This file is indexed.

/usr/share/acl2-8.0dfsg/books/misc/defabsstobj-example-1.lisp is in acl2-books-source 8.0dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
; Defabsstobj Example 1
; Copyright (C) 2012, Regents of the University of Texas
; Written by Matt Kaufmann, July, 2012 (updated Nov. and Dec., 2012)
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.

; Note: A separate example, one which is perhaps slightly more advanced and is
; probably more interesting, may be found in the book
; defabsstobj-example-2.lisp.  That example focuses especially on avoiding an
; expensive guard-check that would be needed if using a concrete stobj.  The
; present example presents, at the end of this file, a different advantage of
; abstract stobjs: avoidance of hypotheses in rewrite rules.

; Also see defabsstobj-example-3.lisp for a discussion of :protect t.

(in-package "ACL2")

; Below, I typically use the suffix "$c" to suggest "concrete", for the
; concrete stobj that will be used in our defabsstobj event.  Similarly, I
; typically use the suffix "$a" to denote "abstract", for logical definitions
; to use for our desired stobj.  If one prefers, one can think of "$c" as
; suggesting "computational" and "$a" as suggesting "alternate".

(defstobj st$c

; This is the concrete stobj, to correspond to the abstract stobj ultimately
; defined below.  Note that it is a separate stobj in its own right.  We will
; write various single-threaded functions that access and update this
; structure, some of which will become :EXEC fields for functions defined for
; the abstract stobj.

  (mem$c :type (array (integer 0 *) (100))
         :initially 0 :resizable nil)
  (misc$c :initially 0))

; To spice things up, let's consider an invariant on the concrete stobj saying
; that entry 0 is even, and let's make an even stronger invariant on the
; abstract stobj saying that every entry is even.

(defund mem$c-entryp (v)
  (declare (xargs :guard (integerp v)))
  (evenp v))

; The function st$cp+ has no special "standing", but we use it in the
; correspondence predicate (st$corr) defined below.

(defun st$cp+ (st$c)
  (declare (xargs :stobjs st$c))
  (and (st$cp st$c)
       (mem$c-entryp (mem$ci 0 st$c))))

; We now introduce the logical recognizer for the MAP component of the abstract
; stobj, to serve as an alternate implementation of memory.  Just for fun, we
; restrict the domain to numbers less than 50 (not just 100 as for st$c) and
; the range to natural numbers that are even (not just natural numbers as for
; st$c).

(defun map$ap (x)
  (declare (xargs :guard t))
  (cond ((atom x) (null x))
        ((atom (car x)) nil)
        (t (and (natp (caar x))
                (< (caar x) 50)
                (natp (cdar x))
                (mem$c-entryp (cdar x))
                (map$ap (cdr x))))))

; The following function recognizes our abstract stobj, which has a MISC field
; unchanged from st$c but has a MAP field instead of a MEM field.  Just for
; fun, we switch the order of fields in our abstract stobj from the
; corresponding concrete stobj: here, misc before mem rather than mem before
; misc.  But note that there are no a priori restrictions on the shape of an
; abstract stobj; it need not have the same number of "fields" as the concrete
; stobj, and its organization need not be a list of "fields" at all!  In the
; example in defabsstobj-example-2.lisp, the abstract stobj is actually empty!

(defun st$ap (x)
  (declare (xargs :guard t))
  (and (true-listp x)
       (equal (len x) 2)
       (map$ap (nth 1 x))))

(defun misc$a (st$a)
  (declare (xargs :guard (st$ap st$a)))
  (nth 0 st$a))

(defun update-misc$a (v st$a)
  (declare (xargs :guard (st$ap st$a)))
  (update-nth 0 v st$a))

; The following lemma is used in guard verification for lookup$a (below).

(defthm map$ap-forward-to-eqlable-alistp
  (implies (map$ap x)
           (eqlable-alistp x))
  :rule-classes :forward-chaining)

; We will export read and write functions for our abstract stobj, defined using
; alist-based functions lookup$a and update$a, respectively.

