This file is indexed.

/usr/share/acl2-8.0dfsg/books/misc/defattach-example.lisp is in acl2-books-source 8.0dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
; Copyright (C) 2013, Regents of the University of Texas
; Written by Matt Kaufmann, January, 2011 (revised slightly October, 2011)
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.

; See also defattach-bang.lisp for a macro based
; on defattach that does not require guard verification.

; Defattach was introduced in ACL2 Version 4.0 (July, 2010).

; In this little example we show how defattach may be used
; to build systems of executable programs in which some of
; the functions are constrained.  Be sure to see the final
; comment, which is really the punch line.

; For a demo using 800x600 resolution on a 15" laptop:
#||
(set-fmt-soft-right-margin 51 state)
(set-fmt-hard-right-margin 60 state)
||#

(in-package "ACL2")

; Experienced ACL2 users know that by using encapsulate, and
; without any need for defattach, you can deduce theorems
; about concrete functions from theorems about abstract
; functions, using the following steps.

; (1) Write abstract specifications -- basically, axioms
;     about functions that are shown to hold for some
;     witness functions.

; (2) Prove some theorems about the specification functions.

; (3) Write corresponding concrete definitions.

; (4) Prove that the concrete definitions satisfy the
;     abstract specifications.

; (5) Conclude using functional instantiation that the
;     theorems (from (2)) hold for the concrete functions
;     (defined in (3)).

; Below we present a standard example of that style of
; reasoning.  We then show how defattach goes beyond this:
; the idea is still to refine specification functions to
; more concrete definitions, but with defattach one can do
; this in a way that allows evaluation using the original
; function symbols.

; Thus, this file presents an example in two parts:
; traditional functional instantiation without defattach,
; and then evaluation using defattach.

; Here is an outline of the first part, using the numbered
; steps shown above.

; (1) Abstract spec:
;     - Specify that abst is associative-commutative
;       (example: +).
;     - Define fold-abst to apply abst to successive elements
;       of list; for example, (fold-abst '(1 2 3) r) is
;       (abst 1 (abst 2 (abst 3 r))).

; (2) Prove that fold-abst(x) = fold-abst(reverse x).

; (3) Concrete definitions:
;     - Define mult to be multiplication.
;     - Define fold-mult in the obvious way.

; (4) Prove that the pair <mult,fold-mult> satisfies the
;     abstract spec for <abst,fold-abst>.

; (5) Conclude that (fold-mult x) = (fold-mult (reverse x)).

; The second part then takes advantage of the first part,
; resulting in computation using the abstract functions by
; attaching corresponding concrete functions.  We also
; provide a second set of attachments.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;; EXAMPLE WITHOUT DEFATTACH ;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(encapsulate

; (1) Abstract spec: Specify that abst is
;     associative-commutative (example: +).

 ((abst (x y) t))

; We introduce abst, a function of two arguments.
; Our witnessing example is as follows:

 (local (defun abst (x y)
          (+ x y)))

; Exported specifications:

 (defthm abst-comm
   (equal (abst x y) (abst y x)))
 (defthm abst-assoc
   (equal (abst (abst x y) z)
          (abst x (abst y z)))))

(defun fold-abst (x root)

; Complete abstract spec: define fold-abst to apply abst to
; successive elements of a list; for example,
; (fold-abst '(1 2 3) r) = (abst 1 (abst 2 (abst 3 r))).

  (if (consp x)
      (abst (car x)
            (fold-abst (cdr x) root))
    root))

(encapsulate ()

; (2) Prove some theorems about the specification functions.
; We prove fold-abst-reverse, below; the others are lemmas.

 (local (defthm abst-comm2
          (equal (abst x (abst y z))
                 (abst y (abst x z)))
          :hints (("Goal"
                   :use ((:instance abst-assoc (x x) (y y))
                         (:instance abst-assoc (x y) (y x)))
                   :in-theory (disable abst-assoc)))))
 (local (defthm fold-abst-abst
          (equal (fold-abst x (abst a b))
                 (abst a (fold-abst x b)))))
 (local (defthm fold-abst-revappend
          (equal (fold-abst (revappend x y) root)
                 (fold-abst x (fold-abst y root)))))
 (defthm fold-abst-reverse
   (equal (fold-abst (reverse x) root)
          (fold-abst x root))))

(defun mult (x y)

; (3) Write corresponding concrete definitions.

