/usr/share/acl2-8.0dfsg/books/misc/defpun.lisp is in acl2-books-source 8.0dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 | ; Copyright (C) 2013, Regents of the University of Texas
; Written by Panagiotis Manolios and J Strother Moore, 2000
; License: A 3-clause BSD license. See the LICENSE file distributed with ACL2.
; Modified May 2004 by Matt Kaufmann, in order to allow stobjs. Thanks to John
; Matthews for providing a motivating example. NOTE: Do not use a :stobjs
; declaration in your defpun!
; NOTE: For a generalization of this utility, see file defp.lisp in this
; directory.
; To introduce an arbitrary tail-recursive function we proceed in
; three steps. First is the proof that we can admit the generic one
; argument tail recursive function. This ``generic theorem'' is
; proved once; the proof is not redone for each new function. Second,
; the generic theorem is used to introduce the arity one version of
; the desired function. Third, we prove that the arity one version is
; a witness for the desired equation.
; Here is an example. Suppose we wish to admit the tail recursive
; factorial.
; (defun trfact (n a)
; (if (equal n 0)
; a
; (trfact (- n 1) (* n a))))
; We first recognize that this is probably tail recursive (without
; checking that trfact is new, that the vars are distinct, etc.).
; Successful recognition produces
; (mv '((n (car x))
; (a (cadr x)))
; '(equal n 0)
; 'a
; '(list (- n 1) (* n a)))
; Using the output of this check, we introduce three defuns
; (defun defpun-test1 (x)
; (let ((n (car x))
; (a (cadr x)))
; (equal n 0)))
; (defun defpun-base1 (x)
; (let ((n (car x))
; (a (cadr x)))
; a))
; (defun step1 (x)
; (let ((n (car x))
; (a (cadr x)))
; (list (- n 1) (* n a))))
; We then use the generic theorem to introduce
; (defun trfact1 (x)
; (if (defpun-test1 x)
; (defpun-base1 x)
; (trfact1 (step1 x))))
; We then define
; (defun trfact (n a)
; (trfact1 (list n a)))
; and we prove that it satisfies the constraint
; (equal (trfact n a)
; (if (equal n 0)
; a
; (trfact (- n 1) (* n a))))
; Now we write the code to do all this.
; First, we prove the generic theorem. We use the proof Pete
; developed in his prototype implementation of defpartial but for the
; generic case.
(in-package "ACL2")
(include-book "xdoc/top" :dir :system)
(defxdoc defpun
:parents (events)
:short "Define a tail-recursive function symbol"
:long "<p>@('Defpun') is a macro developed by Pete Manolios and J Moore that
allows tail-recursive definitions, as well as some other ``partial''
definitions.</p>
@({
General Form:
(defpun g (v1 ... vk)
dcl ; optional
body
:kwd1 val1 :kwd2 val2 ... :kwdn valn)
})
<p>where @('dcl') is an optional @(tsee declare) form and the pairs @(':kwdi
vali') are optional (that is @('n') can be 0). If the optional arguments are
omitted, then ACL2 will introduce a constrained function @('g') with this
exported event:</p>
@({
(DEFTHM g-DEF
(EQUAL (g v1 ... vk)
body)
:RULE-CLASSES :DEFINITION)
})
<p>First suppose that @('dcl') is not present. Then the proposed definition
must have a simple tail-recursive structure (see the discussion of
@('defp') below for a workaround if this is not the case).</p>
<p>If @('dcl') is present, then the definition need not be tail-recursive, and
@('dcl') must have one of the following three forms.</p>
@({
(DECLARE (XARGS :witness defpun-fn))
(DECLARE (XARGS :domain dom-expr :measure m . rest))
(DECLARE (XARGS :gdomain dom-expr :measure m . rest)).
