This file is indexed.

/usr/share/acl2-8.0dfsg/books/misc/hanoi.lisp is in acl2-books-source 8.0dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
; Copyright (C) 2013, Regents of the University of Texas
; Written by Matt Kaufmann and J Strother Moore, April 2, 2003
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.

; A Proof of the Correctness of a Towers of Hanoi Program

; Abstract

; In this book we prove the correctness of a function that
; purportedly generates moves to play the Towers of Hanoi game
; for an arbitrary number of disks.

; This is Moore's translation into ACL2 of Matt Kaufmann's
; Pc-Nqthm solution of this problem.  Matt devised his solution
; as an illustration of PC-Nqthm.  This proof is entirely
; rule-based.  But the elegance of Matt's solution was in his
; statement of the problem and of the main lemma, h-lemma.

; To certify this book, execute:

#|
(defpkg "HANOI"
    (set-difference-equal
     (union-eq *acl2-exports*
               *common-lisp-symbols-from-main-lisp-package*)
     '(PUSH POP GET)))

(certify-book "hanoi" 1)

JSM
August, 2004
|#

(in-package "HANOI")

(defun mem (e x)
  (if (consp x)
      (if (equal e (car x))
          x
        (mem e (cdr x)))
    nil))

(defun app (x y)
  (if (consp x)
      (cons (car x)
          (app (cdr x) y))
    y))

(defun del (e x)
  (if (consp x)
      (if (equal e (car x))
          (cdr x)
        (cons (car x) (del e (cdr x))))
    nil))

(defun perm (x y)
  (if (consp x)
      (and (mem (car x) y)
           (perm (cdr x)
                 (del (car x) y)))
    (not (consp y))))

; Note: I will use the perm expression (perm (list a b c) '(0 1 2)) to
; characterize the peg numbers, a, b, and c.  But I will then use the
; lemma to rewrite the perm into a conjunction of facts that give us
; all we need without "revealing" the identities of a, b, and c.  If
; we allow the perm to expand, the proof of h-lemma takes 40 times
; longer.

(defthm perm-opener
  (equal (perm (list a b c) '(0 1 2))
         (and (integerp a) (<= 0 a) (<= a 2)
              (integerp b) (<= 0 b) (<= b 2)
              (integerp c) (<= 0 c) (<= c 2)
              (not (equal a b))
              (not (equal a c))
              (not (equal b c)))))

(defthm app-assoc
  (equal (app (app a b) c) (app a (app b c))))

(defthm app-right-id
  (implies (true-listp x)
           (equal (app x nil) x)))

(defun get (n x)
  (if (zp n) (car x) (get (- n 1) (cdr x))))

(defun put (v n x)
  (if (zp n) (cons v (cdr x)) (cons (car x) (put v (- n 1) (cdr x)))))

(defthm get-put
  (implies (and (natp i)
                (natp j))
           (equal (get i (put v j x))
                  (if (equal i j) v (get i x)))))

(defthm put-get
  (implies (and (equal x (get n s))
                (natp n)
                (< n (len s)))
           (equal (put x n s) s)))

(defthm put-put-1
  (implies (and (natp i)
                (natp j)
                (not (equal i j)))
           (equal (put v i (put u j s))
                  (put u j (put v i s))))
  :rule-classes ((:rewrite :loop-stopper ((i j)))))

(defthm put-put-2
  (equal (put v i (put w i s))
         (put v i s)))

(defthm true-listp-put
  (implies (and (natp n)
                (< n (len x)))
           (equal (true-listp (put v n x))
                  (true-listp x))))

(defthm len-put
  (implies (and (natp n)
                (< n (len x)))
           (equal (len (put v n x))
                  (len x))))


(defun push (e x) (cons e x))
(defun pop (x) (cdr x))
(defun top (x) (car x))

(defun h (i j k n)
 (if (zp n)
     nil
     (app (h i k j (- n 1))
          (cons (list 'MOVE i k)
                (h j i k (- n 1))))))

(defun Hanoi (n) (h 0 1 2 n))




(defun a (m) (get 1 m))
(defun b (m) (get 2 m))




; Is m a syntactically well-formed move?

(defun legal-syntaxp (m)
  (and (true-listp m)
       (equal (car m) 'MOVE)
       (equal (len m) 3)
       (mem (a m) '(0 1 2))
       (mem (b m) '(0 1 2))
       (not (equal (a m) (b m)))))

; Is m a legal move in state s?

