/usr/share/acl2-8.0dfsg/books/misc/int-division.lisp is in acl2-books-source 8.0dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 | ; Book int-division
; Contributed by Matyas Sustik
; Date created 2000-05-05
; $Id: int-division.lisp,v 1.16 2001/09/05 19:14:10 matyas Exp $
;
; Special thanks to Robert Bellarmine Krug and Matt Kaufmann for
; their insight and help in simplifying the proofs.
;
; Matt K. pointed out numerous unnecesarry hypotheses, wrongly formed
; rewrite rules which prevented them from being used, helped to use
; rewrite rules where I originally used forward-chaining ones.
(in-package "ACL2")
(include-book "arithmetic/equalities" :dir :system)
(include-book "arithmetic/inequalities" :dir :system)
(defun integer-quotient (a b)
(if (and (integerp a)
(integerp b))
(if (equal 0 a)
(if (equal 0 b)
1
nil)
(if (integerp (/ b a))
(/ b a)
nil))
nil))
(defthm integer-quotient-type
(or (integerp (integer-quotient a b))
(equal (integer-quotient a b) nil))
:rule-classes :type-prescription)
; Should be a rewrite rule?!
(defthm integer-quotient-arg-1-type
(implies (integerp (integer-quotient a b))
(equal (integerp a) t))
:rule-classes :type-prescription)
(defthm integer-quotient-arg-2-type
(implies (integerp (integer-quotient a b))
(equal (integerp b) t))
:rule-classes :type-prescription)
(defthm integer-quotient-spec-0-0
(equal (integer-quotient 0 0) 1))
(defthm integer-quotient-spec-a-0
(implies (and (integerp a)
(case-split (not (equal 0 a))))
(equal (integer-quotient a 0) 0)))
; Is this ever used??
(defthm integer-quotient-spec-0-b
(implies (integerp (integer-quotient 0 b))
(equal 0 b))
:rule-classes :forward-chaining)
(defthm integer-quotient-spec-a-a
(equal (integer-quotient a a)
(if (integerp a)
1
nil)))
(local
(defthm inequality-lemma-1
(implies (and (integerp a)
(< 0 a)
(not (equal 1 a)))
(<= 2 a))
:rule-classes :forward-chaining)) ; no maximal terms
(local
(defthm inequality-lemma-2
(implies (and (integerp a)
(< a 0)
(not (equal -1 a)))
(<= a -2))
:rule-classes :forward-chaining))
(local
(defthm inequality-lemma-3
(implies (and (integerp (/ a))
(integerp a)
(case-split (not (equal 0 a))))
(or (equal 1 a)
(equal -1 a)))
:rule-classes :forward-chaining
:hints (("Goal"
; Matt K. mod, April 2016: The addition of a type-set bit for the set {1}
; caused this proof to fail. Investigation revealed that a literal was being
; rewritten to nil instead of t because the type-alist (from type-alist-clause)
; was now sufficiently strong to deduce that (/ A) = 1. That didn't seem to me
; to indicate a need to modify heuristics, so when I found that commenting out
; the first two lemma instances below restored the proof, I decided simply to
; do that and move on.
:use (;inequality-lemma-1
;inequality-lemma-2
(:instance inequality-lemma-1 (a (/ a)))
(:instance inequality-lemma-2 (a (/ a))))))))
(defthm integer-quotient-spec-a-1
(implies (and (integerp (integer-quotient a 1)))
(or (equal 1 a)
(equal -1 a)))
:rule-classes :forward-chaining)
(defthm integer-quotient-spec-1-b
(equal (integer-quotient 1 b)
(if (integerp b)
b
nil)))
(defthm integer-quotient-commutes-with-+
(implies (and (integerp (integer-quotient a b))
(integerp (integer-quotient a c))
(case-split (not (equal 0 a))))
(equal (integer-quotient a (+ b c))
(+ (integer-quotient a b)
(integer-quotient a c)))))
(defthm integer-quotient-commutes-with-unary-minus-1
(equal (integer-quotient a (- a))
(if (integerp a)
(if (equal 0 a)
1
(- 1))
nil)))
(defthm integer-quotient-commutes-with-unary-minus-2
(equal (integer-quotient (- a) a)
(if (integerp a)
(if (equal 0 a)
1
(- 1))
nil)))
(local
(defun ind-int-abs (n)
(if (integerp n)
(if (equal 0 n)
t
(if (< 0 n)
(ind-int-abs (+ -1 n))
(ind-int-abs (+ +1 n))))
t)))
;; Is this used??
