This file is indexed.

/usr/share/acl2-8.0dfsg/books/misc/beta-reduce.lisp is in acl2-books-source 8.0dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
;; Contributed by David Greve

;; The following book provides a proof of correctness for a simple
;; beta-reduction routine for a generic ACL2 evaluator.  Any user
;; defined ACL2 evaluator should support functional instantiation of
;; this result, allowing this beta reduction routine to be used
;; with any ACL2 evaluator, for example in proving a :meta rule.

(in-package "ACL2")

(defevaluator beta-eval beta-eval-list
  nil)

(defun pseudo-termp-key (arg term)
  (declare (type t arg term))
  (if arg (pseudo-term-listp term)
    (pseudo-termp term)))

(local
 (encapsulate nil
   (local (defun pos-ac-ind (x n)
            (if (endp x) n
              (list (pos-ac-ind (cdr x) (+ 1 n))
                    (pos-ac-ind (cdr x) 1)))))

   (defthm position-equal-ac-iff-zero
     (implies (and n
                   (syntaxp (not (equal n ''0))))
              (iff (position-equal-ac k x n)
                   (position-equal-ac k x 0)))
     :hints (("goal" :induct (pos-ac-ind x n))))

   (local (defthm blah
            (implies (syntaxp (and (quotep a) (quotep b)))
                     (equal (+ a b c)
                            (+ (+ a b) c)))))

   (local (defun pos-ac-ind2 (x n)
            (if (endp x) n
              (list (pos-ac-ind2 (cdr x) (+ 1 n))
                    (pos-ac-ind2 (cdr x) 0)))))

   (defthm position-equal-ac-redef
     (equal (position-equal-ac k x n)
            (cond ((endp x) nil)
                  ((equal k (car x)) n)
                  (t (let ((res (position-equal-ac k (cdr x) 0)))
                       (and res (+ 1 n res))))))
     :hints (("goal" :induct (pos-ac-ind2 x n)))
     :rule-classes ((:definition :clique (position-equal-ac)
                     :controller-alist ((position-equal-ac nil t nil)))))

   (defthm position-equal-ac-iff-member
     (implies n
              (iff (position-equal-ac k x n)
                   (member k x))))

   (defthm nth-of-position-is-assoc-of-pairlis
     (implies (member k x)
              (equal (nth (position-equal-ac k x 0) y)
                     (cdr (assoc k (pairlis$ x y)))))
     :hints (("goal" :induct (pairlis$ x y))))))

(defun beta-reduce-term (arg term keys vals)
  (declare (type (satisfies true-listp) keys vals))
  (declare (xargs :guard (pseudo-termp-key arg term)))
  (cond
   (arg
    (cond
     ((endp term) nil)
     (t (cons (beta-reduce-term nil (car term) keys vals)
	      (beta-reduce-term arg (cdr term) keys vals)))))
   (t
    (cond
     ((and (symbolp term) term)
      (mbe :logic
           (if (member term keys)
               (cdr (assoc-eq term (pairlis$ keys vals)))
             '(quote nil))
           :exec (let ((pos (position-eq term keys)))
                   (if pos (nth pos vals) '(quote nil)))))
     ((atom term) term)
     ((eq (car term) 'quote) term)
     ((consp (car term))
      (cons (car term) (beta-reduce-term t (CDR term) keys vals)))
     (t
      (cons (car term) (beta-reduce-term t (cdr term) keys vals)))))))

(defun lambda-expr-p (term)
  (declare (type t term))
  (and (consp term)
       (consp (car term))
       (equal (len (car term)) 3)))

(local
 (encapsulate
     ()

(defun beta-eval-key (arg term alist)
  (cond
   (arg
    (cond
     ((endp term) nil)
     (t (cons (beta-eval-key nil (car term) alist)
	      (beta-eval-key arg (cdr term) alist)))))
   (t
    (cond
     ((and (symbolp term) term)
      (cdr (assoc-eq term alist)))
     ((eq (car term) 'quote) (CAR (CDR term)))
     ((consp (car term))
      (beta-eval (CAR (CDR (CDR (CAR term))))
                   (PAIRLIS$ (CAR (CDR (CAR term)))
                             (BETA-EVAL-key t (CDR term) alist))))
     (t (beta-eval term alist))))))

(defthmd beta-eval-key-reduction
  (equal (beta-eval-key arg term alist)
	 (if arg (beta-eval-list term alist)
	   (beta-eval term alist))))