(defun legal-movep (m s)
  (and (legal-syntaxp m)
       (consp (get (a m) s))
       (if (consp (get (b m) s))
           (< (car (get (a m) s))
              (car (get (b m) s)))
         t)))

; Let's assume that s is a good state, that a and b are distinct
; pegs, and that it is legal to move the top element of tower a
; to tower b.  This function returns the state produced by making
; that move.

(defun do-move (m s)
  (let ((stacka (get (a m) s))
        (stackb (get (b m) s)))
    (put (pop stacka) (a m)
     (put (push (top stacka) stackb) (b m)
                 s))))

; The Hanoi game generates a list of moves, where each move is of
; the form (MOVE a b), where a and b are distinct pegs.

(defun play (moves s)

; Moves is a list of moves.  Each move is of the form (MOVE a b),
; where a and b are distinct pegs.  Play returns the state
; produced by doing each of the moves, in turn, to s.  If an
; illegal move occurs, NIL is returned.  Otherwise, the final
; state (which is never nil) is returned.

  (if (consp moves)
      (if (legal-movep (car moves) s)
          (play (cdr moves)
                (do-move (car moves)
                         s))
          nil)
      s))

(defun tower (n)
  (if (zp n)
      nil
    (app (tower (- n 1)) (list n))))

(defthm examples
  (and (equal (play (Hanoi 7) (list (tower 7) nil nil))
              (list nil nil (tower 7)))
       (equal (play (Hanoi 2) (list (tower 3) nil '(4)))
              '((3) nil (1 2 4)))
       (equal (play (Hanoi 3) '((1 2 3) (0) nil))
              nil)))

; ---------------------------------------------------------------
; Lemmas

(defthm true-listp-tower
  (true-listp (tower n)))

(defthm play-app
  (equal (play (app moves1 moves2) s)
         (play moves2 (play moves1 s))))

; ----------------------------------------------------------------
; The General Lemma

; Here is the generalized form of the correctness theorem.

(defun big-tops (a b c n s)
  (and (or (endp (get a s))
           (< n (car (get a s))))
       (or (endp (get b s))
           (< n (car (get b s))))
       (or (endp (get c s))
           (< n (car (get c s))))))

; Note: I could have used 0, 1, and 2 for a, b, and c.  But instead I
; passed them in.  The reason is that in my proof of h-lemma below I
; explicitly avoid revealing that a, b, and c are those particular
; numbers.

; The key lemma is called h-lemma, below, and the next function
; definition describes the induction hint needed to prove it.

; Look at h-lemma first.

; The conclusion is

; (equal (play (h a b c n)                           ;[lhs]
;              (put (app (tower n) (get a s)) a s))
;        (put (app (tower n) (get c s)) c s)) ;[rhs]

; Consider the lhs

; (play (h a b c n)
;       (put (app (tower n) (get a s)) a s))

; (h a b c n) will open to

; (app (h a c b (- n 1))
;      (cons (list 'MOVE a c)
;            (h b a c (- n 1))))

; and because of play-app and the definition of play,

; lhs
; =
; (play (h b a c (- n 1))
;       (do-move (list 'MOVE a c)
;                (play (h a c b (- n 1))
;                      (put a
;                           (app (tower n) (get a s))
;                           s))))

; Expand (tower n) to (app (tower (- n 1)) (list n)) and associate
; and you get

; lhs
; =
; (play (h b a c (- n 1))                      ; [outer play]
;       (do-move (list 'MOVE a c)
;                (play (h a c b (- n 1))       ; [inner play]
;                      (put (app (tower (- n 1))
;                                (cons n (get a s)))
;                           a
;                           s))))

; Consider the [inner play] term.  We can provide an induction
; hyp that tells us about this term!  Here is the lhs of our
; theorem again.

; (play (h a b c n)
;       (put (app (tower n)
;                 (get a s))
;            a
;            s))

; Instantiate it by a := a, b := c, c := b, n := (- n 1), and
; s := (put (cons n (get a s)) a s)
; and you get:

; (play (h a c b (- n 1))
;       (put (app (tower (- n 1))
;                 (get a
;                      (put (cons n (get a s))
;                           a
;                           s)))
;            a
;            (put (cons n (get a s))
;                 a
;                 s)))
;
; Now that is not quite what we want.  But simplify it, first by
; simplifying the (get a (put ... a ...)):

; (play (h a c b (- n 1))
;       (put (app (tower (- n 1))
;                 (cons n (get a s)))
;            a
;            (put (cons n (get a s))
;                 a
;                 s)))

; And then by simplifying (put ... a ... (put ... a ...))

