This file is indexed.

/usr/share/acl2-8.0dfsg/books/misc/hons-tests.lisp is in acl2-books-source 8.0dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
(in-package "ACL2")
(include-book "hons-help2")

; Courtesy of Bob Boyer and Warren Hunt:

(defun fib (x)
  (declare (xargs :guard (and (integerp x)
                              (<= 0 x))))
  (mbe
   :logic
   (cond ((zp x) 0)
         ((= x 1) 1)
         (t (+ (fib (- x 1)) (fib (- x 2)))))
   :exec
   (if (< x 2)
       x
     (+ (fib (- x 1)) (fib (- x 2))))))

(comp t) ; for other than CCL and SBCL

#+hons
(memoize 'fib)

#+hons
(defthm fib-test0

; SBCL 1.03 has given the following error for fib-test, below, when not
; including fib-test0 first:

; Error:  Control stack exhausted (no more space for function call frames).

; Since fib is not tail-recursive, the problem presumably is that even with
; memoization, we need a control stack of size about 10000 for fib-test.  By
; putting fib-test0 first, we presumably stay within SBCL's stack size limit.

  (equal (integer-length (fib 5000)) 3471))

#+hons
(defthm fib-test
  (equal (integer-length (fib 10000)) 6942))

(defn tree-depth (x)

  ; This is the same as max-depth, but we want to
  ; hack with it so we give it another name.

  (if (atom x)
      0
    (1+ (max (tree-depth (car x))
             (tree-depth (cdr x))))))

(defun build-tree (n)
  (declare (xargs :guard t))
  (if (posp n)
      (hons (build-tree (1- n)) (build-tree (1- n)))
    nil))

#+hons
(memoize 'build-tree)

#+hons
(memoize 'tree-depth)

#+hons
(defthm build-tree-test
  (let ((n 1000))
    (equal (tree-depth (build-tree n)) n)))

(defn make-list-of-numbers (n)
  (declare (xargs :guard (natp n)))
  (if (zp n)
      (list n)
    (hons n (make-list-of-numbers (1- n)))))

(comp 'make-list-of-numbers)

(defun lots (n)
  (declare (xargs :guard (posp n)))
  (let* ((lots-of-numbers (make-list-of-numbers n)))
    (equal (+ (len (hons-intersection lots-of-numbers
                                      lots-of-numbers))
              (len (hons-union        lots-of-numbers
                                      lots-of-numbers))
              (len (hons-set-diff     lots-of-numbers
                                      lots-of-numbers)))
           (+ 2 (* 2 n)))))

(defthm lots-thm (lots 6000))


;; Previous stuff from qi.lisp ---------------------------



; ubdd operations.  ubdd-based set operations.  Reachability.

; ubdd stands for 'unlabeled bdd', and means a cons-tree in T and NIL
; without any subtree that is '(t . t) or '(nil . nil).

; By 'cons-tree in T and NIL' we mean the intersection of all sets S
; such that:
;
;    1.  T is a member of S,
;    2.  NIL is a member of S, and
;    3.  for all x and y, if x and y are in S, then (CONS x y) is in S.

; Legend:
;  A function whose name begins "q-"  returns an ubdd.
;  A function whose name beqins "qv-" returns a list of ubdds.
;  A function whose name begins "qs-" is a set operation on ubdds.

; If, especially in the name of a function, we write 'bdd', we mean
; 'ubdd'.

; This paragraph sucks because it refers to variables, which are
; nowhere in sight.  This file defines a number of ubdd-related
; operations.  ubdds generally have three characteristics: each path
; from the root to a tip encounters each variable at most once, every
; path encounters variables in pre-specified order, and no pair of
; outgoing edges point to the same node (reduced).  Our ubdd
; definition does not reduce internal nodes unless both outgoing edges
; of a ubdd node point to the same constant.  As a result, we do not
; need to store the variable name in the ubdd nodes.  We do reduce our
; ubdds in the sense that constant values terminate any path.

(defabbrev qcar (x) (if (consp x) (car x) x))

(defabbrev qcdr (x) (if (consp x) (cdr x) x))

(defabbrev qcons (x y)
  (if (if (eq x t)
          (eq y t)
        (and (eq x nil) (eq y nil)))
      x
    (hons x y)))

; The three abbreviations above along with the two functions below
; provide the complete definition of our ubdd system.  The order of
; the ubdd variables is implicit -- there are no names, just the depth
; from the root.  Thus, an ubdd with only one variable can be either
; the reduced values T or NIL, or it can be, (HONS T NIL), or (HONS
; NIL T); (HONS T T) and (HONS NIL NIL) are not permitted, but reduced
; to T and NIL, respectively (see the definition of NORMP below).

(defn q-not (x)
  (if (atom x)
      (if x nil t)
    (hons (q-not (car x))
          (q-not (cdr x)))))

(defn q-ite (x y z)

;;; This legacy doc string was replaced Nov. 2014 by the corresponding
;;; auto-generated defxdoc form in the last part of this file.

; ":Doc-section Hons-and-Memoization

; if-then-else for ubdds.~/

; (Q-ITE x y z) expects three ubdds, which are to be interpreted at
; the same level.  Informally speaking. Q-ITE returns a single ubdd,
; also at the same level, that is 'equivalent' to (IF x y z).  The two
; theorems Q-ITE-CORRECT and NORMP-Q-ITE express formally what Q-ITE
; returns.~/~/"

  (cond
   ((null x) z)
   ((atom x) y)
   (t (let ((y (if (hqual x y) t y))
            (z (if (hqual x z) nil z)))
        (cond ((hqual y z) y)
              ((and (eq y t) (eq z nil)) x)
              ((and (eq y nil) (eq z t)) (q-not x))
              ;; ((eq z nil) (q-and x y))
              ;; ((eq z t)   (q-implies x y))
              ;; ((eq y t)   (q-or x y))
              ;; ((eq y nil) (q-and-c1 x y))
              (t (qcons (q-ite (car x) (qcar y) (qcar z))
                        (q-ite (cdr x) (qcdr y) (qcdr z)))))))))

; For these definitions to serve as an effective ubdd system, we
; memoize the functions Q-NOT and Q-ITE.


(defn normp (x)

;;; This legacy doc string was replaced Nov. 2014 by the corresponding
;;; auto-generated defxdoc form in the last part of this file.

;":Doc-section Hons-and-Memoization

; Recognizer of ubdds.~/
; (NORMP x) returns T or NIL according to whether X is a well-formed
; ubdd, i.e., a rooted, binary tree, in T and NIL, with no node equal
; to '(T . T) or '(NIL . NIL).~/~/"

  (mbe :logic
       (if (atom x)
           (booleanp x)
         (and (normp (car x))
              (normp (cdr x))
              (if (atom (car x))
                  (not (equal (car x) (cdr x)))
                t)))

       :exec
       (cond ((eq x t) t)
             ((eq x nil) t)
             ((atom x) nil)
             (t (let ((a (car x))
                      (d (cdr x)))
                  (cond ((eq a t)
                         (cond ((eq d nil) t)
                               ((eq d t) nil)
                               (t (normp d))))
                        ((eq a nil)
                         (cond ((eq d nil) nil)
                               ((eq d t) t)
                               (t (normp d))))
                        (t (and (normp a) (normp d)))))))))

(defn normp-list (x)
  (if (atom x) t (and (normp (car x)) (normp-list (cdr x)))))

(defn eval-bdd (x values)

  "(EVAL-bdd x values) is the 'value' of X with respect to VALUES.

   X is normally a CONS tree of Booleans and VALUES is normally a
   TRUE-LISTP of Booleans, i.e., Ts and NILs.  (Typically, X is T,
   NIL, or a 'HONSP' NORMP.)  Of course, since EVAL-BDD's guard is T,
   it can be given any two ACL2 objects as arguments.