})
<p>You are encouraged to experiment by using @(':')@(tsee trans1) to see the
expansions of @('defpun') forms that use these @(tsee declare) forms; but here
is a summary of what is generated.</p>
<p>The first form specifies a function, @('defpun-fn'), and instructs ACL2 to
use that function as a witness for the function @('g') to be introduced, as
follows.</p>
@({
(ENCAPSULATE
((g (v1 ... vk) t))
(LOCAL (DEFUN-NONEXEC g (v1 ... vk) (defpun-fn v1 ... vk)))
(DEFTHM g-DEF
(EQUAL (g v1 ... vk))
body)
:RULE-CLASSES :DEFINITION)
})
<p>The remaining two @('declare') forms introduce a function, defined
recursively, with the given measure and with a modified body:</p>
@({
(THE-g v1 ... vk)
=
(IF dom-expr body 'UNDEF)
})
<p>The following theorem is exported.</p>
@({
(defthm g-DEF
(IMPLIES domain-expr
(EQUAL (g v1 ... vk)
body))
:RULE-CLASSES :DEFINITION)
})
<p>If @(':gdomain') is used (as opposed to @(':domain')), then the following
events are also introduced, where @('body\\{g:=THE-g}') denotes the result of
replacing each call of @('g') in @('body') with the corresponding call of
@('THE-g').</p>
@({
(DEFUN THE-g (v1 ... vk)
(DECLARE (XARGS :MEASURE (IF dom-expr m 0)
:GUARD domain-expr
:VERIFY-GUARDS NIL))
(IF dom-expr body 'UNDEF))
(DEFTHM g-IS-UNIQUE
(IMPLIES domain-expr
(EQUAL (g v1 ... vk) (THE-g v1 ... vk))))
})
<p>The optional keyword alist @(':kwd1 val1 :kwd2 val2 ... :kwdn valn') is
attached to the end of the generated @(tsee defthm) event. If the
@(':')@(tsee rule-classes) keyword is not specified by the keyword alist,
@(':')@(tsee definition) is used.</p>
<p>Details of defpun are provided by Manolios and Moore in the chapter
``Partial Functions in ACL2'' published with the <a
href='http://www.cs.utexas.edu/users/moore/acl2/workshop-2000/'>ACL2 2000
workshop</a>. Also see <a
href='http://www.cs.utexas.edu/users/moore/publications/defpun/index.html'>Partial
Functions in ACL2</a>.</p>
<p>A variant, @('defp'), has been developed by Matt Kaufmann to allow more
general forms of tail recursion. If @('defpun') doesn't work for you, try
@('defp') by first executing the following event.</p>
@({
(include-book \"misc/defp\" :dir :system)
})
<p>Sandip Ray has contributed a variant of @('defpun'), @('defpun-exec'), that
supports executability. See community book
@('books/defexec/defpun-exec/defpun-exec.lisp'):</p>
@({
(include-book \"defexec/defpun-exec/defpun-exec\" :dir :system)
})
<p>He has also contributed community book
@('books/misc/misc2/defpun-exec-domain-example.lisp'), for functions that are
uniquely defined in a particular domain.</p>")
(defmacro defun-nonexec (name args &rest rst)
`(defun-nx ,name ,args ,@rst))
(defstub defpun-test (x) t)
(defstub defpun-base (x) t)
(defstub defpun-st (x) t)
(defun defpun-stn (x n)
(if (zp n) x (defpun-stn (defpun-st x) (1- n))))
(defchoose fch (n)
(x)
(defpun-test (defpun-stn x n)))
(defun defpun-fn (x n)
(declare (xargs :measure (nfix n)))
(if (or (zp n) (defpun-test x))
(defpun-base x)
(defpun-fn (defpun-st x) (1- n))))
(defun defpun-f (x)
(if (defpun-test (defpun-stn x (fch x)))
(defpun-fn x (fch x))
nil))
; The following encapsulate exports one constrained function, namely,
; defpun-f, with the constraint
; (DEFTHM GENERIC-TAIL-RECURSIVE-DEFPUN-F
; (EQUAL (DEFPUN-F X)
; (IF (DEFPUN-TEST X) (DEFPUN-BASE X) (DEFPUN-F (DEFPUN-ST X))))
; :RULE-CLASSES NIL)
; Nothing else is exported.