; (play (h a c b (- n 1))
;       (put (app (tower (- n 1))
;                 (cons n (get a s)))
;            a
;            s))

; And voila, it's [inner play].

; The induction hypothesis tells us [inner play] is equal to

; (put (app (tower (- n 1))
;           (get b
;                (put (cons n (get a s)) a s)))
;      b
;      (put (cons n (get a s)) a s))

; which we can simplify, using get and put facts, to

; (put (app (tower (- n 1))
;           (get b s))
;      b
;      (put (cons n (get a s)) a s))

; So, using this hypothesis, we get

; lhs
; =
; (play (h b a c (- n 1))                      ; [outer play]
;       (do-move (list 'MOVE a c)
;                (put (app (tower (- n 1)) (get b s))
;                     b
;                     (put (cons n (get a s))
;                          a
;                          s))))

; Now do the MOVE and we get
;
; lhs
; =
; (play (h b a c (- n 1))
;       (put (cons n (get c s))
;            c
;            (put (app (tower (- n 1)) (get b s))
;                 b
;                 s)))

; (Again, using get and put simplifications.)

; Commute the put on c and b (another lemma about these
; important functions)

; lhs
; =
; (play (h b a c (- n 1))
;       (put (app (tower (- n 1)) (get b s))
;            b
;            (put (cons n (get c s))
;                 c
;                 s)))

; Does this look familiar?  We can supply an induction hypothesis
; to tell us what this term is, too!
;
; Here is the [lhs] of our theorem, again:

; (play (h a b c n)
;       (put (app (tower n)
;                 (get a s))
;            a
;            s))

; Instantiate it with a := b, b := a, c := c, n := (- n 1) and
; s := (put (cons n (get c s)) c s)
; and simplify.

; So now replace this with the rhs of the second induction
; hypothesis:

; lhs
; =
; (put (app (tower (- n 1))
;           (get c (put (cons n (get c s)) c s)))
;      c
;      (put (cons n (get c s)) c s))

; and simplify as usual

; lhs
; =
; (put (app (tower (- n 1))
;           (cons n (get c s)))
;      c
;      s)
; =
; (put (app (tower n)
;           (get c s))
;      c
;      s)
; = rhs!

; So you can see we need two induction hypotheses, as described by
; the two substitutions:

; a := a, b := c, c := b, n := (- n 1),
; s := (put (cons n (get a s)) a s)

; a := b, b := a, c := c, n := (- n 1),
; s := (put (cons n (get c s)) c s)

; That is what is coded below.

(defun induction-hint (a b c n s)
  (if (zp n)
      (list a b c n s)
    (list (induction-hint a c b (- n 1)
                          (put (push n (get a s)) a s))
          (induction-hint b a c (- n 1)
                          (put (push n (get c s)) c s)))))

; So here is h-lemma, the crux of the proof.  The proof is
; tedious because we have to deal with the preservation of
; the big-tops hypothesis under the instantiations and
; the constant pathological possibilities that a = b or some
; other a = 4 or some other nonsense that prevents the
; nth and update-nth rules from applying.  These are dealt with
; by brute force:  just consider the possible values of
; a, b, and c and do the inductive argument for each one.

; Time:  14.10 seconds (prove: 12.85, print: 1.24, other: 0.01)

(defthm h-lemma
  (implies (and (natp n)
                (true-listp s)
                (equal (len s) 3)
                (perm (list a b c) '(0 1 2))
                (big-tops a b c n s))
           (equal (play (h a b c n)
                        (put (app (tower n) (get a s))
                             a
                             s))
                  (put (app (tower n) (get c s)) c s)))

  :rule-classes nil
  :hints (("Goal" :induct (induction-hint a b c n s))))



; ----------------------------------------------------------------
; The Main Theorem

(defthm hanoi-correct
  (equal (play (hanoi n) (list (tower n) nil nil))
         (list nil nil (tower n)))
  :hints (("Goal" :use (:instance h-lemma
                                  (a 0)
                                  (b 1)
                                  (c 2)
                                  (s (list nil nil nil))))))