(defun lookup$a (k st$a)
  (declare (type (integer 0 49) k)
           (xargs :guard (st$ap st$a)))
  (let* ((map (nth 1 st$a))
         (pair (assoc k map)))
    (if pair (cdr pair) 0)))

(defun update$a (k val st$a)
  (declare (type (integer 0 49) k)
           (type (integer 0 *) val)
           (xargs :guard (and (st$ap st$a)
                              (mem$c-entryp val))))
  (update-nth 1
              (put-assoc k val (nth 1 st$a))
              st$a))

; Our next task is to define a required function, which we call st$corr.  We
; have a choice in how it is defined, provided we can discharge the
; corresponding proof obligations, which are labeled below using names that end
; in a suffix of the form {...}.

(defun corr-mem (n st$c st$a)

; This user-defined function supports the definition of st$corr, below.  This
; is of logical interest only, so no guard is considered.

  (declare (xargs :stobjs st$c :verify-guards nil))
  (cond ((zp n) t)
        (t (let ((i (1- n)))
             (and (equal (mem$ci i st$c)
                         (lookup$a i st$a))
                  (corr-mem i st$c st$a))))))

(defun st$corr (st$c st$a)
; This is of logical interest only, so no guard is given.
  (declare (xargs :stobjs st$c :verify-guards nil))
  (and (st$cp+ st$c)
       (st$ap st$a)
       (equal (misc$c st$c) (misc$a st$a))
       (corr-mem 50 st$c st$a)))

; We use defun-nx below so that we can call create-st$c.  But we could just as
; well use the alternate form, 0, as indicated below.

(defun-nx create-st$a ()
  (declare (xargs :guard t))
  (list (nth 1 (create-st$c)) ; or: initial value of misc$c, i.e., 0
        nil                   ; mem
        ))

; Nice theorem, but we don't need it:
(defthm st$corr-implies-st$cp+
  (implies (st$corr st$c st$a)
           (st$cp+ st$c))
  :rule-classes nil)

; The next theorem is also a nice theorem that we don't need.  Note that the
; {preserved} theorems guarantee that all abstract stobjs encountered during
; evaluation satisfy st$a.

(defthm st$corr-thm
  (implies (st$corr st$c st)
           (st$ap st))
  :rule-classes nil)

; We now start proving the theorems expected by our defabsstobj event.  It is
; not expected that we know in advance exactly what form they should take.
; Rather, we can evaluate the defabsstobj event here, and it will print out all
; necessary defthm events (before failing).  We can then copy those defthm
; events into the file, for example starting with the following.

(DEFTHM CREATE-ST{CORRESPONDENCE}
  (ST$CORR (CREATE-ST$C) (CREATE-ST$A))
  :RULE-CLASSES NIL)

(DEFTHM CREATE-ST{PRESERVED}
  (ST$AP (CREATE-ST$A))
  :RULE-CLASSES NIL)

; The hypothesis (st$ap st) below is not needed for the following formula to be
; a theorem; similarly for update-misc{correspondence} as well.  However, this
; hypothesis is expected by defabsstobj.

(DEFTHM MISC{CORRESPONDENCE}
  (IMPLIES (AND (ST$CORR ST$C ST)
                (ST$AP ST))
           (EQUAL (MISC$C ST$C)
                  (MISC$A ST)))
  :RULE-CLASSES NIL)

(defthm update-misc{correspondence}-lemma
  (implies (corr-mem k st$c st)
           (corr-mem k
                     (update-misc$c v st$c)
                     (update-misc$a v st)))
  :rule-classes nil)

(DEFTHM UPDATE-MISC{CORRESPONDENCE}
  (IMPLIES (AND (ST$CORR ST$C ST)
                (ST$AP ST))
           (ST$CORR (UPDATE-MISC$C V ST$C)
                    (UPDATE-MISC$A V ST)))
  :hints (("Goal" :use ((:instance update-misc{correspondence}-lemma
                                   (k 50)))))
  :RULE-CLASSES NIL)

(DEFTHM UPDATE-MISC{PRESERVED}
  (IMPLIES (ST$AP ST)
           (ST$AP (UPDATE-MISC$A V ST)))
  :RULE-CLASSES NIL)

; There could have been defthm events named misc{guard-thm} and
; update-misc{guard-thm} for us to prove.  However, they are recognized as
; trivial by ACL2, because the guards of misc$c and update-misc$c are (st$cp
; st$c), which is optimized away since ACL2 knows that this will hold during
; evaluation.