(defun wf-beta-term (arg term)
  (cond
   (arg
    (cond
     ((endp term) t)
     (t (and (wf-beta-term nil (car term))
	     (wf-beta-term arg (cdr term))))))
   (t
    (cond
     ((symbolp term) t)
     ((atom term) nil)
     ((eq (car term) 'quote) t)
     ((consp (car term))
      (wf-beta-term t (CDR term)))
     (t (wf-beta-term t (cdr term)))))))

(defthm append-nil-fix
  (equal (beta-eval-list (append list nil) a1)
	 (beta-eval-list list a1)))

(defthm late-binding-reduction
  (implies
   (equal (len keys) (len vals))
   (equal (beta-eval (cdr (assoc-eq term (pairlis$ keys vals))) a1)
	  (if (member term keys)
	      (cdr (assoc-eq term (pairlis$ keys (beta-eval-list vals a1))))
	    (beta-eval nil a1)))))

(defthm assoc-eq-pairlis$-non-member
  (implies
   (not (member term keys))
   (equal (assoc-eq term (pairlis$ keys vals))
	  nil)))

(defthmd beta-eval-key-beta-reduce-term
  (implies
   (and
    (wf-beta-term arg term)
    (equal (len keys) (len vals)))
   (equal (beta-eval-key arg (beta-reduce-term arg term keys vals) a1)
	  (beta-eval-key arg term (pairlis$ keys
					    (beta-eval-key t vals a1)))))
  :hints (("Goal" :do-not '(generalize eliminate-destructors)
	   :do-not-induct t
	   :induct (beta-reduce-term arg term keys vals)
	   :expand (:free (x) (hide x))
	   :in-theory (e/d (beta-eval-constraint-0
			    beta-eval-key-reduction)
			   nil))))

;; does lambda-expr need to do anything interesting in the case of
;; a lambda application?
(defun para-lambda-expr-p (term keys vals expr)
  (declare (type t term))
  (and (consp expr)
       (consp (car expr))
       (equal (len (car expr)) 3)
       (equal (cadr (car expr)) keys)
       (equal (caddr (car expr)) term)
       (equal (cdr expr) vals)))

(defun para-map-lambda-p (term keys vals expr)
  (declare (type t term))
  (if (consp term)
      (and (consp expr)
	   (para-lambda-expr-p (car term) keys vals (car expr))
	   (para-map-lambda-p (cdr term) keys vals (cdr expr)))
    (not (consp expr))))

(defun para-lambda-expr-key-p (arg term keys vals expr)
  (declare (type t term))
  (if arg (para-map-lambda-p term keys vals expr)
    (para-lambda-expr-p term keys vals expr)))

(defthm beta-eval-key-lambda-expr
  (implies
   (para-lambda-expr-key-p arg term keys vals expr)
   (equal (beta-eval-key arg expr a1)
	  (beta-eval-key arg term (pairlis$ keys (beta-eval-key t vals a1)))))
  :hints (("Goal" :in-theory (enable beta-eval-key-reduction))))

(defthmd lambda-expr-p-to-para-lambda-expr-key-p
  (equal (lambda-expr-p term)
	 (para-lambda-expr-key-p nil (CAR (CDR (CDR (CAR term)))) (CAR (CDR (CAR term))) (cdr term) term))
  :hints (("goal" :in-theory (enable lambda-expr-p para-lambda-expr-key-p))))

(in-theory (disable lambda-expr-p para-lambda-expr-key-p))

(defthmd beta-eval-lambda-expr-helper
  (implies
   (lambda-expr-p term)
   (equal (beta-eval-key nil term a1)
	  (beta-eval-key nil (CAR (CDR (CDR (CAR term))))
			   (pairlis$ (CAR (CDR (CAR term)))
				     (beta-eval-key t (cdr term) a1)))))
  :hints (("Goal"
           :in-theory
           (e/d (lambda-expr-p-to-para-lambda-expr-key-p) (beta-eval-key)))))

(defthm beta-eval-lambda-expr
  (implies
   (lambda-expr-p term)
   (equal (beta-eval term a1)
	  (beta-eval (CAR (CDR (CDR (CAR term))))
		       (pairlis$ (CAR (CDR (CAR term)))
				 (beta-eval-list (cdr term) a1)))))
  :hints (("Goal" :use beta-eval-lambda-expr-helper
	   :in-theory (enable beta-eval-key-reduction))))

(defthm pseudo-termp-key-implies-wf-beta-term
  (implies
   (pseudo-termp-key arg term)
   (wf-beta-term arg term))
  :hints (("Goal" :induct (wf-beta-term arg term))))

