This file is indexed.

/usr/share/acl2-8.0dfsg/books/misc/dft-ex.lisp is in acl2-books-source 8.0dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
; Copyright (C) 2014, Regents of the University of Texas
; Written by J Moore, 6/13/01
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.

(in-package "ACL2")

; J Moore, 6/13/01

(include-book "dft")

(dft comm2-test-1
     (equal (* a (* b c)) (* b (* a c)))
     :rule-classes nil
     :otf-flg nil
     :proof
     ((consider (* a (* b c)))
      (= (* (* a b) c))
      (= (* (* b a) c) :disable (associativity-of-*))
      (= (* b (* a c)))))


(include-book "arithmetic/top-with-meta" :dir :system)

; Here I prove Euclid's theorem, that p|ab implies p|a or p|b, for prime p.  I
; defaxiom a few "basic" facts.  My point is to illustrate dft.

(progn
 (defstub primep (x) t)
 (defstub divides (x y) t)
 (defstub quotient (x y) t)
 (defstub my-gcd (x y) t)
 (defaxiom fact0
   (implies (and (integerp x)
                 (integerp y))
            (integerp (quotient x y))))
 (defaxiom fact1
   (implies (and (integerp x)
                 (integerp y))
            (integerp (my-gcd x y))))
 (defaxiom fact2
   (implies (and (integerp x)
                 (integerp y)
                 (divides x y))
            (equal (* x (quotient y x)) y)))
 (defaxiom fact3
   (implies (and (integerp x)
                 (integerp y)
                 (primep x)
                 (not (divides x y)))
            (equal (my-gcd x y) 1)))

 (defaxiom fact4
   (implies (and (integerp x)
                 (integerp y)
                 (integerp z))
            (equal (my-gcd (* x y) (* x z))
                   (* x (my-gcd y z)))))
 (defaxiom fact5
   (implies (and (integerp x)
                 (integerp y))
            (divides x (* x y))))

 (dft prime-key
     (implies (and (integerp a)
                   (integerp b)
                   (integerp p)
                   (primep p)
                   (divides p (* a b)))
              (or (divides p a)
                  (divides p b)))
     :rule-classes nil
     :Proof
     ((Observe (equal (* p (quotient (* a b) p)) (* a b)))
      (Generalize (quotient (* a b) p) to i where (integerp i))
      (case (not (divides p a))
        (observe (equal 1 (my-gcd p a)))
        (consider b)
        (= (* b (my-gcd p a)))
        (= (my-gcd (* b p) (* b a)) :by fact4)
        (= (my-gcd (* p b) (* p i)))
        (= (* p (my-gcd b i)) :by fact4)
        (so-it-suffices-to-prove
         (implies (and (integerp a)
                       (integerp b)
                       (integerp p)
                       (integerp i))
                  (divides p (* p (my-gcd b i)))))
        (observe (divides p (* p (my-gcd b i))))))))

; This is a theorem similar to one I had a hard time proving during the
; K5 FDIV proof.

(dft abs-chain-proof-1
     (implies (and (rationalp x)
                   (rationalp y)
                   (rationalp c)
                   (<= c (+ x y))
                   (integerp i))
              (<= (* (expt 2 i) c)
                  (abs (+ (* (expt 2 i) x) (* (expt 2 i) y)))))
     :rule-classes nil
     :proof
     ((let e be (expt 2 i))
      (consider (* e c))
      (<= (* e (+ x y)))
      (= (+ (* e x) (* e y)))
      (<= (abs (+ (* e x) (* e y))) :enable abs)))

(dft abs-chain-proof-2
     (implies (and (rationalp x)
                   (rationalp y)
                   (rationalp c)
                   (<= c (+ x y))
                   (integerp i))
              (<= (* (expt 2 i) c)
                  (abs (+ (* (expt 2 i) x) (* (expt 2 i) y)))))
     :rule-classes nil
     :proof
     ((let e be (expt 2 i))
      (Observe (<= c (abs (+ x y))) :enable abs)
      (Consider (abs (+ (* e x) (* e y))))
      (= (abs (* e (+ x y))))
      (= (* e (abs (+ x y)))
         :proof
         ((observe (rationalp e))
          (observe (equal (abs e) e))
          (Theorem (implies (and (rationalp x)
                                 (rationalp y))
                            (equal (abs (* x y)) (* (abs x) (abs y))))
                   :enable abs)
          (Instantiate (x e) (y (+ x y)))))
      (Observe (<= (* e c)
                   (abs (+ (* e x) (* e y)))))))

(dft abs-chain-proof-3
     (implies (and (rationalp x)
                   (rationalp y)
                   (rationalp c)
                   (<= c (+ x y))
                   (integerp i))
              (<= (* (expt 2 i) c)
                  (abs (+ (* (expt 2 i) x) (* (expt 2 i) y)))))
     :rule-classes nil
     :proof
     ((let e be (expt 2 i))
      (let rhs be (abs (+ (* (expt 2 i) x) (* (expt 2 i) y))))
      (Observe (<= c (abs (+ x y))) :enable abs)
      (Consider rhs)
      (= (abs (* e (+ x y))))
      (= (* e (abs (+ x y)))
         :proof
         ((generalize (+ x y) to z where (rationalp z))
          (observe (equal (abs (* e z)) (* e (abs z))) :enable abs)))
      (observe (<= (* e c) rhs))))