/usr/share/acl2-8.0dfsg/books/misc/fibonacci.lisp is in acl2-books-source 8.0dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 | ; Book fibonacci
; Contributed by Matyas Sustik
; Date created 2000-05-08
; $Id: fibonacci.lisp,v 1.3 2001/09/05 19:12:21 matyas Exp $
;
; Matt Kaufmann has simplified and rearranged several proofs. Thank
; you! See his comments inserted before the theorems.
(in-package "ACL2")
(include-book "int-division")
(include-book "grcd")
(defmacro np (x)
(list 'and (list 'integerp x) (list '<= 0 x)))
(defmacro pintp (x)
(list 'and (list 'integerp x) (list '< 0 x)))
; This is the efficient definition.
(defun fib-general (x y n)
(cond ((zp n) 0)
((equal n 0) 0)
((equal n 1) x)
((equal n 2) y)
((< 2 n) (fib-general y (+ x y) (+ -1 n)))
(t nil)))
; This is better for proofs.
(defun fib (n)
(cond ((zp n) 0)
((equal n 0) 0)
((equal n 1) 1)
(t (+ (fib (- n 1)) (fib (- n 2))))))
(defthm fib-general-at-3
(equal (fib-general x y 3) (+ x y))
:hints (("Goal" :expand (fib-general x y 3))))
(defthm fib-general-recursive-equation ; requires top-with-meta
(implies (and (integerp n)
(< 2 n))
(equal (+ (fib-general x y (+ -1 n))
(fib-general x y (+ -2 n)))
(fib-general x y n))))
; The function fib is really a special case of fib-general:
(defthm fib-is-special-case-of-fib-general
(equal (fib n)
(fib-general 1 1 n))
:hints (("Goal" :induct (fib n)))
:rule-classes nil)
; The fib-general is more efficient but proofs are easier on fib.
; We use fib from now on.
(defthm fib-identity-base-case ; This is needed for the next theorem.
(implies (and (integerp n) (< 1 n))
(equal (fib n)
(+ (fib (- n 1))
(fib (- n 2))))))
(defthm fib-identity
(implies (and (pintp n)
(pintp k)
(< k n))
(equal (fib n)
(+ (* (fib k)
(fib (+ n (- k) 1)))
(* (fib (+ k -1))
(fib (+ n (- k)))))))
:rule-classes nil)
; MattK: Moved fib-identity-base-case below the proof of fib-neighbours-lemma
; in order to avoid the need for one of the :use hints.
(in-theory (disable fib))
(defthm fib-neighbours-lemma
(implies (and (integerp k)
(< 1 k))
(equal (grcd (fib k)
(fib (+ -1 k)))
(grcd (fib (+ -1 k))
(fib (+ -2 k)))))
:hints (("Goal"
:use ((:instance grcd-addition-lemma
(a (fib (+ -1 k)))
(b (fib (+ -2 k)))
(c 1))))))
(in-theory (disable fib-identity-base-case))
; MattK: Trivial mod, probably unnecessary, but result is simpler.
(local
(defun ind-int->=-2 (n)
(if (and (integerp n)
(<= 2 n))
(ind-int->=-2 (+ -1 n))
t)))
(defthm fib-neighbours-are-relative-primes
(implies (pintp k)
(equal (grcd (fib k)
(fib (+ -1 k)))
1))
:hints (("Goal"
:induct (ind-int->=-2 k))))
; (F(k); F(n-k)*F(k-1)) = (F(k); F(n-k))
; MattK: I rearranged the terms of the following in order to make it a better
; rewrite rule. In order for the left side to match, we need to be sure it's
; in a form that is likely to be matched during the proof of the next lemma.
; The documentation for loop-stopper hints that (- x) and x are ordered the
; same when directly under a call of +, and that variables closer to the start
; of the alphabet are ordered before those later in the alphabet. Those facts
; are relevant below since there are rewrite rules for commutativity of + and *
; that have loop stoppers. This is all pretty subtle, and of course there is
; nothing really wrong with just giving a :use hint, as was done originally.
(defthm grcd-fib-recursion-lemma-1
(implies (and (pintp n)
(pintp k)
(<= k n))
(equal (grcd (fib k)
(* (fib (+ -1 k))
(fib (+ (- k) n))))
(grcd (fib k)
(fib (- n k)))))
:hints (("Goal"
:use ((:instance grcd-multiplication-with-relative-prime
(a (fib k))
(b (fib (- n k)))
(c (fib (+ -1 k))))))))
; (F(k); F(n-k)*F(k-1)+F(n-k+1)*F(k)) = (F(k); F(n-k))
; MattK: Just for fun, I restated this lemma in a form that would apply in the
; proof of grcd-fib-recursion. I came up with this restatement by looking at
; the failed proof of grcd-fib-recursion. when this lemma was not supplied ina
; :use hint.
(defthm grcd-fib-recursion-lemma-2
(implies (and (pintp n)
(pintp k)
(<= k n)
(equal (fib n)
(+ (* (fib k)
(fib (+ 1 (- k) n)))
(* (fib (+ -1 k))
(fib (+ (- k) n))))))
(equal (grcd (fib k)
(fib n))
(grcd (fib k)
(fib (- n k)))))
:hints (("Goal"
:use ((:instance grcd-addition-lemma
(a (fib k))
(b (* (fib (- n k))
(fib (+ -1 k))))
(c (fib (+ 1 n (- k)))))))))
; MattK: The following is used automatically in grcd-fib-recursion and
; main-grcd-fib, thus saving two :use hints. Except, we also need grcd-0 for
; the proof of grcd-fib-recursion, which is OK since we will need it in
; main-grcd-fib, anyhow.
(defthm grcd-subtract
(implies (and (integerp k) (integerp n))
(equal (grcd k (+ (- k) n))
(grcd k n)))
:hints (("Goal"
:use ((:instance grcd-addition-lemma
(a k)
(b n)
(c (- 1)))))))
; We already have a similar grcd-with-0 but that has (grcd a 0) in it.
; ACL2 does not seem to use commutativity with constants in this case.
(defthm grcd-0
(implies (np a)
(equal (grcd 0 a) a))
:hints (("Goal" :in-theory (enable grcd euclid-alg-nat))))
; This says that the Euclidean algorithm for Fibonacci numbers can be
; thought of as operating on the indices.
(defthm grcd-fib-recursion
(implies (and (pintp n)
(pintp k)
(<= k n))
(equal (grcd (fib k)
(fib n))
(grcd (fib k)
(fib (- n k)))))
:hints (("Goal" :use fib-identity)))
(in-theory (enable Euclid-alg-nat))
(defthm main-grcd-fib
(implies (and (pintp n)
(pintp k))
(equal (grcd (fib k)
(fib n))
(fib (grcd k n))))
:hints (("Goal"
:induct (Euclid-alg-nat k n))
("Subgoal *1/4"
:in-theory (disable grcd-fib-recursion))))
|