; The proof of lookup{correspondence} requires an inductive lemma.

(encapsulate
 ()
 (local
  (defthm corr-mem-memi
    (implies (and (corr-mem bound st$c st)
                  (natp bound)
                  (natp i) (< i bound))
             (equal (mem$ci i st$c)
                    (lookup$a i st)))
    :rule-classes nil))

 (DEFTHM LOOKUP{CORRESPONDENCE}
   (IMPLIES (AND (ST$CORR ST$C ST)
                 (INTEGERP I) (<= 0 I) (<= I 49)
                 (ST$AP ST))
            (EQUAL (MEM$CI I ST$C)
                   (LOOKUP$A I ST)))
   :hints (("Goal" :use ((:instance corr-mem-memi
                                    (bound 50)))))
   :RULE-CLASSES NIL))

; There is no particular reason to make the following required theorem local.
; But we do in order to illustrate that it is OK to do so (because required
; events are allowed to be missing when skipping proofs).

(local
 (DEFTHM LOOKUP{GUARD-THM}
   (IMPLIES (AND (ST$CORR ST$C C)
                 (INTEGERP I)
                 (<= 0 I)
                 (<= I 49)
                 (ST$AP ST))
            (AND (INTEGERP I)
                 (<= 0 I)
                 (< I (MEM$C-LENGTH ST$C))))
   :RULE-CLASSES NIL)
 )

; The following theorem was originally local to an encapsulate surrounding
; corr-mem-update-memi, but it is also useful for st-equal, later, and it's a
; pretty theorem.  So we make it global here.

(defthm assoc-equal-put-assoc-equal
  (equal (assoc-equal k1 (put-assoc-equal k2 v a))
         (if (equal k1 k2) (cons k1 v) (assoc-equal k1 a))))

; Several lemmas contribute to the proof of our next required theorem,
; update{correspondence}.

(encapsulate
 ()

 (local
  (defthm mem$cp-update-nth
    (implies (and (natp i)
                  (< i (len mem))
                  (natp v)
                  (mem$cp mem))
             (mem$cp (update-nth i v mem)))))

 (local
  (defthm map$ap-put-assoc-equal
    (implies (and (natp i)
                  (< i 50)
                  (natp v)
                  (mem$c-entryp v)
                  (map$ap mem))
             (map$ap (put-assoc-equal i v mem)))))

 (local
  (defthm corr-mem-update-memi
    (implies (and (natp bound)
                  (<= bound 50)
                  (equal rest$c (cdr st$c))
                  (equal rest$a (cdr st))
                  (st$cp+ st$c)
                  (st$ap st)
                  (corr-mem bound st$c st)
                  (natp i)
                  (natp v))
             (corr-mem bound
                       (update-nth *mem$ci*
                                   (update-nth i v (nth *mem$ci* st$c))
                                   st$c)
                       (update-nth 1
                                   (put-assoc-equal i v (nth 1 st))
                                   st)))))

 (DEFTHM UPDATE{CORRESPONDENCE}
   (IMPLIES (AND (ST$CORR ST$C ST)
                 (INTEGERP I) (<= 0 I) (<= I 49)
                 (INTEGERP V) (<= 0 V)
                 (ST$AP ST)
                 (MEM$C-ENTRYP V))
            (ST$CORR (UPDATE-MEM$CI I V ST$C)
                     (UPDATE$A I V ST)))
   :hints (("Goal" :in-theory (disable nth update-nth)))
   :RULE-CLASSES NIL))