   If X is an atom, then X is its own 'value'; otherwise, we use the
   CAR and CDR of VALUES, say A and D, to guide us further through X.
   (If VALUES is an atom, we use NIL for both A and D.)  If A is NIL
   the answer is the value of (CDR X) with respect to D; otherwise the
   answer is the value of (CAR X) with respect to D.

   One can think of the VALUES argument to EVAL-BDD as having its last
   atom replaced with an infinite list of NILs."

  (if (atom x)
      x
    (if (atom values)
        (eval-bdd (cdr x) nil)
      (if (car values)
          (eval-bdd (car x) (cdr values))
        (eval-bdd (cdr x) (cdr values))))))

(defthm normp-implies-eval-bdd-blp
  (implies (normp x)
           (booleanp (eval-bdd x vals))))

(defn eval-bdd-list (bdds values)
  (if (atom bdds)
      nil
    (hons (eval-bdd (car bdds) values)
          (eval-bdd-list (cdr bdds) values))))

; Assuming variable names are ordered by their location in a list,
; LOCN returns the location of a variable in a list.  (QVAR-N i)
; creates the ith ubdd variable.  Variable names are a mere
; convenience.  We have tried not to impose any unnecessary
; restriction on variables names; however, since we usually only use
; symbols and natural numbers for variable names we have sometimes
; used the EQLABLEP guard on variables.

(defn locn-acc (v vs acc)
  (declare (xargs :guard (integerp acc)))
  (cond ((atom vs) acc)
        ((equal v (car vs)) acc)
        (t (locn-acc v (cdr vs) (1+ acc)))))

(defn locn (v vs)
  (declare (xargs :guard t
                  :verify-guards nil))
  (mbe
   :logic
   (cond ((atom vs) 0)
         ((equal v (car vs)) 0)
         (t (1+ (locn v (cdr vs)))))
   :exec
   (locn-acc v vs 0)))

(defthm locn-is-locn-acc
  (implies (natp acc)
           (equal (locn-acc v vars acc)
                  (+ acc (locn v vars)))))

(verify-guards locn)

(defn qvar-n (n)
  (declare (xargs :guard (natp n)))
  (mbe
   :logic
   (cond ((not (natp n)) nil)
         ((= n 0) (hons t nil))
         (t (let ((x (qvar-n (1- n))))
              (hons x x))))
   :exec
   (cond ((int= n 0) (hons t nil))
         (t (let ((x (qvar-n (1- n))))
              (hons x x))))))

(defthm consp-qvar-n
  (implies (and (integerp n)
                (<= 0 n))
           (consp (qvar-n n))))

(defthm normp-qvar-n
  (normp (qvar-n n)))

(in-theory (disable qvar-n))

(defn var-to-tree (var vars) (qvar-n (locn var vars)))

(defthm normp-var-to-tree
  (normp (var-to-tree var vars)))

(in-theory (disable var-to-tree))

(defn var-to-tree-list (variables vars)
  (if (atom variables) nil
    (hons (var-to-tree (car variables) vars)
          (var-to-tree-list (cdr variables) vars))))

;                      *B0* and *B1*

(defconst *b1* t

  "The constant *B1*, which has value T, plays at least four roles:

     (a) *B1* represents 'true'.

     (b) *B1* represents 'bit 1' in bit vectors.

     (c) *B1* represents 'negative' as an arithmetic sign in a general
         integer.

     (d) *B1* refers to the the CAR side of a CONSP NORMP.")

(defconst *b0* nil

  "The constant *B0*, which always has value NIL, represents 'false',
  'bit 0', 'positive as an arithmetic sign', 'CDR side', and, of
  course, the empty list.")

(defconst *list-b1* (hist *b1*))

(defconst *list-b0* (hist *b0*))

(defmacro is-b1 (x) `(eq ,x t))

(defmacro is-b0 (x) `(eq ,x nil))

(defmacro if-bbb (x y z)

  "(IF-BBB x y z) is equal to (Q-ITE x y z).  IF-BBB is a
  'short-circuit' or 'lazy' version of Q-ITE that avoids evaluating y
  if x evaluates to *B0* and avoids evaluating z if x evaluates to
  *B1*."

; A possible improvement to IF-BBB: macroexpansion of IF-BBB terms
; could result in less code.  The double appearances of y and z could
; be eliminated with an FLET of two functions.  But currently, ACL2
; does support not FLET unless all the free vars in the body are among
; the args.

  `(let ((if-bbb-x-do-not-use-elsewhere ,x))
     (cond
      ((is-b1 if-bbb-x-do-not-use-elsewhere) ,y)
      ((is-b0 if-bbb-x-do-not-use-elsewhere) ,z)
      (t (let* ((if-bbb-y-do-not-use-elsewhere ,y)
                (if-bbb-z-do-not-use-elsewhere ,z))
           (q-ite if-bbb-x-do-not-use-elsewhere
                  if-bbb-y-do-not-use-elsewhere
                  if-bbb-z-do-not-use-elsewhere))))))


(defmacro and-bb (x y) `(if-bbb ,x ,y *b0*))

(defn iff-bb (x y) (if-bbb x y (q-not y)))

(defn xor-bb (x y) (if-bbb x (q-not y) y))

(defn not-b (x) (q-not x))

(defmacro or-bb (x y) `(if-bbb ,x *b1* ,y))

(defabbrev maj-bbb (c a b) (if-bbb c (or-bb a b) (and-bb a b)))


; We define additional ubdd-operations that can sometime provide
; better efficiency than only using Q-ITE through the use of specific
; function memoization.

(defn q-not-ite (x)
  (q-ite x nil t))

(defn q-and (x y)
  (if (atom x)
      (if x y nil)
    (if (atom y)
        (if y x nil)
      (if (hqual x y)
          x
        (let ((l (q-and (car x) (car y)))
              (r (q-and (cdr x) (cdr y))))
          (qcons l r))))))

(defn q-and-ite (x y)
  (q-ite x y nil))

; It would be nice here to have:
;    (thm (equal (q-and x y) (q-and-ite x y))).

(defn q-or (x y)
  (if (atom x)
      (if x t y)
    (if (atom y)
        (if y t x)
      (if (hqual x y)
          x
        (let ((l (q-or (car x) (car y)))
              (r (q-or (cdr x) (cdr y))))
          (qcons l r))))))

(defn q-or-ite (x y)
  (q-ite x t y))

(defn q-implies (x y)
  ;; aka q-or-c1
  (if (atom x)
      (if x y t)
    (if (atom y)
        (if y t (q-not x))
      (if (hqual x y)
          t
        (let ((l (q-implies (car x) (car y)))
              (r (q-implies (cdr x) (cdr y))))
          (qcons l r))))))

(defn q-implies-ite (x y)
  ;; aka q-or-c1
  (q-ite x y t))

(defn q-or-c2 (x y)
  (if (atom y) ; y tested for to emulate q-or-c2-ite
      (if y x t)
    (if (atom x)
        (if x t (q-not y))
      (if (hqual x y)
          t
        (let ((l (q-or-c2 (car x) (car y)))
              (r (q-or-c2 (cdr x) (cdr y))))
          (qcons l r))))))

(defn q-or-c2-ite (x y)
  ;; aka y->x
  (q-ite y x t))

(defn q-and-c1 (x y)
  (if (atom x)
      (if x nil y)
    (if (atom y)
        (if y (q-not x) nil)
      (if (hqual x y)
          nil
        (let ((l (q-and-c1 (car x) (car y)))
              (r (q-and-c1 (cdr x) (cdr y))))
          (qcons l r))))))

(defn q-and-c1-ite (x y)
  (q-ite x nil y))

