This file is indexed.

/usr/share/acl2-8.0dfsg/books/misc/getprop.lisp is in acl2-books-source 8.0dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
; Copyright (C) 2013, Regents of the University of Texas
; Written by J Moore
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.

; In this sequence of events I define a linear-time no-duplicates
; function for lists of symbols, I prove its guards, I prove that it
; is equivalent to the quadratic time version (just to show that even
; though it uses private property lists it is a :logic mode function I
; can reason about), I define a timed version that prints the cpu time
; used, I prove it returns the correct Boolean answer (again, just to
; prove that it is a :logic mode function we can reason about even
; though it uses timers), and finally I demonstrate it on lists of
; length 20,000.  The time on a duplicate-free list is less than 2
; seconds on a 200 MHz machine.

(in-package "ACL2")

; Section 1.  The Definitions

; Here is my fast version of no-duplicatesp.  Props is a private ACL2
; property list world, different from the one we use.  I just mark
; every element of lst and see if I have ever seen it as I go.  The
; function extend-world "installs" the property list behind the scenes
; in Lisp in a way strictly analogous to ACL2 arrays.  It is logically
; the identity function but makes getprop go fast if everything is up
; to date.

(defun fast-no-duplicatesp1 (lst props)
  (declare (xargs :guard (and (symbol-listp lst)
                              (plist-worldp props))))
  (cond
   ((endp lst) t)
   ((getprop (car lst) 'mark nil 'fast-no-duplicatesp-world props)
    nil)
   (t (fast-no-duplicatesp1 (cdr lst)
                            (extend-world 'fast-no-duplicatesp-world
                                          (putprop (car lst)
                                                   'mark
                                                   t
                                                   props))))))

(defun fast-no-duplicatesp (lst)
  (declare (xargs :guard (symbol-listp lst)))
  (let ((ans (fast-no-duplicatesp1 lst nil)))
    (prog2$
     (retract-world 'fast-no-duplicatesp-world nil)
     ans)))

; The retract-world just undoes all the marks.

; Section 2. Proving It Correct

; Now I prove that fast-no-duplicatesp is equal to no-duplicatesp, the
; ACL2 function that does it in quadratic time.  Ignore all the lemmas
; until the last one of this section.  They just develop the necessary
; invariants.

(defthm sgetprop-means-fast-no-duplicatesp1-fails
  (implies (and (member e lst)
                (sgetprop e 'mark nil 'fast-no-duplicatesp-world props))
           (not (fast-no-duplicatesp1 lst props))))

(defun all-marked-t (props)
  (cond ((endp props) t)
        (t (and (eq (cadr (car props)) 'mark)
                (eq (cddr (car props)) t)
                (all-marked-t (cdr props))))))

(defthm sgetprop-means-in-strip-cars
  (implies (all-marked-t props)
           (iff (sgetprop x 'mark nil name props)
                (member x (strip-cars props)))))

(defthm member-append
  (iff (member e (append a b))
       (or (member e a)
           (member e b))))

(defthm duplicatesp-preserved-by-append
  (implies (no-duplicatesp (append x y))
           (and (no-duplicatesp x)
                (no-duplicatesp y))))

(defthm no-duplicatesp-append-cons
  (equal (no-duplicatesp (append a (cons e b)))
         (and (not (member e a))
              (not (member e b))
              (no-duplicatesp (append a b)))))

(defthm fast-no-duplicatesp1-is-no-duplicatesp-append
  (implies (and (no-duplicatesp (strip-cars props))
                (all-marked-t props))
           (equal (fast-no-duplicatesp1 lst props)
                  (no-duplicatesp (append (strip-cars props) lst)))))

; Isn't this pretty?

(defthm fast-no-duplicatesp-is-no-duplicatesp
  (equal (fast-no-duplicatesp lst)
         (no-duplicatesp lst)))

; Section 3.  The Timed Version

; Here is a version that prints the amount of time it takes.  It
; returns an ACL2 "error triple" (mv erp val state).  You don't really
; care.  But I prove that val is no-duplicatesp just to show that this
; is really a logic mode function even though it messes with state and
; timers.

(set-state-ok t)

(defun timed-fnd (lst state)

; This function answers the no-duplicatesp question for lst and prints
; the time it takes.

  (pprogn
   (set-timer 'fast-no-duplicatesp-time '(0) state)
   (let ((ans (fast-no-duplicatesp lst)))
     (pprogn
      (increment-timer 'fast-no-duplicatesp-time state)
      (print-timer 'fast-no-duplicatesp-time *standard-co* state)
      (princ$ " secs" *standard-co* state)
      (princ$ #\Newline *standard-co* state)
      (pop-timer 'fast-no-duplicatesp-time nil state)
      (value ans)))))

(defthm timed-fnd-is-no-duplicatesp
  (equal (mv-nth 1 (timed-fnd lst state))
         (no-duplicatesp lst))
  :hints (("Goal" :in-theory (disable print-rational-as-decimal))))

; Section 4. Benchmarking

; Now I show that I can answer the no-duplicatesp question for a list
; of 20,000 in about 2 seconds on my 200 MHz machine.

(defun make-temp-symbols (n acc)

; We make a list of n symbols, each of the form TEMPi.  We concatenate
; this list to acc.  The result is (TEMP1 ... TEMPn . acc).  Note that
; the list has no duplicates.  If you wish to produce a list with
; duplicates, initialize acc with '(TEMP1).

  (declare (xargs :mode :program))
  (cond
   ((zp n) acc)
   (t (make-temp-symbols (- n 1)
                         (cons (packn (list "TEMP" n)) acc)))))

(comp t)

; I build two lists, one containing 20,001 symbols whose first and
; last symbols are the same.  The other contains 20,001 distinct
; symbols.

(defconst *dup-list* (make-temp-symbols 20000 '(TEMP1)))

(defconst *no-dup-list* (cons 'TEMP0 (cdr *dup-list*)))

(make-event (er-progn (timed-fnd *dup-list* state)
                      (value '(value-triple :invisible))))

(make-event (er-progn (timed-fnd *no-dup-list* state)
                      (value '(value-triple :invisible))))

; The output of the two calls is shown below.

; ACL2 !>(timed-fnd *dup-list* state)
; [SGC for 38 ARRAY pages..(4725 writable)..(T=39).GC finished]
; [SGC for 38 ARRAY pages..(4725 writable)..(T=39).GC finished]
; [SGC for 38 ARRAY pages..(4725 writable)..(T=40).GC finished]
; 1.42 secs
;  NIL

; ACL2 !>(timed-fnd *no-dup-list* state)
; [SGC for 38 ARRAY pages..(4725 writable)..(T=37).GC finished]
; [SGC for 38 ARRAY pages..(4725 writable)..(T=38).GC finished]
; [SGC for 38 ARRAY pages..(4725 writable)..(T=39).GC finished]
; [SGC for 38 ARRAY pages..(4725 writable)..(T=40).GC finished]
; 1.75 secs
;  T