/usr/share/acl2-8.0dfsg/books/misc/meta-lemmas.lisp is in acl2-books-source 8.0dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 | ; meta-lemmas.lisp -- meta-lemmas for NTH and MEMBER
; Copyright (C) 1997 Computational Logic, Inc.
; License: A 3-clause BSD license. See the LICENSE file distributed with ACL2.
;;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
;;;
;;; "meta-lemmas.lisp"
;;;
;;; This book defines a useful set of meta lemmas. This book includes the
;;; meta functions, and the DEFEVALUATOR forms and lemmas. This book
;;; requires only the Acl2 initialization theory for its certification.
;;;
;;; Special thanks to Matt Kaufmann of CLInc for getting this one started.
;;;
;;; Bishop Brock
;;; Computational Logic, Inc.
;;; 1717 West Sixth Street, Suite 290
;;; Austin, Texas 78703
;;; (512) 322-9951
;;; brock@cli.com
;;;
;;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(in-package "ACL2")
(include-book "xdoc/top" :dir :system)
;;;****************************************************************************
;;;
;;; Introduction
;;;
;;;****************************************************************************
(defxdoc meta-lemmas
:short "A book of general purpose @(see meta) lemmas."
:long "<p>Note that it may be a good idea to load this book last, so that the
lemmas in this book will take precedence over all others.</p>")
(defxdoc meta-functions
:parents (meta-lemmas)
:short "Meta-functions used to define the meta-lemmas.")
;;;****************************************************************************
;;;
;;; The Evaluator.
;;;
;;; We only have one evaluator, which we'll extend as necessary.
;;;
;;;****************************************************************************
(defevaluator meta-ev meta-ev-list
((car x)
(cdr x)
(cons x y)
(eql x y)
(if x y z)
; [Changed by Matt K. to handle changes to member, assoc, etc. after ACL2 4.2
; (replaced member by member-equal).]
(member-equal x y)
(nth x y)
(true-listp x)))
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
;;;
;;; REDUCE-NTH-META-CORRECT
;;;
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
(defsection formal-consp
:parents (meta-functions)
:short "The definition of @(see CONSP) on formal terms."
:long "<p>Note that FORMAL-CONSP is a `formal' predicate returning @('(QUOTE
T)') or @('(QUOTE NIL)').</p>"
(defun formal-consp (term)
(declare (xargs :guard (pseudo-termp term)))
(case-match term
(('QUOTE x) `(QUOTE ,(consp x)))
(('CONS x y) (declare (ignore x y)) *t*)
(& *nil*))))
(defsection formal-true-listp
:parents (meta-functions)
:short "The definition of @(see TRUE-LISTP) on formal terms."
:long "<p>Note that FORMAL-TRUE-LISTP is a `formal' predicate returning
@('(QUOTE T)') or @('(QUOTE NIL)').</p>"
(defun formal-true-listp (term)
(declare (xargs :guard (pseudo-termp term)))
(case-match term
(('QUOTE x) `(QUOTE ,(true-listp x)))
(('CONS x y) (declare (ignore x)) (formal-true-listp y))
(& *nil*))))
(defsection formal-nth
:parents (meta-functions)
:short "The definition of @('(NTH n lst)') for integers @('n') and formal
terms @('lst')."
(defun formal-nth (n lst)
(declare (xargs :guard (and (integerp n)
(<= 0 n)
(pseudo-termp lst)
(equal (formal-true-listp lst) *t*))
:guard-hints (("Goal" :expand (formal-true-listp lst)))))
(case-match lst
(('QUOTE x) `(QUOTE ,(nth n x)))
(& (cond
((zp n) (fargn lst 1))
(t (formal-nth (- n 1) (fargn lst 2))))))))
(defsection reduce-nth-meta
:parents (meta-functions)
:short "@(see Meta) function for @(see NTH)."