(defn q-and-c2 (x y)
  (if (atom x)
      (if x (q-not y) nil)
    (if (atom y)
        (if y nil x)
      (if (hqual x y)
          nil
        (let ((l (q-and-c2 (car x) (car y)))
              (r (q-and-c2 (cdr x) (cdr y))))
          (qcons l r))))))

(defn q-and-c2-ite (x y)
  (q-ite y nil x))

(defn q-iff (x y)
  (if (atom x)
      (if x y (q-not y))
    (if (atom y)
        (if y x (q-not x))
      (if (hqual x y)
          t
        (let ((l (q-iff (car x) (car y)))
              (r (q-iff (cdr x) (cdr y))))
          (qcons l r))))))

(defn q-iff-ite (x y)   ; why call q-not rather than q-ite?
  (if-bbb x y (q-not y)))

(defn q-nand (x y)
  (if (atom x)
      (if x (q-not y) t)
    (if (atom y)
        (if y (q-not x) t)
      (if (hqual x y)
          (q-not x)
        (let ((l (q-nand (car x) (car y)))
              (r (q-nand (cdr x) (cdr y))))
          (qcons l r))))))

(defn q-nand-ite (x y)
  (if-bbb x (q-not y) t))

(defn q-nor (x y)
  (if (atom x)
      (if x nil (q-not y))
    (if (atom y)
        (if y nil (q-not x))
      (if (hqual x y)
          (q-not x)
        (let ((l (q-nor (car x) (car y)))
              (r (q-nor (cdr x) (cdr y))))
          (qcons l r))))))

(defn q-nor-ite (x y)
  (if-bbb x nil (q-not y)))

(defn q-xor (x y)
  (if (atom x)
      (if x (q-not y) y)
    (if (atom y)
        (if y (q-not x) x)
      (if (hqual x y)
          nil
        (let ((l (q-xor (car x) (car y)))
              (r (q-xor (cdr x) (cdr y))))
          (qcons l r))))))

(defn q-xor-ite (x y)

; why call atom, q-not, and hqual rather than q-ite?

  (if (atom x)
      (if x (q-not y) y)
    (if (atom y)
        (if y (q-not x) x)
      (if (hqual x y)
          nil
        (if-bbb x (q-not y) y)))))

; End of the 10 q-functions of two arguments.


(defn q-buf (x)         x)

(defn q-or3   (w x y)   (q-or  w (q-or  x y)))

(defn q-and3  (w x y)   (q-and w (q-and x y)))

(defn q-or4   (w x y z) (q-or  w (q-or  x (q-or  y z))))

(defn q-and4  (w x y z) (q-and w (q-and x (q-and y z))))

(defn q-nor3  (w x y)   (q-not (q-or3  w x y)))

(defn q-nand3 (w x y)   (q-not (q-and3 w x y)))

(defn q-nor4  (w x y z) (q-not (q-or4  w x y z)))

(defn q-nand4 (w x y z) (q-not (q-and4 w x y z)))


; (defn qs-complement (x full-set) (q-and-c1 x full-set))

; Conjecture:  (qs-subset x y) is an efficient implementation of
; (eq t (q-implies x y)).

(defn qs-subset (x y)
  (cond ((atom x)
         (if x (eq y t) t))
        ((atom y) y)
        ((hqual x y) t)
        (t (and (qs-subset (car x) (car y))
                (qs-subset (cdr x) (cdr y))))))

;; Composes the Boolean function represented by ubdd X with those
;; represented by ubdds in the list L.

(defn q-compose (x l)
  (if (atom x)
      x
    (if (atom l)
        (q-compose (cdr x) nil)
      (if-bbb (car l)
              (q-compose (car x) (cdr l))
              (q-compose (cdr x) (cdr l))))))

(defn q-compose-list (xs l)
  (if (atom xs)
      nil
    (cons (q-compose (car xs) l)
          (q-compose-list (cdr xs) l))))

(defn q-restrict (x n v vars)

  ;; Needs to be memoized.  Q-RESTRICT takes an ubdd X, a value N (T
  ;; or NIL), a variable V, which is a member of the list of variables
  ;; VARS with respect to which X is an ubdd.  Q-RESTRICT returns the
  ;; ubdd corresponding to the formula that one obtains by simplifying
  ;; every internal node in X corresponding to variable V to N.  Thus,
  ;; if an ubdd with variables '(A B C) has variable B restricted to
  ;; NIL, then both outgoing edges from every internal node Y at
  ;; "level" B will point to the (CDR Y).

  ;; This like forming (LET ((V N)) X) and simplifying the resulting
  ;; expression.

  (declare (xargs :guard (and (eqlablep v)
                              (eqlable-listp vars))))
  (if (atom x)
      x
    (if (eql v (car vars))
        (if n
            (qcons (car x) (car x))
          (qcons (cdr x) (cdr x)))
      (qcons (q-restrict (car x) n v (cdr vars))
             (q-restrict (cdr x) n v (cdr vars))))))

(defn q-restrict-shrink (x n v vars)

  ;; Q-RESTRICT-SHRINK should to be memoized.  Q-RESTRICT-SHRINK takes
  ;; an ubdd X, a value N (t or nil), a variable V, which is a member
  ;; of the list of variables VARS with respect to which X is an ubdd.
  ;; q-RESTRICT-SHRINK returns the ubdd corresponding to the formula
  ;; that one obtains by substituting N for X in the formula to which
  ;; X corresponds.

  ;; Suttle point: the var V is eliminated.  Always know which VARS
  ;; list you are using!

  (declare (xargs :guard (and (eqlablep v)
                              (eqlable-listp vars))))
  (if (atom x)
      x
    (if (eql v (car vars))
        (if n (car x) (cdr x))
      (qcons (q-restrict-shrink (car x) n v (cdr vars))
             (q-restrict-shrink (cdr x) n v (cdr vars))))))

; Q-REORDER is an ubdd variable reorder function.  DELETE-HQL is
; defined to return a unique (HONSP) object.  For the memoization of
; Q-REORDER to work best, it should be called as (Q-REORDER x
; (HONS-COPY vars) (HONS-COPY nvars)) which will ensure that unique
; objects are supplied.

(defn delete-hql (x l)
  (declare (xargs :guard (eqlablep x)))
  (cond ((atom l) nil)
        ((eql x (car l))
         (cdr l))
        (t (hons (car l) (delete-hql x (cdr l))))))

(defthm symbol-listp-delete-hql
  (implies (eqlable-listp l)
           (eqlable-listp (delete-hql x l))))

(defn q-reorder (x vars nvars)

  ;; Needs to be memoized.  VARS and NVARS should be of the same
  ;; length.  X is an ubdd.  Q-REORDER returns the ubdd whose meaning
  ;; with respect to NVARS is equivalent to to the meaning of X with
  ;; respect to VARS.

  (declare (xargs :guard (and (eqlable-listp vars)
                              (eqlable-listp nvars))
                  :measure (acl2-count nvars)))
  (if (or (atom x)
          (atom nvars)) ;; could be eliminated
      x
    (if (eql (car vars) (car nvars))
        ;; It may be possible to simplify the QCONS function calls
        ;; here to HONS function calls.
        (qcons (q-reorder (car x) (cdr vars) (cdr nvars))
               (q-reorder (cdr x) (cdr vars) (cdr nvars)))
      (qcons (q-reorder (q-restrict-shrink x t (car nvars) vars)
                        (delete-hql (car nvars) vars)
                        (cdr nvars))
             (q-reorder (q-restrict-shrink x nil (car nvars) vars)
                        (delete-hql (car nvars) vars)
                        (cdr nvars))))))

(defun q-restrict-alist (x bindings vars)

  ;; See also Q-RESTRICT.

  ;; (Q-RESTRICT-ALIST x bindings vars) is somewhat similar to forming
  ;; (let bindings x) and simplifying the resulting expression.

  ;; Should this be re-written to use Q-ITE and obviate the need to
  ;; memoize this function?  Probably not.

