/usr/share/acl2-8.0dfsg/books/misc/dft-ex.lisp is in acl2-books-source 8.0dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 | ; Copyright (C) 2014, Regents of the University of Texas
; Written by J Moore, 6/13/01
; License: A 3-clause BSD license. See the LICENSE file distributed with ACL2.
(in-package "ACL2")
; J Moore, 6/13/01
(include-book "dft")
(dft comm2-test-1
(equal (* a (* b c)) (* b (* a c)))
:rule-classes nil
:otf-flg nil
:proof
((consider (* a (* b c)))
(= (* (* a b) c))
(= (* (* b a) c) :disable (associativity-of-*))
(= (* b (* a c)))))
(include-book "arithmetic/top-with-meta" :dir :system)
; Here I prove Euclid's theorem, that p|ab implies p|a or p|b, for prime p. I
; defaxiom a few "basic" facts. My point is to illustrate dft.
(progn
(defstub primep (x) t)
(defstub divides (x y) t)
(defstub quotient (x y) t)
(defstub my-gcd (x y) t)
(defaxiom fact0
(implies (and (integerp x)
(integerp y))
(integerp (quotient x y))))
(defaxiom fact1
(implies (and (integerp x)
(integerp y))
(integerp (my-gcd x y))))
(defaxiom fact2
(implies (and (integerp x)
(integerp y)
(divides x y))
(equal (* x (quotient y x)) y)))
(defaxiom fact3
(implies (and (integerp x)
(integerp y)
(primep x)
(not (divides x y)))
(equal (my-gcd x y) 1)))
(defaxiom fact4
(implies (and (integerp x)
(integerp y)
(integerp z))
(equal (my-gcd (* x y) (* x z))
(* x (my-gcd y z)))))
(defaxiom fact5
(implies (and (integerp x)
(integerp y))
(divides x (* x y))))
(dft prime-key
(implies (and (integerp a)
(integerp b)
(integerp p)
(primep p)
(divides p (* a b)))
(or (divides p a)
(divides p b)))
:rule-classes nil
:Proof
((Observe (equal (* p (quotient (* a b) p)) (* a b)))
(Generalize (quotient (* a b) p) to i where (integerp i))
(case (not (divides p a))
(observe (equal 1 (my-gcd p a)))
(consider b)
(= (* b (my-gcd p a)))
(= (my-gcd (* b p) (* b a)) :by fact4)
(= (my-gcd (* p b) (* p i)))
(= (* p (my-gcd b i)) :by fact4)
(so-it-suffices-to-prove
(implies (and (integerp a)
(integerp b)
(integerp p)
(integerp i))
(divides p (* p (my-gcd b i)))))
(observe (divides p (* p (my-gcd b i))))))))
; This is a theorem similar to one I had a hard time proving during the
; K5 FDIV proof.
(dft abs-chain-proof-1
(implies (and (rationalp x)
(rationalp y)
(rationalp c)
(<= c (+ x y))
(integerp i))
(<= (* (expt 2 i) c)
(abs (+ (* (expt 2 i) x) (* (expt 2 i) y)))))
:rule-classes nil
:proof
((let e be (expt 2 i))
(consider (* e c))
(<= (* e (+ x y)))
(= (+ (* e x) (* e y)))
(<= (abs (+ (* e x) (* e y))) :enable abs)))
(dft abs-chain-proof-2
(implies (and (rationalp x)
(rationalp y)
(rationalp c)
(<= c (+ x y))
(integerp i))
(<= (* (expt 2 i) c)
(abs (+ (* (expt 2 i) x) (* (expt 2 i) y)))))
:rule-classes nil
:proof
((let e be (expt 2 i))
(Observe (<= c (abs (+ x y))) :enable abs)
(Consider (abs (+ (* e x) (* e y))))
(= (abs (* e (+ x y))))
(= (* e (abs (+ x y)))
:proof
((observe (rationalp e))
(observe (equal (abs e) e))
(Theorem (implies (and (rationalp x)
(rationalp y))
(equal (abs (* x y)) (* (abs x) (abs y))))
:enable abs)
(Instantiate (x e) (y (+ x y)))))
(Observe (<= (* e c)
(abs (+ (* e x) (* e y)))))))
(dft abs-chain-proof-3
(implies (and (rationalp x)
(rationalp y)
(rationalp c)
(<= c (+ x y))
(integerp i))
(<= (* (expt 2 i) c)
(abs (+ (* (expt 2 i) x) (* (expt 2 i) y)))))
:rule-classes nil
:proof
((let e be (expt 2 i))
(let rhs be (abs (+ (* (expt 2 i) x) (* (expt 2 i) y))))
(Observe (<= c (abs (+ x y))) :enable abs)
(Consider rhs)
(= (abs (* e (+ x y))))
(= (* e (abs (+ x y)))
:proof
((generalize (+ x y) to z where (rationalp z))
(observe (equal (abs (* e z)) (* e (abs z))) :enable abs)))
(observe (<= (* e c) rhs))))
|