:long "<p>This meta function is designed to quickly rewrite terms of the form
@('(NTH n lst)') where n is an integer and lst is formally a proper list.</p>"
(defun reduce-nth-meta (term)
(declare (xargs :guard (pseudo-termp term)))
(case-match term
(('NTH ('QUOTE n) lst) (if (and (integerp n)
(<= 0 n)
(equal (formal-true-listp lst) *t*))
(formal-nth n lst)
term))
(& term))))
(defsection reduce-nth-meta-correct
:extension reduce-nth-meta
:long "<p>This meta lemma was designed to quickly rewrite the terms generated
by the @(see mv-let) macro.</p>"
(local
(defthm formal-true-listp-implies-true-listp-meta-ev
(implies
(and (pseudo-termp term)
(alistp a)
(equal (formal-true-listp term) *t*))
(true-listp (meta-ev term a)))
:hints
(("Goal"
:induct (formal-true-listp term)))))
(local
(defthm reduce-nth-meta-correct-lemma
(implies
(and (integerp n)
(>= n 0)
(pseudo-termp lst)
(equal (formal-true-listp lst) *t*)
(alistp a))
(equal (meta-ev (formal-nth n lst) a)
(nth n (meta-ev lst a))))
:hints
(("Goal"
:induct (formal-nth n lst)
:expand (formal-true-listp lst)))))
(defthm reduce-nth-meta-correct
(implies
(and (pseudo-termp term)
(alistp a))
(equal (meta-ev term a)
(meta-ev (reduce-nth-meta term) a)))
:rule-classes ((:meta :trigger-fns (nth)))))
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
;;;
;;; EXPAND-MEMBER-META-CORRECT
;;;
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
(defsection formal-member
:parents (meta-functions)
:short "The definition of @(see MEMBER) for any @('x') on an @(see
EQLABLE-LISTP) constant @('l')."
:long "<p>This definition reposes the question @('(MEMBER x l)') as a set of
nested IFs.</p>"
(defun formal-member (x l)
(declare (xargs :guard (and (pseudo-termp x)
(eqlable-listp l))))
(cond
((endp l) *nil*)
(t `(IF (EQL ,x (QUOTE ,(car l)))
(QUOTE ,l)
,(formal-member x (cdr l)))))))
; [Changed by Matt K. to handle changes to member, assoc, etc. after ACL2 4.2
; (replaced member by member-equal).]
(defsection expand-member-meta
:parents (meta-functions)
:short "Meta function for @(see MEMBER-EQUAL)."
:long "<p>This meta function is designed to quickly rewrite @('(MEMBER-EQUAL
x l)') to a set of nested IFs. This will happen if l is a @('EQLABLE-LISTP')
constant. Terms of this form arise for example in @(see CASE) macros.</p>"
(defun expand-member-meta (term)
(declare (xargs :guard (pseudo-termp term)))
(case-match term
(('MEMBER-EQUAL x ('QUOTE l)) (if (eqlable-listp l)
(formal-member x l)
term))
(& term))))
; [Changed by Matt K. to handle changes to member, assoc, etc. after ACL2 4.2
; (replaced member by member-equal in documentation).]
(defsection expand-member-meta-correct
:extension expand-member-meta
:long "<p>This meta rule rewrites @('(MEMBER-EQUAL x l)') to a set of nested
IFs. If l is an @(see EQLABLE-LISTP) constant, then we rewrite
@('(MEMBER-EQUAL x l)') to a set of nested IFs. This lemma is used for example
to rewrite expressions generated by @(see CASE) macros for multiple choices,
without the necessity of @(see ENABLE)ing @(see MEMBER-EQUAL) and @(see
EQLABLE-LISTP).</p>"
(local
(defthm pseudo-termp-formal-member
(implies
(and (pseudo-termp x)
(eqlable-listp l))
(pseudo-termp (formal-member x l)))))
(local
(defthm eqlable-listp-recognizer
(implies
(eqlable-listp l)
(true-listp l))
:rule-classes :compound-recognizer))
(local
(defthm expand-member-meta-correct-lemma
(implies
(and (pseudo-termp x)
(eqlable-listp l)
(alistp a))
(equal (meta-ev (formal-member x l) a)
; [Changed by Matt K. to handle changes to member, assoc, etc. after ACL2 4.2
; (replaced member by member-equal).]
(member-equal (meta-ev x a) l)))
:hints (("Goal" :induct (formal-member x l)))))
(defthm expand-member-meta-correct
(implies (and (pseudo-termp term)
(alistp a))
(equal (meta-ev term a)
(meta-ev (expand-member-meta term) a)))
:rule-classes ((:meta :trigger-fns (member)))))
;;;****************************************************************************
;;;
;;; Theories
;;;
;;;****************************************************************************
(defsection meta-lemma-theory
:parents (meta-lemmas)
:short "A theory of useful meta-lemmas."
:long "<p>This theory contains the correctness lemmas for @(see
reduce-nth-meta) and @(see expand-member-meta).</p>"
(deftheory meta-lemma-theory
'(reduce-nth-meta-correct expand-member-meta-correct)))
|