(DEFTHM UPDATE{PRESERVED}
  (IMPLIES (AND (INTEGERP I) (<= 0 I) (<= I 49)
                (INTEGERP V) (<= 0 V)
                (ST$AP ST)
                (MEM$C-ENTRYP V))
           (ST$AP (UPDATE$A I V ST)))
  :RULE-CLASSES NIL)

(DEFTHM UPDATE{GUARD-THM}
  (IMPLIES (AND (ST$CORR ST$C C)
                (INTEGERP I) (<= 0 I) (<= I 49)
                (INTEGERP V) (<= 0 V)
                (ST$AP ST)
                (MEM$C-ENTRYP V))
           (AND (INTEGERP I)
                (<= 0 I)
                (< I (MEM$C-LENGTH ST$C))
                (INTEGERP V)
                (<= 0 V)))
  :RULE-CLASSES NIL)

; Finally, here is our stobj definition.  First we present a compact version;
; then we present a more verbose definition.

(DEFABSSTOBJ ST
  :EXPORTS ((LOOKUP :EXEC MEM$CI)
            (UPDATE :EXEC UPDATE-MEM$CI)
            MISC UPDATE-MISC))

; Here is a more verbose version of the form above.  The parts retained from
; the short form above are in CAPS.  We change the names because redundancy
; would require the two defabsstobj events to be syntactically identical, which
; they are not.

(DEFABSSTOBJ ST2
  :concrete st$c ; the corresponding concrete stobj
  :recognizer (st2p :logic st$ap :exec st$cp)
  :creator (create-st2 :logic create-st$a :EXEC create-st$c
                       :correspondence create-st{correspondence}
                       :preserved create-st{preserved})
  :corr-fn st$corr ; a correspondence function (st$corr st$c st)
  :EXPORTS (

; The following entry defines lookup2 to be lookup$a in the logic (with the
; same guard as lookup$a), and defines lookup2 to be mem$ci in the
; implementation (actually, using a macro definition).  Moroever, lookup2 will
; be given a signature "matching" that of the :EXEC, mem$ci, where "matching"
; means that st$c is replaced by st.  (Note that we are not restricted to
; matching up with a stobj accessor such as mem$ci; any defined function with
; suitable signature could be specified.)  Note that the body of lookup2 will
; never be executed on a live stobj, just as the logical definition of a
; concrete stobj accessor is never executed on a live stobj; rather, lookup2 is
; defined in raw Lisp to be mem$ci.

            (LOOKUP2 :logic lookup$a
                     :EXEC MEM$CI
                     :correspondence lookup{correspondence}
                     :guard-thm lookup{guard-thm})
            (UPDATE2 :logic update$a
                     :EXEC UPDATE-MEM$CI
                     :correspondence update{correspondence}

; For functions that return a stobj, like update (and update-mem$ci), we have
; not only a :correspondence theorem but also a :preserved theorem.  It can be
; omitted with explicit :preserved nil.

                     :preserved update{preserved}
                     :guard-thm update{guard-thm})

; Note that renaming is not handled as with defstobj.  So for example, if the
; concrete updater for the misc$c field is !misc$c, then we need to use a long
; form such as the one below.

            (MISC2 :logic misc$a
                   :exec misc$c
                   :correspondence misc{correspondence})
            (UPDATE-MISC2 :logic update-misc$a
                          :exec update-misc$c
                          :correspondence update-misc{correspondence}
                          :preserved update-misc{preserved})))

; Finally, we show that the use of a logical stobj can result in improvements
; to rewrite rules by way of eliminating hypotheses.

; First, for the original stobj we have the following lemma.  Without the type
; hypotheses on both i and j, it fails -- see mem$ci-update-mem$ci-failure.

(defthm mem$ci-update-mem$ci
  (implies (and (st$cp+ st$c)
                (natp i)
                (natp j))
           (equal (mem$ci i (update-mem$ci j v st$c))
                  (if (equal i j)
                      v
                    (mem$ci i st$c)))))

; Here is evidence of the failure promised above.  The theorem above can be
; salvaged without the natp hypotheses by replacing (equal i j) with (equal
; (nfix i) (nfix j)), but that would introduce a case split, which might be
; undesirable.