  (declare (xargs :guard (eqlable-alistp bindings)))
  (if (atom x)
      x
    (if (atom vars)
        x
      (let ((pair (assoc (car vars) bindings)))
        (if pair
            (let ((x-below (q-restrict-alist
                            (if (cdr pair) (car x) (cdr x))
                            bindings (cdr vars))))
              (qcons x-below x-below))
          (qcons (q-restrict-alist (car x) bindings (cdr vars))
                 (q-restrict-alist (cdr x) bindings (cdr vars))))))))

(defun q-restrict-alist-list (x-lst bindings vars)
  (declare (xargs :guard (eqlable-alistp bindings)))
  (if (atom x-lst)
      nil
    (cons (q-restrict-alist (car x-lst) bindings vars)
          (q-restrict-alist-list (cdr x-lst) bindings vars))))


(defn q-reorder-down-one (x var vars)
  ;; This function "swaps" variable VAR with the variable just below
  ;; it in the variable order.
  (declare (xargs :guard (eqlablep var)))
  (if (atom x)
      x
    (if (atom vars)
        x
      (if (eql (car vars) var)
          ;; Perform the swap.
          (qcons (qcons (qcar (qcar x))
                        (qcar (qcdr x)))
                 (qcons (qcdr (qcar x))
                        (qcdr (qcdr x))))
        (hons (q-reorder-down-one (car x) var (cdr vars))
              (q-reorder-down-one (cdr x) var (cdr vars)))))))


#||

(defn find-best-position-helper (bdd var max-var)
  (loop for

(defn find-best-position (bdd var)
  (let ((max-var (max-depth bdd)))
    (if (< max-var var)
        bdd
      (find-best-position-helper bdd var max-var)

||#

(defn q-exists-shrink (x E-vars vars)

  ;; E-vars must be a subset of VARS and its variables must appear in
  ;; the same order as they do in VARS.  Q-EXISTS-SHRINK returns an
  ;; answer that has meaning with respect to the deletion of the
  ;; members of E-vars from VARS.

  (declare (xargs :guard (and (eqlable-listp E-vars)
                              (eqlable-listp vars))))
  (if (or (atom x)
          (atom E-vars))
      x
    (if (eql (car E-vars) (car vars))
        (q-or (q-exists-shrink (car x) (cdr E-vars) (cdr vars))
              (q-exists-shrink (cdr x) (cdr E-vars) (cdr vars)))
      (qcons (q-exists-shrink (car x) E-vars (cdr vars))
             (q-exists-shrink (cdr x) E-vars (cdr vars))))))

(defn q-exists (x E-vars vars)

  ;; E-vars must be a subset of VARS and its variables must appear in
  ;; the same order as they do in VARS.  Q-EXISTS returns an answer
  ;; that has meaning with respect to VARS.

  (declare (xargs :guard (and (eqlable-listp E-vars)
                              (eqlable-listp vars))))
  (if (or (atom x)
          (atom E-vars))
      x
    (if (eql (car E-vars) (car vars))
        (let ((below
               (q-or (q-exists (car x) (cdr E-vars) (cdr vars))
                     (q-exists (cdr x) (cdr E-vars) (cdr vars)))))
          (qcons below below))
      (qcons (q-exists (car x) E-vars (cdr vars))
             (q-exists (cdr x) E-vars (cdr vars))))))

(defn q-for-all-shrink (x E-vars vars)

  ;; E-vars must be a subset of VARS and its variables must appear in
  ;; the same order as they do in VARS.  Q-FOR-ALL-SHRINK returns an
  ;; answer that has meaning with respect to the deletion of the
  ;; members of E-vars from VARS.

  (declare (xargs :guard (and (eqlable-listp E-vars)
                              (eqlable-listp vars))))
  (if (or (atom x)
          (atom E-vars))
      x
    (if (eql (car E-vars) (car vars))
        (q-and (q-for-all-shrink (car x) (cdr E-vars) (cdr vars))
               (q-for-all-shrink (cdr x) (cdr E-vars) (cdr vars)))
      (qcons (q-for-all-shrink (car x) E-vars (cdr vars))
             (q-for-all-shrink (cdr x) E-vars (cdr vars))))))

(defn q-for-all (x E-vars vars)

  ;; E-vars must be a subset of VARS and its variables must appear in
  ;; the same order as they do in VARS.  Q-FOR-ALL returns an answer
  ;; that has meaning with respect to VARS.

  (declare (xargs :guard (and (eqlable-listp E-vars)
                              (eqlable-listp vars))))
  (if (or (atom x)
          (atom E-vars))
      x
    (if (eql (car E-vars) (car vars))
        (let ((below
               (q-and (q-for-all (car x) (cdr E-vars) (cdr vars))
                      (q-for-all (cdr x) (cdr E-vars) (cdr vars)))))
          (qcons below below))
      (qcons (q-for-all (car x) E-vars (cdr vars))
             (q-for-all (cdr x) E-vars (cdr vars))))))

(defn q-exists-one-var (x v vars)
  (declare (xargs :guard (and (eqlablep v)
                              (eqlable-listp vars))))
  (q-or (q-restrict x  t  v vars)
        (q-restrict x nil v vars)))

(defn q-for-all-one-var (x v vars)
  (declare (xargs :guard (and (eqlablep v)
                              (eqlable-listp vars))))
  (q-and (q-restrict x  t  v vars)
         (q-restrict x nil v vars)))

(defn q-exists-one-var-shrink (x v vars)
  (declare (xargs :guard (and (eqlablep v)
                              (eqlable-listp vars))))
  (q-or (q-restrict-shrink x  t  v vars)
        (q-restrict-shrink x nil v vars)))

(defn q-for-all-one-var-shrink (x v vars)
  (declare (xargs :guard (and (eqlablep v)
                              (eqlable-listp vars))))
  (q-and (q-restrict-shrink x  t  v vars)
         (q-restrict-shrink x nil v vars)))


; To ease the use of our ubdd system, we have defined some functions
; that let a user write expressions in a typical Lisp style.  Such
; expressions are then converted into IF-expressions, before they are
; converted into ubdds.

(defn good-to-if-p (x)
  ;; GOOD-TO-IF-P recognizes a well-formed IF-expression.
  (if (atom x)
      (eqlablep x)
    (let ((fn (car x))
          (args (cdr x)))
      (case fn
        (if (and (consp args)
                 (consp (cdr args))
                 (consp (cddr args))
                 (null (cdddr args))
                 (good-to-if-p (car args))
                 (good-to-if-p (cadr args))
                 (good-to-if-p (caddr args))))
        (otherwise nil)))))

(defn nmake-if (test true false)
  (declare (xargs :guard (and (good-to-if-p test)
                              (good-to-if-p true)
                              (good-to-if-p false))))
  (cond ((eq test t)
         true)
        ((eq test nil)
         false)
        ((and (consp test) (eq 'if (car test))
              (null (caddr test)) (eq t (cadddr test)))
         (nmake-if (cadr test) false true))
        (t (let* ((true (if (hqual test true) t true))
                  (true (if (and (consp true)
                                 (hqual test (cadr true)))
                            (caddr true)
                          true))
                  (false (if (hqual test false) nil false))
                  (false (if (and (consp false)
                                  (hqual test (cadr false)))
                             (cadddr false)
                           false)))
             (cond ((hqual true false) true)
                   ((and (eq true t) (eq false nil))
                    test)
                   (t (hist 'if test true false)))))))

(defn to-if-error-p (x)
  (and (consp x)
       (stringp (car x))))

(defthm good-to-if-nmake-if
  (implies (and (good-to-if-p x)
                (good-to-if-p y)
                (good-to-if-p z))
           (good-to-if-p (nmake-if x y z))))

