce-pseudo-termp-switch arg term))
(len term))))
(defthm pseudo-termp-key-beta-reduce-pseudo-termp-switch
(implies
(acl2::pseudo-termp-key arg term)
(acl2::pseudo-termp-key arg (beta-reduce-pseudo-termp-switch arg term))))
(defthm true-listp-beta-reduce-pseudo-termp-switch
(implies
arg
(true-listp (beta-reduce-pseudo-termp-switch arg term))))
(local
(defthm pseudo-term-listp-append
(implies
(true-listp x)
(equal (pseudo-term-listp (append x y))
(and (pseudo-term-listp x)
(pseudo-term-listp y))))))
(verify-guards beta-reduce-pseudo-termp-switch
:hints (("Goal" :in-theory (enable LAMBDA-EXPR-P))))
(defun beta-reduce-pseudo-termp (term)
(beta-reduce-pseudo-termp-switch nil term))
(defthm pseudo-termp-beta-reduce-pseudo-termp
(implies
(pseudo-termp term)
(pseudo-termp (beta-reduce-pseudo-termp term)))
:rule-classes (:rewrite
(:forward-chaining :trigger-terms ((beta-reduce-pseudo-termp term)))))
(in-theory (disable beta-reduce-pseudo-termp))
(defun beta-reduce-pseudo-term-listp (list)
(if (endp list) nil
(cons (beta-reduce-pseudo-termp (car list))
(beta-reduce-pseudo-term-listp (cdr list)))))
(defthm pseudo-term-listp-beta-reduce-pseudo-term-listp
(implies
(pseudo-term-listp list)
(pseudo-term-listp (beta-reduce-pseudo-term-listp list)))
:rule-classes (:rewrite
(:forward-chaining :trigger-terms ((beta-reduce-pseudo-term-listp list)))))
)
|