(defthm integer-quotient-commutes-with-*
(implies (and (integerp (integer-quotient a b))
(case-split (not (equal 0 b)))
(integerp c))
(equal (integer-quotient a (* b c))
(* (integer-quotient a b) c)))
:hints (("Goal" :induct (ind-int-abs c))))
(in-theory (disable integer-quotient-commutes-with-*))
(defthm integer-quotient-commutes-with-*-alt
(equal (integer-quotient a (* b c))
(if (and (integerp (integer-quotient a b))
(case-split (not (equal 0 b)))
(integerp c))
(* (integer-quotient a b) c)
(integer-quotient a (* b c))))
:hints (("Goal" :induct (ind-int-abs c))))
; Is this used??
(defthm integer-quotient-*-cancellation
(implies (and (integerp a)
(case-split (not (equal 0 a)))
(integerp q))
(equal (integer-quotient a (* a q)) q)))
(local
(defthm crap001
(implies (and (integerp a)
(integerp b)
(integerp c)
(not (equal 0 a))
(not (equal 0 b)))
(equal (* (/ b a) (/ c b))
(/ c a)))
:rule-classes nil))
(local
(defthm crap002
(implies (and (integerp a)
(integerp b))
(integerp (* a b)))
:rule-classes :type-prescription))
; Care must be taken when formulating the next lemma. In order for
; ACL2 to use it automatically the first term should include the free
; variable b. Furthermore the conclusion must have exactly (* (/ a)
; c)) and not (* c (/ a)) or (/ c a). Note that when storing a rule
; ACL2 does not normalize the terms, therefore to have successful
; match the user has to do the work.
(defthm crap003
(implies (and (integerp (* (/ a) b))
(integerp a)
(integerp b)
(integerp c)
(not (equal 0 a))
(not (equal 0 b))
(integerp (/ c b)))
(integerp (* (/ a) c)))
:hints (("Goal"
:use (crap001
(:instance crap002
(a (/ b a))
(b (/ c b)))))))
(defthm integer-quotient-factorization
(implies (and (integerp a)
(integerp b)
(integerp c)
(case-split (not (equal 0 a)))
(case-split (not (equal 0 b)))
(integerp (integer-quotient a b))
(integerp (integer-quotient b c)))
(equal (* (integer-quotient a b) (integer-quotient b c))
(integer-quotient a c))))
(defun divides (a b)
(and (integerp a)
(integerp b)
(equal b (* a (integer-quotient a b)))))
; The type of divides is deduced automatically.
(defthm divides-integer-quotient-equivalence
(equal (divides a b)
(and (integerp a)
(integerp b)
(integerp (integer-quotient a b))
(equal b (* a (integer-quotient a b))))))
(in-theory (disable divides))
(defthm divides-spec-0-0
(divides 0 0))
(defthm divides-spec-a-0
(implies (integerp a)
(divides a 0)))
(defthm divides-spec-0-b
(implies (divides 0 b)
(equal 0 b))
:rule-classes :forward-chaining)
(defthm divides-spec-a-1
(implies (divides a 1)
(or (equal 1 a)
(equal -1 a)))
:rule-classes :forward-chaining)
(defthm divides-spec-1-b
(implies (integerp b)
(divides 1 b)))
(defthm divide-sum
(implies (and (divides d a)
(divides d b))
(divides d (+ a b))))
; Is this needed?
(defthm divide-factor
(implies (and (equal b (* a q))
(integerp a)
(integerp q))
(divides a b)))
; Is this used??
(defthm divides-reflexivity
(implies (integerp a)
(divides a a)))
(defthm divide-product
(implies (and (integerp b)
(divides d a))
(divides d (* a b)))
:hints (("Goal"
:use ((:Instance crap002
(a (* a (/ d))))))))
(defthm divide-factorization
(implies (divides a b)
(equal (* a (integer-quotient a b))
b)))
(in-theory (disable divide-factorization))
(local
(defthm inequality-lemma-4
(implies (and (integerp a)
(< 0 a)
(integerp q)
(< 0 q))
(<= a (* a q)))
:rule-classes :forward-chaining))
(in-theory (disable integer-quotient))
(defthm divider-<
(implies (and (divides a b)
(integerp a)
(<= 0 a)
(integerp b)
(< 0 b))
(<= a b))
:rule-classes :forward-chaining
:hints (("Goal"
:use ((:instance inequality-lemma-4
(q (integer-quotient a b)))))))
(in-theory (enable integer-quotient))
(defthm divide-transitivity
(implies (and (divides a b)
(divides b c))
(divides a c))
:hints (("Goal"
:in-theory (enable integer-quotient)
:use crap003)))
(defthm equality-from-division
(implies (and (divides a b)
(divides b a)
(integerp a)
(< 0 a)
(integerp b)
(< 0 b))
(equal a b))
:rule-classes :forward-chaining
:hints (("Goal"
:in-theory (disable divider-<)
:use (divider-<
(:instance divider-<
(a b)
(b a))))))
(defthm divide-linear-combination
(implies (and (integerp x)
(integerp y))
(implies (and (divides d a)
(divides d b))
(divides d (+ (* a x) (* b y))))))
(in-theory (disable divides))
(in-theory (disable integer-quotient))
|