(defthm mem$ci-update-mem$ci-failure
  (let* ((st$c (create-st$c))
         (i 0)
         (j 'a))
    (not (implies (and (st$cp+ st$c)
                       (natp i)
                       ;; (natp j)
                       )
                  (equal (mem$ci i (update-mem$ci j 1 st$c))
                         (if (equal i j)
                             v
                           (mem$ci i st$c))))))
  :rule-classes nil)

; But for our abstract stobj, both natp hypotheses can be eliminated.

(defthm lookup-update
  (equal (lookup i (update j v st))
         (if (equal i j)
             v
           (lookup i st))))

; We conclude with some examples of congruent abstract stobjs.  The first two
; below, st3 and st4, are designated as congruent to st; the fifth one is
; designated as congruent to st3.  Thus all four of those should be usable
; interchangeably; we test that below.

(defabsstobj st3
  :concrete st$c
  :recognizer (st3p :logic st$ap :exec st$cp)
  :creator (create-st3 :logic create-st$a :exec create-st$c
                       :correspondence create-st{correspondence}
                       :preserved create-st{preserved})
  :corr-fn st$corr
  :exports ((lookup3 :logic lookup$a
                     :exec mem$ci)
            (update3 :logic update$a
                     :exec update-mem$ci)
            (misc3 :logic misc$a
                   :exec misc$c)
            (update-misc3 :logic update-misc$a
                          :exec update-misc$c))
  :congruent-to st)

(defabsstobj st4
  :concrete st$c
  :recognizer (st4p :logic st$ap :exec st$cp)
  :creator (create-st4 :logic create-st$a :exec create-st$c
                       :correspondence create-st{correspondence}
                       :preserved create-st{preserved})
  :corr-fn st$corr
  :exports ((lookup4 :logic lookup$a
                     :exec mem$ci)
            (update4 :logic update$a
                     :exec update-mem$ci)
            (misc4 :logic misc$a
                   :exec misc$c)
            (update-misc4 :logic update-misc$a
                          :exec update-misc$c))
  :congruent-to st)

(defabsstobj st5
  :concrete st$c
  :recognizer (st5p :logic st$ap :exec st$cp)
  :creator (create-st5 :logic create-st$a :exec create-st$c
                       :correspondence create-st{correspondence}
                       :preserved create-st{preserved})
  :corr-fn st$corr
  :exports ((lookup5 :logic lookup$a
                     :exec mem$ci)
            (update5 :logic update$a
                     :exec update-mem$ci)
            (misc5 :logic misc$a
                   :exec misc$c)
            (update-misc5 :logic update-misc$a
                          :exec update-misc$c))
  :congruent-to st3)

; Now let's see if they really are interchangable.

(defun foo (st st3 st4 st5)
  (declare (xargs :stobjs (st st3 st4 st5)))
  (list (lookup 7 st)
        (lookup 7 st3)
        (lookup 7 st4)
        (lookup 7 st5)
        (lookup3 7 st)
        (lookup3 7 st3)
        (lookup3 7 st4)
        (lookup3 7 st5)
        (lookup4 7 st)
        (lookup4 7 st3)
        (lookup4 7 st4)
        (lookup4 7 st5)
        (lookup5 7 st)
        (lookup5 7 st3)
        (lookup5 7 st4)
        (lookup5 7 st5)))

(local (make-event
        (let* ((st (update 7 10 st))
               (st3 (update 7 30 st3))
               (st4 (update 7 40 st4))
               (st5 (update 7 50 st5)))
          (mv nil '(value-triple nil) state st st3 st4 st5))))

(local
 (assert-event
  (equal (foo st st3 st4 st5)
         '(10 30 40 50 10 30 40 50
              10 30 40 50 10 30 40 50))))

(local
 (assert-event
  (equal (foo st5 st4 st3 st)
         '(50 40 30 10 50 40 30 10 50 40 30 10 50 40 30 10))))