;     - Define mult to be multiplication.
;     - Below, we define fold-mult in the obvious way.

  (* (fix x) (fix y)))

(defun fold-mult (x root)
  (if (consp x)
      (mult (car x)
            (fold-mult (cdr x) root))
    root))

(local ; included for (4) below
 (include-book "arithmetic/top" :dir :system))

(defthm fold-mult-reverse

; (4) Prove that the concrete definitions satisfy the
;     abstract specifications.

; We prove that the pair <mult,fold-mult> satisfies the
; abstract spec for <abst,fold-abst>.  It is generated as
; part of the proof obligations from the hint below.

; (5) Conclude using functional instantiation that the
;     theorems (from (2)) hold for the concrete functions
;     (defined in (3)).

; We conclude that (fold-mult x) = (fold-mult (reverse x)).

  (equal (fold-mult (reverse x) root)
         (fold-mult x root))
  :hints (("Goal" :by (:functional-instance
                       fold-abst-reverse
                       (abst mult)
                       (fold-abst fold-mult)))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;; EXAMPLE WITH DEFATTACH ;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

#||
(fold-abst '(3 4 5) 100) ; error (undefined function abst)
||#

(verify-guards ; guard verification needed for defattach
 mult)

; Next we attach the executable function mult to the
; abstract specification function abst.  The proof
; obligations ensure, roughly speaking, that mult satisfies
; the constraints on abst.  In this case the proofs of
; those obligations are skipped because they were already
; proved (and then cached) at the earlier functional
; instantiation (see fold-mult-reverse).

(defattach abst mult) ; note cached proof obligations

; Next we do a sample computation using fold-abst
; (interestingly, without calling fold-mult).  The
; foundations guarantees that this computation is taking
; place in a consistent extension of the current theory,
; called the "evaluation theory".  The equality below is a
; theorem of the evaluation theory, but not of the (weaker)
; current theory.

#||
(fold-abst '(3 4 5) 100)
(trace$ abst mult) ; to see abst transfer control to mult
(fold-abst '(3 4 5) 100)
(untrace$)
||#

(assert-event (equal (fold-abst '(3 4 5) 100)
                     6000))

; Note that this equality is NOT a theorem of the current
; session; it's only a theorem if we extend the session by
; "attachment equations" such as the following, to obtain
; the so-called "evaluation history":

; (forall x y) (equal (abst x y) (mult x y))

; Not included because the books/make-event/ directory
; depends on books/misc/:

; (include-book "make-event/eval" :dir :system)
; (must-fail (thm (equal (fold-abst '(3 4 5) 100)
;                        6000)))

; Here is a second example, which provides a different
; extension of the current theory to the evaluation theory.

(defun add (x y)
  (+ (fix x) (fix y)))

(verify-guards add)

(defattach abst add) ; note constraint proof this time

; The following example execution really makes our main
; point: We don't even need to define a fold function for
; add!  We execute with the "abstract" function fold-abst,
; which we think of as "abstract" because it calls the
; encapsulated function abst.  One can imagine more complex
; examples in which a large system of programs contains a
; few attachments at the leaves of the call trees.  In such
; a case, it's particularly helpful that one can instantiate
; the system to different executable programs without
; defining analogues of the higher-level functions (like
; fold-abst), thus giving ACL2 some ability to mimic a
; higher-order programming language.

; To see abst transfer control to add:
; (trace$ abst add)

(assert-event (equal (fold-abst '(3 4 5) 100)
                     112))

; Here are some forms to run at the end of a demo:
#||
(defattach abst mult) ; note cached proof obligations

(fold-abst '(3 4 5) 100)

(thm

; This FAILS!  ACL2 does not use attachments for
; evaluation of ground terms during rewriting, because
; it is proving theorems about the current ACL2 world,
; not the so-called "evaluation theory" in which we know
; (equal (abst x y) (mult x y)).

 (equal (fold-abst '(3 4 5) 100)
        6000))
||#