This file is indexed.

/usr/share/acl2-8.0dfsg/books/misc/meta-lemmas.lisp is in acl2-books-source 8.0dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
; meta-lemmas.lisp  --  meta-lemmas for NTH and MEMBER
; Copyright (C) 1997  Computational Logic, Inc.
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.

;;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
;;;
;;;    "meta-lemmas.lisp"
;;;
;;;    This book defines a useful set of meta lemmas.  This book includes the
;;;    meta functions, and the DEFEVALUATOR forms and lemmas. This book
;;;    requires only the Acl2 initialization theory for its certification.
;;;
;;;    Special thanks to Matt Kaufmann of CLInc for getting this one started.
;;;
;;;    Bishop Brock
;;;    Computational Logic, Inc.
;;;    1717 West Sixth Street, Suite 290
;;;    Austin, Texas 78703
;;;    (512) 322-9951
;;;    brock@cli.com
;;;
;;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(in-package "ACL2")
(include-book "xdoc/top" :dir :system)

;;;****************************************************************************
;;;
;;;    Introduction
;;;
;;;****************************************************************************

(defxdoc meta-lemmas
  :short "A book of general purpose @(see meta) lemmas."
  :long "<p>Note that it may be a good idea to load this book last, so that the
lemmas in this book will take precedence over all others.</p>")

(defxdoc meta-functions
  :parents (meta-lemmas)
  :short "Meta-functions used to define the meta-lemmas.")

;;;****************************************************************************
;;;
;;;    The Evaluator.
;;;
;;;    We only have one evaluator, which we'll extend as necessary.
;;;
;;;****************************************************************************

(defevaluator meta-ev meta-ev-list
  ((car x)
   (cdr x)
   (cons x y)
   (eql x y)
   (if x y z)
; [Changed by Matt K. to handle changes to member, assoc, etc. after ACL2 4.2
;  (replaced member by member-equal).]
   (member-equal x y)
   (nth x y)
   (true-listp x)))


;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
;;;
;;;  REDUCE-NTH-META-CORRECT
;;;
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

(defsection formal-consp
  :parents (meta-functions)
  :short "The definition of @(see CONSP) on formal terms."
  :long "<p>Note that FORMAL-CONSP is a `formal' predicate returning @('(QUOTE
T)') or @('(QUOTE NIL)').</p>"

  (defun formal-consp (term)
    (declare (xargs :guard (pseudo-termp term)))
    (case-match term
      (('QUOTE x) `(QUOTE ,(consp x)))
      (('CONS x y) (declare (ignore x y)) *t*)
      (& *nil*))))

(defsection formal-true-listp
  :parents (meta-functions)
  :short "The definition of @(see TRUE-LISTP) on formal terms."
  :long "<p>Note that FORMAL-TRUE-LISTP is a `formal' predicate returning
  @('(QUOTE T)') or @('(QUOTE NIL)').</p>"

  (defun formal-true-listp (term)
    (declare (xargs :guard (pseudo-termp term)))
    (case-match term
      (('QUOTE x) `(QUOTE ,(true-listp x)))
      (('CONS x y) (declare (ignore x)) (formal-true-listp y))
      (& *nil*))))

(defsection formal-nth
  :parents (meta-functions)
  :short "The definition of @('(NTH n lst)') for integers @('n') and formal
  terms @('lst')."

  (defun formal-nth (n lst)
    (declare (xargs :guard (and (integerp n)
                                (<= 0 n)
                                (pseudo-termp lst)
                                (equal (formal-true-listp lst) *t*))
                    :guard-hints (("Goal" :expand (formal-true-listp lst)))))
    (case-match lst
      (('QUOTE x) `(QUOTE ,(nth n x)))
      (& (cond
          ((zp n) (fargn lst 1))
          (t (formal-nth (- n 1) (fargn lst 2))))))))

(defsection reduce-nth-meta
  :parents (meta-functions)
  :short "@(see Meta) function for @(see NTH)."
  :long "<p>This meta function is designed to quickly rewrite terms of the form
@('(NTH n lst)') where n is an integer and lst is formally a proper list.</p>"

  (defun reduce-nth-meta (term)
    (declare (xargs :guard (pseudo-termp term)))
    (case-match term
      (('NTH ('QUOTE n) lst) (if (and (integerp n)
                                      (<= 0 n)
                                      (equal (formal-true-listp lst) *t*))
                                 (formal-nth n lst)
                               term))
      (& term))))

(defsection reduce-nth-meta-correct
  :extension reduce-nth-meta
  :long "<p>This meta lemma was designed to quickly rewrite the terms generated
  by the @(see mv-let) macro.</p>"