(encapsulate nil
(local (defthm defpun-test-fch
(implies (defpun-test x)
(defpun-test (defpun-stn x (fch x))))
:hints
(("goal" :use ((:instance fch (n 0)))))))
(local (defthm defpun-test-defpun-f-def
(implies (defpun-test x)
(equal (defpun-f x) (defpun-base x)))))
(local (defthm open-defpun-stn
(implies (and (integerp n) (< 0 n))
(equal (defpun-stn x n) (defpun-stn (defpun-st x) (1- n))))))
(local (defthm +1-1 (equal (+ -1 +1 x) (fix x))))
(local (defthm defpun-st-defpun-stn-fch
(implies (defpun-test (defpun-stn (defpun-st x) (fch (defpun-st x))))
(defpun-test (defpun-stn x (fch x))))
:hints
(("goal" :use
((:instance fch (n (1+ (nfix (fch (defpun-st x))))))
(:instance fch (n 1)))))
:rule-classes :forward-chaining))
(local (defthm defpun-test-nil-fch
(implies (not (defpun-test x))
(iff (defpun-test (defpun-stn (defpun-st x) (fch (defpun-st x))))
(defpun-test (defpun-stn x (fch x)))))
:hints
(("subgoal 2" :expand (defpun-stn x (fch x))
:use
((:instance fch (x (defpun-st x))
(n (+ -1 (fch x)))))))))
(local (defthm defpun-fn-defpun-st
(implies (and (defpun-test (defpun-stn x n)) (defpun-test (defpun-stn x m)))
(equal (defpun-fn x n) (defpun-fn x m)))
:rule-classes nil))
(defthm generic-tail-recursive-defpun-f
(equal (defpun-f x)
(if (defpun-test x) (defpun-base x) (defpun-f (defpun-st x))))
:hints
(("subgoal 1" :expand (defpun-fn x (fch x)))
("subgoal 1.2'" :use
((:instance defpun-fn-defpun-st (x (defpun-st x))
(n (+ -1 (fch x)))
(m (fch (defpun-st x)))))))
:rule-classes nil))
(defun arity-1-tail-recursive-encap (defpun-f defpun-test defpun-base defpun-st)
; Execution of this function produces an encapsulation that introduces
; a constrained tail recursive defpun-f with the constraint
; (equal (defpun-f x) (if (defpun-test x) (defpun-base x) (defpun-f (defpun-st x)))),
; where defpun-test, defpun-base and defpun-st are previously defined functions of arity 1.
(declare (xargs :mode :program))
(let ((defpun-stn (packn-pos (list defpun-f "-defpun-stn") defpun-f))
(fch (packn-pos (list defpun-f "-fch") defpun-f))
(defpun-fn (packn-pos (list defpun-f "-defpun-fn") defpun-f)))
`(encapsulate
((,defpun-f (x) t))
(local (in-theory (disable ,defpun-test ,defpun-base ,defpun-st)))
(local (defun-nonexec ,defpun-stn (x n)
(if (zp n)
x
(,defpun-stn (,defpun-st x) (1- n)))))
(local (defchoose ,fch (n) (x)
(,defpun-test (,defpun-stn x n))))
(local (defun-nonexec ,defpun-fn (x n)
(declare (xargs :measure (nfix n)))
(if (or (zp n)
(,defpun-test x))
(,defpun-base x)
(,defpun-fn (,defpun-st x) (1- n)))))
(local (defun-nonexec ,defpun-f (x)
(if (,defpun-test (,defpun-stn x (,fch x)))
(,defpun-fn x (,fch x))
nil)))
(local (in-theory '(,defpun-f ,defpun-test ,defpun-base ,defpun-st ,defpun-stn ,defpun-fn
; This last entry is needed when defpun-fn is a constant function returning T, NIL,
; or 0 (one of the singleton type sets)
(:type-prescription ,defpun-fn))))
(defthm ,(packn-pos (list defpun-f "-DEF") defpun-f)
(equal (,defpun-f x)
(if (,defpun-test x)
(,defpun-base x)
(,defpun-f (,defpun-st x))))
:hints (("Goal"
:use
(:functional-instance GENERIC-TAIL-RECURSIVE-DEFPUN-F
(defpun-f ,defpun-f)
(defpun-test ,defpun-test)
(defpun-base ,defpun-base)
(defpun-st ,defpun-st)
(defpun-stn ,defpun-stn)
(fch ,fch)
(defpun-fn ,defpun-fn)
))
("Subgoal 2" :use ,fch))
:rule-classes nil)
)
))
; Second, we recognize probably tail-recursive definitions and introduce
; the appropriate functions of arity 1.