(defthm eqlablep-of-nmake-if
  (implies (and (good-to-if-p x)
                (good-to-if-p y)
                (good-to-if-p z)
                (not (consp (nmake-if x y z))))
           (eqlablep (nmake-if x y z))))

(defthm consp-of-nmake-if
  (implies (and (good-to-if-p x)
                (good-to-if-p y)
                (good-to-if-p z)
                (not (eqlablep (nmake-if x y z))))
           (consp (nmake-if x y z))))

(in-theory (disable nmake-if))

(defn to-if-subst (new old term)
  ;; Substitute new for the atom, old, in term.  Note that if old is not an
  ;; atom then this function will return the given good-to-if-p term
  ;; unchanged.
  (declare (xargs :guard (good-to-if-p term)))
  (cond ((atom term)
         (cond ((eq term t) t)
               ((eq term nil) nil)
               ((eql term old) new)
               (t term)))
        (t (hist 'if
                 (to-if-subst new old (cadr term))
                 (to-if-subst new old (caddr term))
                 (to-if-subst new old (cadddr term))))))

(defthm good-to-if-p-to-if-subst
  (implies (and (good-to-if-p new)
                (good-to-if-p term))
           (good-to-if-p (to-if-subst new old term))))

(defthm atom-to-if-implies-eqlablep-to-if-subst
  (implies (and (not (consp (to-if-subst new old term)))
                (good-to-if-p new)
                (good-to-if-p term))
           (eqlablep (to-if-subst new old term))))

(defconst *and-synonyms*   '(and & *))
(defconst *or-synonyms*    '(or \| +))
(defconst *iff-synonyms*   '(iff eq eql equal eqv xnor =
                                 == equiv <-> <=>))
(defconst *if-synonyms*    '(if ite mux))
(defconst *not-synonyms*   '(not ~))
(defconst *xor-synonyms*   '(xor exor))
(defconst *nand-synonyms*  '(nand))
(defconst *nor-synonyms*   '(nor))
(defconst *andc1-synonyms* '(andc1))
(defconst *andc2-synonyms* '(andc2))
(defconst *orc1-synonyms*  '(orc1 implies -> =>))
(defconst *orc2-synonyms*  '(orc2))

(defn to-if (term)
  (declare (xargs :verify-guards nil))

;;; This legacy doc string was replaced Nov. 2014 by the corresponding
;;; auto-generated defxdoc form in the last part of this file.

; ":Doc-section Hons-and-Memoization

;  Recognizer for the TO-IF langauge ~/

;  (TO-IF x) is a recognizer for objects in the TO-IF language, which
;  may be used for writing Boolean expressions.  The TO-IF language is
;  a subset of the TO-IF2 language.

;  If X is in the TO-IF language, then (TO-IF x) returns an equivalent
;  member of the TO-IF language expressed in the limited vocabulary of
;  IF, T, NIL, and variables.  The result returned is not in any
;  particular normal form, but it is in the form expected by the
;  function QNORM1.

;  If X is not in the TO-IF language, then (TO-IF x) returns a CONS
;  whose CAR is a string that may help explain in what sense X is not
;  in the TO-IF language.

;  Though similar to the language of ACL2, the TO-IF language is NOT
;  the same as the ACL2 langauge or the TO-IF2 language, so watch out!

;  (TERM-EVAL (TO-IF term) vars vals) gives the meaning of (TO-IF
;  TERM) with respect to the binding of the variables in VARS to the
;  Booleans in VALS.

;  Informally, in the TO-IF language, T and NIL both are and denote
;  the Boolean constants.  All eqlable ACL2 atoms (i.e., symbols,
;  integers, rational, complex numbers, characters, but not strings)
;  are variables in the TO-IF language.  The variables denote Boolean
;  values, i.e., T and NIL.

;  Merely for emphasis: The integer 2 is a variable in the TO-IF
;  language, odd as that may seem at first.

;  Merelly for emphasis:  The string \"2\" is not a TO-IF variable.

;  (IF x y z) means what Y means if X means T and means what Z means
;  if X means NIL.

;  (TO-IF `(LET ,x ,y ,z)) is the result of simultaneously replacing
;  in (TO-IF z) all the occurrences of the variable x with
;  (TO-IF y).  Note that although in Lisp, one might write:
;  (let ((x y)) z), the TO-IF 'LET' takes exactly three arguments.

;  In a TO-IF expression one may also use the unary operator NOT and
;  the binary operators AND, OR, IFF, IMPLIES, XOR, NAND, NOR, ANDC1,
;  ORC1, and ORC2.

;  TO-IF does not handle quantifiers such as FORALL nor FORSOME, nor
;  does it permit operators to take a variable number of arguments.
;  For such features, see TO-IF2.

;  There are many synonyms for the many familar logical operators.
;  Invoke (SAT-HELP) to see them all.  There is no facility
;  for a user to extend these synonyms.
;   ~/~/"

  (cond ((atom term)
         (cond ((eqlablep term) term)
               (t (hist "Illegal argument to to-if ~a." term))))
        ;; Zero Arguments
        ((to-if-error-p term) term)
        ((not (eqlablep (car term)))
         (hist "Illegal argument to to-if ~a." term))
        ((atom (cdr term))
         (cond ((not (null (cdr term)))
                (hist "Illegal argument to to-if ~a." term))
               ((member (car term) *and-synonyms*) t)
               ((member (car term) *or-synonyms*) nil)
               (t (hist "Illegal argument to to-if ~a." term))))
        ;; One Argument
        ((atom (cddr term))
         (cond ((not (null (cddr term)))
                (hist "Illegal argument to to-if ~a." term))
               (t (let ((arg1 (to-if (cadr term))))
                    (cond ((to-if-error-p arg1)
                           (hist "Illegal argument to to-if ~a."
                                 term))
                          ((member (car term) *not-synonyms*)
                           (nmake-if arg1 nil t))
                          ((or (member (car term) *and-synonyms*)
                               (member (car term) *or-synonyms*))
                           arg1)
                          (t (hist "Illegal arg to to-if ~a."
                                   term)))))))
        ;; Two Arguments
        ((atom (cdddr term))
         (cond ((not (null (cdddr term)))
                (hist "Illegal argument to to-if ~a." term))
               (t (let ((arg1 (to-if (cadr term)))
                        (arg2 (to-if (caddr term))))
                    (cond ((to-if-error-p arg1) arg1)
                          ((to-if-error-p arg2) arg2)
                          ((member (car term) *and-synonyms*)
                           (nmake-if arg1 arg2 nil))
                          ((member (car term) *or-synonyms*)
                           (nmake-if arg1 t arg2))
                          ((member (car term) *iff-synonyms*)
                           (nmake-if arg1 arg2 (nmake-if arg2 nil t)))
                          ((member (car term) *orc1-synonyms*)
                           (nmake-if arg1 arg2 t))
                          ((member (car term) *orc2-synonyms*)
                           (nmake-if arg1 (nmake-if arg2 nil t) t))
                          ((member (car term) *andc1-synonyms*)
                           (nmake-if arg2 (nmake-if arg1 nil t) nil))
                          ((member (car term) *andc2-synonyms*)
                           (nmake-if arg1 (nmake-if arg2 nil t) nil))
                          ((member (car term) *xor-synonyms*)
                           (nmake-if arg1 (nmake-if arg2 nil t) arg2))
                          ((member (car term) *nand-synonyms*)
                           (nmake-if arg1 (nmake-if arg2 nil t) t))
                          ((member (car term) *nor-synonyms*)
                           (nmake-if arg1 nil (nmake-if arg2 nil t)))
                          (t (hist "Illegal arg to to-if ~a."
                                   term)))))))
        ;; LET Expression
        ((and (null (cddddr term)) (eq (car term) 'let))
         (let ((var (cadr term))
               (val (caddr term))
               (body (cadddr term)))
           (cond ((or (not (symbolp var))
                      (eq var t)
                      (eq var nil))
                  (hist "Bad bound variable ~a." var))
                 (t (let ((valt (to-if val))
                          (bodyt (to-if body)))
                      (cond ((to-if-error-p valt) valt)
                            ((to-if-error-p bodyt) bodyt)
                            (t (to-if-subst valt var bodyt))))))))
        ;; IF Expression
        ((and (null (cddddr term)) (member (car term) *if-synonyms*))
         (let ((arg1 (to-if (cadr term)))
               (arg2 (to-if (caddr term)))
               (arg3 (to-if (cadddr term))))
           (cond ((to-if-error-p arg1) arg1)
                 ((to-if-error-p arg2) arg2)
                 ((to-if-error-p arg3) arg3)
                 (t (nmake-if arg1 arg2 arg3)))))
        (t (hist "Illegal argument to to-if ~a." term))))