(defthm beta-eval-beta-reduce-term
  (implies
   (and
    (wf-beta-term nil term)
    (equal (len keys) (len vals)))
   (equal (beta-eval (beta-reduce-term nil term keys vals) a1)
	  (beta-eval term (pairlis$ keys (beta-eval-list vals a1)))))
  :hints (("Goal" :use (:instance beta-eval-key-beta-reduce-term
				  (arg nil))
	   :in-theory (enable beta-eval-key-reduction))))

(defthm beta-eval-to-beta-reduce-term
  (implies
   (and
    (lambda-expr-p term)
    (pseudo-termp term))
   (equal (beta-eval term a1)
	  (beta-eval (beta-reduce-term nil (CAR (CDR (CDR (CAR term))))
				       (CAR (CDR (CAR term)))
				       (cdr term)) a1))))

))

(defund beta-reduce-lambda-expr (term)
  (declare (type (satisfies lambda-expr-p) term)
	   (type (satisfies pseudo-termp) term)
	   (xargs :guard-hints (("Goal" :in-theory (enable lambda-expr-p)))))
  (beta-reduce-term nil (CAR (CDR (CDR (CAR term))))
		    (CAR (CDR (CAR term)))
		    (cdr term)))

(defthm beta-eval-to-beta-reduce-lambda-expr
  (implies
   (and
    (lambda-expr-p term)
    (pseudo-termp term))
   (equal (beta-eval term a1)
	  (beta-eval (beta-reduce-lambda-expr term) a1)))
  :hints (("Goal" :in-theory (e/d (beta-reduce-lambda-expr)
				  (beta-reduce-term)))))

(local
 (encapsulate
  ()

  ;; Here we show that it can be used to create a meta rule if only we
  ;; could trigger :meta rules on calls of lambdas.

  (defun beta-reduce-wrapper (term)
    (declare (type (satisfies pseudo-termp) term))
    (if (lambda-expr-p term)
        (beta-reduce-lambda-expr term)
      term))

  (defthm *meta*-beta-reduce-hide
    (implies
     (pseudo-termp term)
     (equal (beta-eval term a)
            (beta-eval (beta-reduce-wrapper term) a)))
    :rule-classes
    ;; ((:meta :trigger-fns nil))
    nil
    )

  ))

;; The primary theorem exported from this file can be instantiated
;; with any ACL2 evaluator to produce the desired result.
;;

(defmacro beta-reduction-theorem (ev ev-lst)
  (let ((name (packn-pos (list ev "-TO-BETA-REDUCE-LAMBDA-EXPR") ev)))
    `(defthm ,name
       (implies
	(and
	 (lambda-expr-p term)
	 (pseudo-termp term))
	(equal (,ev term a1)
	       (,ev (beta-reduce-lambda-expr term) a1)))
       :hints (("Goal"
                :in-theory (enable ,(packn (list ev "-CONSTRAINT-0")))
                :use (:functional-instance
                      beta-eval-to-beta-reduce-lambda-expr
                      (beta-eval ,ev)
                      (beta-eval-list ,ev-lst)))))))

;;
;; Now call beta-reduction-theorem on an evaluator and the -list
;; version of the evaluator, as illsutrated below, and you get the
;; correctness of beta reduction for that evaluator.
;;

(local
 (encapsulate
     ()

   (defevaluator test test-list
     nil)

   (beta-reduction-theorem test test-list)

   ))

(encapsulate
    ()

(local
(defun pseudo-term-alistp (alist)
  (declare (type t alist))
  (if (consp alist)
      (let ((entry (car alist)))
	(and (consp entry)
	     (pseudo-termp (cdr entry))
	     (pseudo-term-alistp (cdr alist))))
    (null alist))))

(local
(defthm pseudo-termp-cdr-assoc-pseudo-term-alistp
  (implies
   (pseudo-term-alistp alist)
   (pseudo-termp (cdr (assoc key alist))))))

(local
(defthm pseudo-term-alistp-pairlis$
  (implies
   (pseudo-term-listp vals)
   (pseudo-term-alistp (pairlis$ keys vals)))
  :rule-classes (:rewrite
		 (:forward-chaining :trigger-terms ((pairlis$ keys vals))))))

(local
(defthm length-to-len
  (implies
   (true-listp x)
   (equal (length x) (len x)))))

(local (in-theory (disable length)))