; Note that probably-tail-recursivep and destructure-tail-recursion should be
; kept in sync.
(defun probably-tail-recursivep (defpun-f vars body)
(and (symbolp defpun-f)
(symbol-listp vars)
(true-listp body)
(eq (car body) 'IF)
(or (and (consp (caddr body))
(eq (car (caddr body)) defpun-f))
(and (consp (cadddr body))
(eq (car (cadddr body)) defpun-f)))))
(defun destructure-tail-recursion-aux (vars x)
(declare (xargs :mode :program))
(cond ((endp vars) nil)
(t (cons (list (car vars)
(list 'car x))
(destructure-tail-recursion-aux (cdr vars)
(list 'cdr x))))))
(defun destructure-tail-recursion (defpun-f vars body)
(declare (xargs :mode :program))
(cond
((and (consp (caddr body))
(eq (car (caddr body)) defpun-f))
(mv (destructure-tail-recursion-aux vars 'x)
(list 'NOT (cadr body))
(cadddr body)
(cons 'LIST (cdr (caddr body)))))
(t
(mv (destructure-tail-recursion-aux vars 'x)
(cadr body)
(caddr body)
(cons 'LIST (cdr (cadddr body)))))))
(defun arbitrary-tail-recursive-encap (defpun-f vars body keypairs)
(declare (xargs :mode :program))
(mv-let
(bindings defpun-test-body defpun-base-body step-body)
(destructure-tail-recursion defpun-f vars body)
(let ((f1 (packn-pos (list defpun-f "-arity-1") defpun-f))
(defpun-test1 (packn-pos (list defpun-f "-arity-1-defpun-test") defpun-f))
(defpun-base1 (packn-pos (list defpun-f "-arity-1-defpun-base") defpun-f))
(step1 (packn-pos (list defpun-f "-arity-1-step") defpun-f)))
`(encapsulate
((,defpun-f ,vars t))
(set-ignore-ok t)
(set-irrelevant-formals-ok t)
(local (defun-nonexec ,defpun-test1 (x) (let ,bindings ,defpun-test-body)))
(local (defun-nonexec ,defpun-base1 (x) (let ,bindings ,defpun-base-body)))
(local (defun-nonexec ,step1 (x) (let ,bindings ,step-body)))
(local ,(arity-1-tail-recursive-encap f1 defpun-test1 defpun-base1 step1))
(local (defun-nonexec ,defpun-f ,vars (,f1 (list ,@vars))))
(defthm ,(packn-pos (list defpun-f "-DEF") defpun-f)
(equal (,defpun-f ,@vars) ,body)
:hints (("Goal" :use (:instance ,(packn-pos (list f1 "-DEF") defpun-f)
(x (list ,@vars)))))
,@keypairs)))))
(defun remove-xargs-domain-and-measure (dcl)
(case-match dcl
(('declare ('xargs ':domain dom-expr
':measure measure-expr
. rest))
(mv nil nil dom-expr measure-expr rest))
(('declare ('xargs ':gdomain dom-expr
':measure measure-expr
. rest))
(mv nil t dom-expr measure-expr rest))
(& (mv t nil nil nil nil))))
(mutual-recursion
(defun subst-defpun-fn-into-pseudo-term (new-defpun-fn old-defpun-fn pterm)
(declare (xargs :mode :program))
(cond
((atom pterm) pterm)
((eq (car pterm) 'quote) pterm)
((or (eq (car pterm) 'let)
(eq (car pterm) 'let*))