(defthm good-to-if-p-to-if
  (implies (not (to-if-error-p (to-if term)))
           (good-to-if-p (to-if term))))

(verify-guards to-if)

(defn eql-var-lessp (v1 v2)
  (declare (xargs :guard (and (eqlablep v1)
                              (eqlablep v2))))
  (cond ((characterp v1)
         (if (characterp v2)
             (< (char-code v1)
                (char-code v2))
           t))
        ((symbolp v1)
         (if (characterp v2)
             nil
           (if (symbolp v2)
               (symbol-< v1 v2)
             t)))
        (t (if (acl2-numberp v2)
               (if (< (imagpart v1) (imagpart v2))
                   t
                   (if (eql (imagpart v1) (imagpart v2))
                       (< (realpart v1) (realpart v2))
                       nil))
             nil))))

(in-theory (disable eql-var-lessp))

(defn var-lessp (v1 v2 var-order)
  (declare (xargs :guard (and (eqlablep v1)
                              (eqlablep v2)
                              (eqlable-listp var-order))))
  (let ((l1 (member v1 var-order))
        (l2 (member v2 var-order)))
    (if l1
        (if l2
            (and (not (eql v1 v2))
                 (member v2 l1))
          t)
      (if l2
          nil
        (eql-var-lessp v1 v2)))))

(in-theory (disable var-lessp))

(defn nmerge (l1 l2 var-order)
  (declare (xargs :guard (and (eqlable-listp l1)
                              (eqlable-listp l2)
                              (eqlable-listp var-order))
                  :measure (+ (acl2-count l1)
                              (acl2-count l2))))
  (cond ((atom l1) l2)
        ((atom l2) l1)
        ((eql (car l1) (car l2))
         (hons (car l1) (nmerge (cdr l1) (cdr l2) var-order)))
        ((var-lessp (car l1) (car l2) var-order)
         (hons (car l1)
               (nmerge (cdr l1) l2 var-order)))
        (t (hons (car l2)
                 (nmerge l1 (cdr l2) var-order)))))

(defthm eqlable-listp-nmerge
  (implies (and (eqlable-listp l1)
                (eqlable-listp l2)
                (eqlable-listp var-order))
           (eqlable-listp (nmerge l1 l2 var-order))))

(defn vars-help (term var-order)
  (declare (xargs :guard (and (good-to-if-p term)
                              (eqlable-listp var-order))
                  :verify-guards nil))
  (cond ((atom term)
         (cond ((or (eq term t) (eq term nil)) nil)
               (t (hist term))))
        (t (nmerge (vars-help (cadr term) var-order)
                   (nmerge (vars-help (caddr term) var-order)
                           (vars-help (cadddr term) var-order)
                           var-order)
                   var-order))))

(defthm eqlable-listp-vars-help
  (implies (and (good-to-if-p term)
                (eqlable-listp var-order))
           (eqlable-listp (vars-help term var-order))))

(verify-guards vars-help)
(in-theory (disable vars-help))

; VARS was defined to allow the use of CONS for intermediate partially
; sorted lists of symbols, and here we finally then make the list
; unique.

(defn vars (term var-order)
  (declare (xargs :guard (and (good-to-if-p term)
                              (eqlable-listp var-order))))
  (hons-copy (vars-help term var-order)))

(defthm eqlable-listp-vars
  (implies (and (good-to-if-p term)
                (eqlable-listp var-order))
           (eqlable-listp (vars term var-order))))


(defn qnorm1-guard (x)
  ;; Recognizes acceptable terms for QNORM.
  (if (atom x)
      (eqlablep x)
    (let ((fn (car x))
          (args (cdr x)))
      (case fn
        (if (and (consp args)
                 (consp (cdr args))
                 (consp (cddr args))
                 (null (cdddr args))
                 (qnorm1-guard (car args))
                 (qnorm1-guard (cadr args))
                 (qnorm1-guard (caddr args))))
        (quote (and (consp args)
                    (normp (car args))
                    (null (cdr args))))
        (otherwise nil)))))

(defn qnorm1 (term vars)

;;; This legacy doc string was replaced Nov. 2014 by the corresponding
;;; auto-generated defxdoc form in the last part of this file.

; ":Doc-section Hons-and-Memoization

;  Creates ubdds.   ~/

;  (QNORM1 term vars) returns the unique ubdd for TERM, an
;  IF-expression, with respect to the variable ordering VARS. ~/~/"

  (declare (xargs :measure (acl2-count term)
                  :guard (and (qnorm1-guard term)
                              (eqlable-listp vars))))
  (cond ((eq term t) t)
        ((eq term nil) nil)
        ((atom term) (var-to-tree term vars))
        ((eq (car term) 'if)
         (let ((test (qnorm1 (cadr term) vars)))
           (cond ((eq test t)
                  (qnorm1 (caddr term) vars))
                 ((eq test nil)
                  (qnorm1 (cadddr term) vars))
                 (t (q-ite
                     test
                     (qnorm1 (caddr term) vars)
                     (qnorm1 (cadddr term) vars))))))
        ((eq (car term) 'quote) (cadr term))
        (t (list "Bad arg to qnorm1 ~a." term))))

(defn qnorm1-guard-list (l)
  (if (atom l)
      t
    (and (qnorm1-guard (car l))
         (qnorm1-guard-list (cdr l)))))

(defn qnorm1-list (l vars)
  (declare (xargs :guard (and (qnorm1-guard-list l)
                              (eqlable-listp vars))))
  (if (atom l)
      nil
    (cons (qnorm1 (car l) vars)
          (qnorm1-list (cdr l) vars))))


(defthm good-to-if-p-implies-qnorm1-guard
  (implies (good-to-if-p term)
           (qnorm1-guard term)))

(defn qnorm (term)

;;; This legacy doc string was replaced Nov. 2014 by the corresponding
;;; auto-generated defxdoc form in the last part of this file.

; ":Doc-section Hons-and-Memoization

;  Creates ubdds.   ~/

; (QNORM term) returns the unique ubdd for TERM, an expression in
; the TO-IF language, with respect to the variable ordering returned
; by (VARS (TO-IF TERM) NIL).