(local
(defthm open-pseudo-termp-on-cons
  (equal (pseudo-termp (cons a list))
	 (let ((x (cons a list)))
	   (cond ((equal (car x) 'quote)
		  (and (consp (cdr x))
		       (equal (cddr x) nil)))
		 ((true-listp x)
		  (and (pseudo-term-listp (cdr x))
		       (cond ((symbolp (car x)) t)
			     ((true-listp (car x))
			      (and (equal (len (car x)) 3)
				   (equal (caar x) 'lambda)
				   (symbol-listp (cadar x))
				   (pseudo-termp (caddar x))
				   (equal (len (cadar x))
					  (len (cdr x)))))
			     (t nil))))
		 (t nil))))))

(defthm len-beta-reduce-term
  (implies
   arg
   (equal (len (acl2::beta-reduce-term arg term keys vals))
	  (len term))))

(defthm pseudo-termp-key-beta-reduce-term
  (implies
   (and
    (pseudo-term-listp vals)
    (acl2::pseudo-termp-key arg term))
   (acl2::pseudo-termp-key arg (acl2::beta-reduce-term arg term keys vals)))
  :rule-classes (:rewrite
		 (:forward-chaining :trigger-terms ((acl2::beta-reduce-term arg term keys vals)))))

(local
(defthm pseudo-termp-key-implies-pseudo-termp
  (implies
   (acl2::pseudo-termp-key nil term)
   (pseudo-termp term))
  :rule-classes (:rewrite :forward-chaining)))

(local
(defthm pseudo-termp-key-implies-pseudo-term-listp
  (implies
   (acl2::pseudo-termp-key t list)
   (pseudo-term-listp list))
  :rule-classes (:rewrite :forward-chaining)))

(defthm pseudo-termp-beta-reduce-lambda-expr
  (implies
   (pseudo-termp term)
   (pseudo-termp (acl2::beta-reduce-lambda-expr term)))
  :hints (("Goal" :in-theory (enable acl2::beta-reduce-lambda-expr))))

(defun beta-reduce-pseudo-termp-switch (arg term)
  (declare (xargs :guard (acl2::pseudo-termp-key arg term)
		  :verify-guards nil))
  (cond
   (arg
    (cond
     ((endp term) nil)
     (t (cons (beta-reduce-pseudo-termp-switch nil (car term))
	      (beta-reduce-pseudo-termp-switch arg (cdr term))))))
   (t
    (cond
     ((symbolp term) term)
     ((atom term) term)
     ((eq (car term) 'quote) term)
     ((consp (car term))
      (acl2::beta-reduce-lambda-expr `((lambda ,(cadr (car term)) ,(beta-reduce-pseudo-termp-switch nil (caddr (car term))))
				       ,@(beta-reduce-pseudo-termp-switch t (CDR term)))))
     (t
      (cons (car term) (beta-reduce-pseudo-termp-switch t (cdr term))))))))

(defthm len-beta-reduce-pseudo-termp-switch
  (implies
   arg
   (equal (len (beta-reduce-pseudo-termp-switch arg term))
	  (len term))))

(defthm pseudo-termp-key-beta-reduce-pseudo-termp-switch
  (implies
   (acl2::pseudo-termp-key arg term)
   (acl2::pseudo-termp-key arg (beta-reduce-pseudo-termp-switch arg term))))

(defthm true-listp-beta-reduce-pseudo-termp-switch
  (implies
   arg
   (true-listp (beta-reduce-pseudo-termp-switch arg term))))

(local
(defthm pseudo-term-listp-append
  (implies
   (true-listp x)
   (equal (pseudo-term-listp (append x y))
	  (and (pseudo-term-listp x)
	       (pseudo-term-listp y))))))


(verify-guards beta-reduce-pseudo-termp-switch
	       :hints (("Goal" :in-theory (enable LAMBDA-EXPR-P))))


(defun beta-reduce-pseudo-termp (term)
  (beta-reduce-pseudo-termp-switch nil term))

(defthm pseudo-termp-beta-reduce-pseudo-termp
  (implies
   (pseudo-termp term)
   (pseudo-termp (beta-reduce-pseudo-termp term)))
  :rule-classes (:rewrite
		 (:forward-chaining :trigger-terms ((beta-reduce-pseudo-termp term)))))

(in-theory (disable beta-reduce-pseudo-termp))

(defun beta-reduce-pseudo-term-listp (list)
  (if (endp list) nil
    (cons (beta-reduce-pseudo-termp (car list))
	  (beta-reduce-pseudo-term-listp (cdr list)))))

(defthm pseudo-term-listp-beta-reduce-pseudo-term-listp
  (implies
   (pseudo-term-listp list)
   (pseudo-term-listp (beta-reduce-pseudo-term-listp list)))
  :rule-classes (:rewrite
		 (:forward-chaining :trigger-terms ((beta-reduce-pseudo-term-listp list)))))

)