(list (car pterm)
(subst-defpun-fn-into-pseudo-bindings new-defpun-fn old-defpun-fn (cadr pterm))
(subst-defpun-fn-into-pseudo-term new-defpun-fn old-defpun-fn (caddr pterm))))
((eq (car pterm) 'cond)
(cons 'cond
(subst-defpun-fn-into-pseudo-cond-clauses new-defpun-fn old-defpun-fn (cdr pterm))))
(t
(cons (if (eq (car pterm) old-defpun-fn)
new-defpun-fn
(car pterm))
(subst-defpun-fn-into-pseudo-term-list new-defpun-fn old-defpun-fn (cdr pterm))))))
(defun subst-defpun-fn-into-pseudo-bindings (new-defpun-fn old-defpun-fn pbindings)
(declare (xargs :mode :program))
(cond
((atom pbindings) pbindings)
(t (cons (list (car (car pbindings))
(subst-defpun-fn-into-pseudo-term new-defpun-fn old-defpun-fn
(cadr (car pbindings))))
(subst-defpun-fn-into-pseudo-bindings new-defpun-fn old-defpun-fn (cdr pbindings))))))
(defun subst-defpun-fn-into-pseudo-cond-clauses (new-defpun-fn old-defpun-fn pclauses)
(declare (xargs :mode :program))
(cond
((atom pclauses) pclauses)
(t (cons (list (subst-defpun-fn-into-pseudo-term new-defpun-fn old-defpun-fn
(car (car pclauses)))
(subst-defpun-fn-into-pseudo-term new-defpun-fn old-defpun-fn
(cadr (car pclauses))))
(subst-defpun-fn-into-pseudo-cond-clauses new-defpun-fn old-defpun-fn
(cdr pclauses))))))
(defun subst-defpun-fn-into-pseudo-term-list (new-defpun-fn old-defpun-fn list)
(declare (xargs :mode :program))
(cond
((atom list) list)
(t (cons (subst-defpun-fn-into-pseudo-term new-defpun-fn old-defpun-fn (car list))
(subst-defpun-fn-into-pseudo-term-list new-defpun-fn old-defpun-fn (cdr list)))))))
(defun default-defpun-rule-classes (keyword-alist)
; We add :rule-classes :definition to keyword-alist if :rule-classes is
; not mentioned in it.
(cond
((keyword-value-listp keyword-alist)
(cond ((assoc-keyword :rule-classes keyword-alist)
keyword-alist)
(t (list* :rule-classes :definition keyword-alist))))
(t keyword-alist)))
(defun destructure-dcl-body-keypairs (lst)
; Lst is the tail of some defpun. It optionally contains a DECLARE
; form, a body, and some keyword binding pairs, in that order. We
; return the three components. Body must be present, and if keyword
; binding pairs are present, the length of that part of the list must
; be even. So the parity of the length of the list determines which
; optional components are present.
; 0. illegal - never allowed to happen
; 1. body
; 2. dcl body
; 3. body :rule-classes classes
; 4. dcl body :rule-classes classes
; 5. body :rule-classes classes :hints hints
; 6. dcl body :rule-classes classes :hints hints
; etc.
; If rule-classes is unspecified it defaults to :definition.