; If TERM is a tautology, then QNORM returns T.  If term is
; a contradiction, then QNORM returns NIL.  If term is satisfiable,
; then QNORM returns a CONSP ubdd.~/~/"

  (let ((term (to-if term)))
    (cond ((to-if-error-p term) term)
          (t (qnorm1 term (vars term nil))))))

(defn qnorm-list (l vars)
  (declare (xargs :guard (eqlable-listp vars)))
  (cond ((atom l) nil)
        (t (let* ((term (to-if (car l)))
                  (term (if (to-if-error-p term)
                            term
                          (qnorm1 term vars))))
           (hons term
                 (qnorm-list (cdr l) vars))))))

(defn qtaut (term)
  (let ((x (to-if term)))
    (cond ((to-if-error-p x) x)
          (t (let ((vars (vars x nil)))
               (eq 't
                   (qnorm1 x vars)))))))

(defn qsublis (alist term)
  (declare (xargs :guard (and (good-to-if-p term)
                              (eqlable-alistp alist))))
  (cond ((atom term)
         (let ((ans (assoc term alist)))
           (if ans (cdr ans) term)))
        (t (hist 'if
                 (qsublis alist (cadr term))
                 (qsublis alist (caddr term))
                 (qsublis alist (cadddr term))))))

(defn t-nil-tree (x)
  (if (atom x)
      (or (eq x t) (eq x nil))
    (and (t-nil-tree (car x))
         (t-nil-tree (cdr x)))))

(defn q-to-if (term vars)
  (declare (xargs :guard (and (t-nil-tree term)
                              (eqlable-listp vars))))
  (if (atom term)
      term
    (let ((l (q-to-if (car term) (cdr vars)))
          (r (q-to-if (cdr term) (cdr vars))))
      (nmake-if (car vars) l r))))

(defthm good-to-if-p-is-q-to-if
  (implies (and (t-nil-tree term)
                (eqlable-listp vars))
           (good-to-if-p (q-to-if term vars))))

(defn re-order (term oldvars newvars)
  (declare (xargs :guard (and (t-nil-tree term)
                              (eqlable-listp oldvars)
                              (eqlable-listp newvars))))
  (qnorm1 (q-to-if term oldvars) newvars))


; A small set of tests to check our (normalizer-based) tautology
; checker.

(defn common-tautologies ()

  "(COMMON-TAUTOLOGIES) is a list of terms in the TO-IF language each
  of which is a propositional truth, i.e., is a tautology, i.e., has
  value T under all bindings of its variables."

  '((iff a a)
    (implies (and a b) a)
    (implies a (or a b))
    (iff (implies a (implies b c))
         (implies (and a b) c))
    (iff (implies a b) (or (not a) b))
    (iff (iff a b) (and (implies a b) (implies b a)))
    (iff (iff a b) (or (and a b) (and (not a) (not b))))
    (iff (implies a b) (implies (not b) (not a)))
    (iff (not a) (implies a nil))
    (iff (and a t) a)
    (iff (and a nil) nil)
    (iff (not t) nil)
    (iff (not nil) t)
    (iff (or a t) t)
    (iff (or a nil) a)
    (iff (iff a t) a)
    (iff (iff a nil) (not a))
    (iff (and a b) (and b a))
    (iff (or a b) (or b a))
    (iff (or a a) a)
    (iff (not (not a)) a)
    (iff (and a a) a)
    (iff (iff a a) t)
    (iff (xor a a) nil)
    (iff (iff a b) (iff b a))
    (iff (iff a (iff b c)) (iff (iff a b) c))
    (iff (and (or p (or q r))
              (or (not p) q))
         (and (or q r)
              (or (not p) q)))
    (implies (implies (not c) c) c)
    (iff (or a (or b c)) (or (or a b) c))
    (iff (and a (and b c)) (and (and a b) c))
    (iff (and a (or b c)) (or (and a b) (and a c)))
    (iff (or a (and b c)) (and (or a b) (or a c)))
    (iff (not (and a b)) (or (not a) (not b)))
    (iff (not (or a b)) (and (not a) (not b)))
    (iff (xor a b) (not (iff a b)))
    (iff (nor a b) (not (or a b)))
    (iff (nand a b) (not (and a b)))
    (iff (or a (iff b c)) (iff (or a b) (or a c)))
    (iff (and a (xor b c)) (xor (and a b) (and a c)))
    (iff (xor a (xor b c)) (xor (xor a b) c))
    (iff (if a b c) (and (implies a b) (implies (not a) c)))
    (iff (if t b c) b)
    (iff (if nil b c) c)
    (iff (if a b nil) (and a b))
    (iff (if a t b) (or a b))
    (iff (if a b b) b)
    (iff (if a a nil) a)
    (iff (if c b a) (if a (if b t (if c nil t)) (if b c nil)))
    (iff (if b2 a b1) (if a (if b1 t b2) (if b1 (if b2 nil t) nil)))
    (iff (if b1 a b2) (if a (if b1 t b2) (if b1 nil b2)))
    (iff (xor
          k
          (xor
           j
           (xor
            i
            (xor
             h
             (xor g (xor e (xor d (xor c (xor b a)))))))))
         (xor a (xor b (xor
                        c
                        (xor
                         d
                         (xor
                          e
                          (xor g (xor h (xor i (xor j k))))))))))))

(defn common-non-tautologies ()

  "(COMMON-NON-TAUTOLOGIES) is a short list of terms in the TO-IF
  language, each of which is a NOT a tautology."

  '(a
    (xor a b)
    (iff a b)
    (not a)
    (implies a b)
    (implies (or a b) (and a b))
    (iff (implies a b) (implies b a))
    (iff (implies a (implies b c)) (implies (implies a b) c))
    (iff (iff a (or b c)) (or (iff a b) (iff a c)))
    (iff (xor a (and b c)) (and (xor a b) (xor a c)))))

(defn check-q-true (l)
  (if (atom l)
      t
    (let ((term (to-if (car l))))
      (if (to-if-error-p term)
          nil
        (and (eq t (qnorm1 term (vars term nil)))
             (check-q-true (cdr l)))))))

(defn check-q-not-true (l)
  (if (atom l)
      t
    (let ((term (to-if (car l))))
      (if (to-if-error-p term)
          nil
        (and (not (eq t (qnorm1 term (vars term nil))))
             (check-q-not-true (cdr l)))))))

; We disable the executable counterparts so this theorem is checked
; each time this file is loaded.

(in-theory (disable (:executable-counterpart common-tautologies)
                    (:executable-counterpart common-non-tautologies)))

(in-theory (disable common-tautologies common-non-tautologies))

(defn check-q ()
  (and (check-q-true (common-tautologies))
       (check-q-not-true (common-non-tautologies))))

; As a way to i

(defn set-bdd (bdd loc v)
  (cond
   ((atom loc) v)
   ((car loc) (qcons (set-bdd (qcar bdd) (cdr loc) v) (qcdr bdd)))
   (t (qcons (qcar bdd) (set-bdd (qcdr bdd) (cdr loc) v)))))

(defn set-bdd-list (bdds loc vs)
  (if (or (atom vs) (atom bdds))
      nil
    (hons (set-bdd      (car bdds) loc (car vs))
          (set-bdd-list (cdr bdds) loc (cdr vs)))))

(defn set-bdd-pair-list (bdd-pairs loc vs)
  (if (or (atom vs)
          (atom bdd-pairs)
          (atom (car vs))
          (atom (car bdd-pairs)))
      nil
    (hons (hons (set-bdd (caar bdd-pairs) loc (caar vs))
                (set-bdd (cdar bdd-pairs) loc (cdar vs)))
          (set-bdd-pair-list (cdr bdd-pairs) loc (cdr vs)))))

(defconst *2t* t)

(defconst *2f* nil)

(defconst *4x* (hons t t))

(defconst *4u* (hons nil nil))

(defconst *4t* (hons t nil))

(defconst *4f* (hons nil t))

(defn to (x)
  (cond ((or (null x) (eq x 'f))         *4f*)
        ((eq x t)                        *4t*)
        ((or (eq x 'floating) (eq x 'u)) *4u*)
        (t                               *4x*)))

(defn to-list (l)
  (if (atom l) nil
    (cons (to (car l)) (to-list (cdr l)))))

(defn b-fix-eval-bdd (x values)
  (if (eval-bdd x values) t nil))

(defn qv-ite (c a b)
  (if (or (atom a) (atom b))
      nil
    (cons (q-ite c (car a) (car b))
          (qv-ite c (cdr a) (cdr b)))))

(defthm true-listp-qv-ite-if
  (true-listp (qv-ite c a b)))


;!!!  I want to everywhere change Q-IFF-LIST to Q-PAND-IFF-LIST.