  (local
   (defthm formal-true-listp-implies-true-listp-meta-ev
     (implies
      (and (pseudo-termp term)
	   (alistp a)
	   (equal (formal-true-listp term) *t*))
      (true-listp (meta-ev term a)))
     :hints
     (("Goal"
       :induct (formal-true-listp term)))))

  (local
   (defthm reduce-nth-meta-correct-lemma
     (implies
      (and (integerp n)
	   (>= n 0)
	   (pseudo-termp lst)
	   (equal (formal-true-listp lst) *t*)
	   (alistp a))
      (equal (meta-ev (formal-nth n lst) a)
	     (nth n (meta-ev lst a))))
     :hints
     (("Goal"
       :induct (formal-nth n lst)
       :expand (formal-true-listp lst)))))

  (defthm reduce-nth-meta-correct
    (implies
     (and (pseudo-termp term)
	  (alistp a))
     (equal (meta-ev term a)
	    (meta-ev (reduce-nth-meta term) a)))
    :rule-classes ((:meta :trigger-fns (nth)))))


;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
;;;
;;;   EXPAND-MEMBER-META-CORRECT
;;;
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

(defsection formal-member
  :parents (meta-functions)
  :short "The definition of @(see MEMBER) for any @('x') on an @(see
  EQLABLE-LISTP) constant @('l')."
  :long "<p>This definition reposes the question @('(MEMBER x l)') as a set of
  nested IFs.</p>"

  (defun formal-member (x l)
    (declare (xargs :guard (and (pseudo-termp x)
                                (eqlable-listp l))))
    (cond
     ((endp l) *nil*)
     (t `(IF (EQL ,x (QUOTE ,(car l)))
             (QUOTE ,l)
             ,(formal-member x (cdr l)))))))

; [Changed by Matt K. to handle changes to member, assoc, etc. after ACL2 4.2
;  (replaced member by member-equal).]

(defsection expand-member-meta
  :parents (meta-functions)
  :short "Meta function for @(see MEMBER-EQUAL)."
  :long "<p>This meta function is designed to quickly rewrite @('(MEMBER-EQUAL
x l)') to a set of nested IFs.  This will happen if l is a @('EQLABLE-LISTP')
constant.  Terms of this form arise for example in @(see CASE) macros.</p>"

  (defun expand-member-meta (term)
    (declare (xargs :guard (pseudo-termp term)))
    (case-match term
      (('MEMBER-EQUAL x ('QUOTE l)) (if (eqlable-listp l)
                                        (formal-member x l)
                                      term))
      (& term))))

; [Changed by Matt K. to handle changes to member, assoc, etc. after ACL2 4.2
;  (replaced member by member-equal in documentation).]
(defsection expand-member-meta-correct
  :extension expand-member-meta
  :long "<p>This meta rule rewrites @('(MEMBER-EQUAL x l)') to a set of nested
IFs.  If l is an @(see EQLABLE-LISTP) constant, then we rewrite
@('(MEMBER-EQUAL x l)') to a set of nested IFs.  This lemma is used for example
to rewrite expressions generated by @(see CASE) macros for multiple choices,
without the necessity of @(see ENABLE)ing @(see MEMBER-EQUAL) and @(see
EQLABLE-LISTP).</p>"

  (local
   (defthm pseudo-termp-formal-member
     (implies
      (and (pseudo-termp x)
	   (eqlable-listp l))
      (pseudo-termp (formal-member x l)))))

  (local
   (defthm eqlable-listp-recognizer
     (implies
      (eqlable-listp l)
      (true-listp l))
     :rule-classes :compound-recognizer))

  (local
   (defthm expand-member-meta-correct-lemma
     (implies
      (and (pseudo-termp x)
	   (eqlable-listp l)
	   (alistp a))
      (equal (meta-ev (formal-member x l) a)
; [Changed by Matt K. to handle changes to member, assoc, etc. after ACL2 4.2
;  (replaced member by member-equal).]
	     (member-equal (meta-ev x a) l)))
     :hints (("Goal" :induct (formal-member x l)))))

  (defthm expand-member-meta-correct
    (implies (and (pseudo-termp term)
                  (alistp a))
     (equal (meta-ev term a)
	    (meta-ev (expand-member-meta term) a)))
    :rule-classes ((:meta :trigger-fns (member)))))


;;;****************************************************************************
;;;
;;;    Theories
;;;
;;;****************************************************************************

(defsection meta-lemma-theory
  :parents (meta-lemmas)
  :short "A theory of useful meta-lemmas."
  :long "<p>This theory contains the correctness lemmas for @(see
reduce-nth-meta) and @(see expand-member-meta).</p>"

  (deftheory meta-lemma-theory
    '(reduce-nth-meta-correct expand-member-meta-correct)))