(cond
((evenp (length lst))
(mv (car lst)
(cadr lst)
(default-defpun-rule-classes (cddr lst))))
(t (mv nil
(car lst)
(default-defpun-rule-classes (cdr lst))))))
(defun defpun-syntax-er-fn (state)
(declare (xargs :stobjs state :mode :program))
(er soft 'defpun
"The proper shape of a defpun event is~%~
(defpun g (v1 ... vn) body).~%~
A single optional declare form may be present ~
before the body. If present, the form must be one of three:~%~
(DECLARE (XARGS :witness defpun-fn))~%~
or~%~
(DECLARE (XARGS :domain dom-expr :measure m . rest))~%~
or~%~
(DECLARE (XARGS :gdomain dom-expr :measure m . rest)).~%~
An optional keyword alist may be ~
present after the body. The declare form is used during the ~
admission of the witness function. The keyword alist is ~
attached to the equality axiom constraining the new function ~
symbol. If the :rule-classes keyword is not specified by the ~
keyword alist, :definition is used. See :DOC defpun."))
(defun defpun-syntax-er nil
; Matt K. addition, June 2010: We use make-event so that an error within a
; superior encapsulate or progn will generate a legal event and we can thus see
; a nice error message.
`(make-event (defpun-syntax-er-fn state)))
(defmacro defpun (g vars &rest rest)
(cond
((and (symbolp g)
(symbol-listp vars)
(not (endp rest)))
; This form may be legal, so we will destructure it and proceed. Otherwise,
; we will cause an error.
(mv-let
(dcl body keypairs)
(destructure-dcl-body-keypairs rest)
(cond
((not (keyword-value-listp keypairs))
(defpun-syntax-er))
((and (not dcl)
(probably-tail-recursivep g vars body))
(arbitrary-tail-recursive-encap g vars body keypairs))
((and dcl
(case-match dcl
(('declare ('xargs ':witness witness))
`(encapsulate
((,g ,vars t))
(local (defun-nonexec ,g ,vars (,witness ,@vars)))
(defthm ,(packn-pos (list g "-DEF") g)
(equal (,g ,@vars)
,body)
,@keypairs)))
(& nil))))
((not (and (consp dcl)
(eq (car dcl) 'declare)))
(defpun-syntax-er))
(t
(mv-let
(erp closed-domp dom-expr measure-expr rest-of-xargs)
(remove-xargs-domain-and-measure dcl)
(cond
(erp (defpun-syntax-er))
(closed-domp
(let ((gwit (packn-pos (list "THE-" g) g)))
`(encapsulate
nil
(defun ,gwit ,vars
(declare (xargs :measure
(if ,dom-expr
,measure-expr
0)
:guard ,dom-expr
:verify-guards nil
,@rest-of-xargs))
(if ,dom-expr
,(subst-defpun-fn-into-pseudo-term gwit g body)
'undef))
(encapsulate
((,g ,vars t))
(local (defun-nonexec ,g ,vars (,gwit ,@vars)))
(defthm ,(packn-pos (list g "-DEF") g)
(implies ,dom-expr
(equal (,g ,@vars)
,body))
,@keypairs))
(defthm ,(packn-pos (list g "-IS-UNIQUE") g)
(implies ,dom-expr
(equal (,g ,@vars)
(,gwit ,@vars))))
(in-theory (disable ,(packn-pos (list g "-IS-UNIQUE") g)))
(verify-guards ,gwit))))
(t `(encapsulate
((,g ,vars t))
(local (defun-nonexec ,g ,vars
(declare (xargs :measure
(if ,dom-expr
,measure-expr
0)
,@rest-of-xargs))
(if ,dom-expr
,body
'undef)))
(defthm ,(packn-pos (list g "-DEF") g)
(implies ,dom-expr
(equal (,g ,@vars)
,body))
,@keypairs)))))))))
(t (defpun-syntax-er))))
|