(defn q-iff-list (x y)
  (if (or (atom x) (atom y))
      t
    (q-and-ite (q-iff-ite (car x) (car y))
               (q-iff-list (cdr x) (cdr y)))))

(defn or-c2 (x y) (or x (not y)))

(defn and-c1 (x y) (and (not x) y))

(defn and-c2 (x y) (and x (not y)))


; Finds a satisfying assignment for an ubdd.

(defn q-sat (x)
  (if (atom x)
      nil
    (if (eq (cdr x) nil)
        (cons t (q-sat (car x)))
      (cons nil (q-sat (cdr x))))))

; Given a list of ubdds, finds an assignment that satisfies at least
; one of them.

(defn q-sat-any (a)
  (if (atom a)
      nil
    (if (eq (car a) nil)
        (q-sat-any (cdr a))
      (q-sat (car a)))))

; Finds an assignment of ubdd variables which makes the two given ubdd
; vectors unequal.

; (defn find-ctrexample (a b)
;   (let ((xorlst (q-bv-xor a b)))
;    (q-sat-any xorlst)))

(defn q-and-is-nil (x y)
  (cond ((eq x t) (eq y nil))
        ((atom x) t)
        ((eq y t) nil)
        ((atom y) t)
        (t (and (q-and-is-nil (qcar x) (qcar y))
                (q-and-is-nil (qcdr x) (qcdr y))))))

(defn q-and-is-nilc2 (x y)
  (cond ((eq x t) (eq y t))
        ((atom x) t)
        ((eq y t) t)
        ((atom y) nil)
        (t (and (q-and-is-nilc2 (qcar x) (qcar y))
                (q-and-is-nilc2 (qcdr x) (qcdr y))))))

(defn q-not-is-atomic (x)
; returns T, NIL, or NOT-ATOMIC
  (if (atom x)
      (not x)
    'not-atomic))

(defabbrev atom-fix (y)
  (if (atom y) y 'not-atomic))

(defn q-ite-is-atomic (x y z)
  ; returns T, NIL, or NOT-ATOMIC
  (cond
   ((null x) (atom-fix z))
   ((atom x) (atom-fix y))
   (t (let ((y (if (hqual x y) t y))
            (z (if (hqual x z) nil z)))
        (cond ((hqual y z) (atom-fix y))
              ((and (eq y t) (eq z nil)) (atom-fix x))
              ((and (eq y nil) (eq z t)) (q-not-is-atomic x))
              (t (let ((a (q-ite-is-atomic
                           (car x) (qcar y) (qcar z)))
                       (d (q-ite-is-atomic
                           (cdr x) (qcdr y) (qcdr z))))
                   (cond ((or (eq a 'not-atomic)
                              (eq d 'not-atomic))
                          'not-atomic)
                         ((equal a d) a)
                         (t 'not-atomic)))))))))


;; ---------------- end of previous qi.lisp

#+hons
(memoize 'q-ite :condition '(and (consp x) (or (consp y) (consp z))))
#+hons
(memoize 'qnorm1)
#+hons
(memoize 'qvar-n)

(defn lfoo (x) (if (atom x) 0 (+ 1 (lfoo (cdr x)))))

#+hons
(memoize 'lfoo)

(defthm l-thm (equal (lfoo (hons-copy '(a b c))) 3))

(defthm l-thm2 (equal (lfoo (hons-copy '(a b c))) 3))

(defthm quick-sanity-check (check-q))

; The defxdoc forms below were initially generated automatically from
; legacy documentation strings in this file.

(include-book "xdoc/top" :dir :system)

(defxdoc normp
  :parents (hons-and-memoization)
  :short "Recognizer of ubdds."
  :long "<p>
 (NORMP x) returns T or NIL according to whether X is a well-formed ubdd, i.e.,
 a rooted, binary tree, in T and NIL, with no node equal to '(T . T) or '(NIL
 . NIL).</p>

 ")

(defxdoc q-ite
  :parents (hons-and-memoization)
  :short "If-then-else for ubdds."
  :long "<p>
 (Q-ITE x y z) expects three ubdds, which are to be interpreted at the same
 level.  Informally speaking. Q-ITE returns a single ubdd, also at the same
 level, that is 'equivalent' to (IF x y z).  The two theorems Q-ITE-CORRECT and
 NORMP-Q-ITE express formally what Q-ITE returns.</p>

 ")

(defxdoc qnorm
  :parents (hons-and-memoization)
  :short "Creates ubdds."
  :long "<p>
 (QNORM term) returns the unique ubdd for TERM, an expression in the TO-IF
   language, with respect to the variable ordering returned by (VARS (TO-IF
   TERM) NIL).</p>

 <p>If TERM is a tautology, then QNORM returns T.  If term is a contradiction,
   then QNORM returns NIL.  If term is satisfiable, then QNORM returns a CONSP
   ubdd.</p>

 ")

(defxdoc qnorm1
  :parents (hons-and-memoization)
  :short "Creates ubdds."
  :long "<p>
 (QNORM1 term vars) returns the unique ubdd for TERM, an IF-expression, with
 respect to the variable ordering VARS.</p>

 ")

(defxdoc to-if
  :parents (hons-and-memoization)
  :short "Recognizer for the TO-IF langauge"
  :long "<p>
 (TO-IF x) is a recognizer for objects in the TO-IF language, which may be used
 for writing Boolean expressions.  The TO-IF language is a subset of the TO-IF2
 language.</p>

 <p>If X is in the TO-IF language, then (TO-IF x) returns an equivalent member
 of the TO-IF language expressed in the limited vocabulary of IF, T, NIL, and
 variables.  The result returned is not in any particular normal form, but it
 is in the form expected by the function QNORM1.</p>

 <p>If X is not in the TO-IF language, then (TO-IF x) returns a CONS whose CAR
 is a string that may help explain in what sense X is not in the TO-IF
 language.</p>

 <p>Though similar to the language of ACL2, the TO-IF language is NOT the same
 as the ACL2 langauge or the TO-IF2 language, so watch out!</p>

 <p>(TERM-EVAL (TO-IF term) vars vals) gives the meaning of (TO-IF TERM) with
 respect to the binding of the variables in VARS to the Booleans in VALS.</p>

 <p>Informally, in the TO-IF language, T and NIL both are and denote the
 Boolean constants.  All eqlable ACL2 atoms (i.e., symbols, integers, rational,
 complex numbers, characters, but not strings) are variables in the TO-IF
 language.  The variables denote Boolean values, i.e., T and NIL.</p>

 <p>Merely for emphasis: The integer 2 is a variable in the TO-IF language, odd
 as that may seem at first.</p>

 <p>Merelly for emphasis: The string \"2\" is not a TO-IF variable.</p>

 <p>(IF x y z) means what Y means if X means T and means what Z means if X
 means NIL.</p>

 <p>(TO-IF `(LET ,x ,y ,z)) is the result of simultaneously replacing in (TO-IF
 z) all the occurrences of the variable x with (TO-IF y).  Note that although
 in Lisp, one might write: (let ((x y)) z), the TO-IF 'LET' takes exactly three
 arguments.</p>

 <p>In a TO-IF expression one may also use the unary operator NOT and the
 binary operators AND, OR, IFF, IMPLIES, XOR, NAND, NOR, ANDC1, ORC1, and
 ORC2.</p>

 <p>TO-IF does not handle quantifiers such as FORALL nor FORSOME, nor does it
 permit operators to take a variable number of arguments.  For such features,
 see TO-IF2.</p>

 <p>There are many synonyms for the many familar logical operators.  Invoke
 (SAT-HELP) to see them all.  There is no facility for a user to extend these
 synonyms.</p>

 ")