/usr/share/acl2-8.0dfsg/books/misc/mult.lisp is in acl2-books-source 8.0dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 | (in-package "ACL2")
#|
Matt Wilding (http://hokiepokie.org) Feb 2002
This ACL2 script solves a challenge posed by Bill Legato, to prove
that a program written for the Mostek 6502 microprocessor correctly
implements multiplication. The program is described in
A Weakest Precondition Model for Assembly Language Programs
by Bill Legato, dated June 19, 2000. (A later version of this paper
also containing the program is available, which is currently FOUO.)
Comments from the 2.5x version of this script:
xx In this script we solve this challenge in the following steps:
xx
xx
xx 1. Model the program in ACL2 using a stobj to represent state,
xx adding a definition for each line of the program, and combining the
xx lines into a program.
xx
xx 2. Describe the algorithm abstractly in a function "loop-spec".
xx
xx 3. Prove the loop-spec works.
xx
xx 4. Prove that our Mostek 6502 program model works like loop-spec.
xx
xx 5. Combine the lemmas of 3. and 4. into the final theorem.
xx
xx Solving the challenge problem required 15 hours.
xx
xx 1. Understanding the algorithm 1 hr
xx 2. Modeling the program in ACL2 2 hrs
xx 3. Wasting time working on the proof before
xx remembering yet again that decomposing
xx proofs is *always* the right thing to do 4 hrs.
xx 4. Proving that loop-spec works 3 hrs
xx 5. Proving that loop-spec works like the
xx real program 3.5 hrs
xx 6. Cleaning and documenting 1.5 hrs
xx -------
xx 15 hrs
xx
xx
xx The proof runs in under a minute under ACL2 2.5x, a version of ACL2
xx 2.5 enhanced with nu-rewriter patches. The proof uses Super-IHS,
xx the Rockwell Collins ACL2 book that extends IHS. It would take a
xx couple hours of work to port this proof to just-released 2.6, since
xx I'd have to identify the handful of Super-IHS lemmas that are
xx employed here and add their proof to the proof script. (If anyone
xx wants me to do this, please let me know.)
The proof has now been ported to ACL2 2.6. The port to 2.6 required
about 3.5 hours of work, plus 1 hour for rearranging the lemmas
sensibly and documenting. Some Super-IHS rules were ripped out of
Super-IHS and put here so as to make this script depend only on
distibuted books.
While I was at porting the proof, I spent some time reorganizing and
simplifying. Most importantly, I eliminated the use of a spec
function to decompose the proof in this version. The spec function
was important to me during the proof development, and is generally the
right thing to do on these kinds of proofs. But once I knew what the
inductions were, etc., I was able to combine the two proof steps in
this case into one. The resulting proof is far less pedagogical, but
it's so much shorter that I could not resist.
It's great to see that the techniques Greve and I use for microcode
proofs apply so directly to assembly code reasoning.
Matt Wilding
Christmas 2001
(ported to ACL2 2.6 - 3 Jan 2002)
(updated to avoid nu-rewriter use - 27 Feb 2002)
|#
;; Set up ACL2 how we like.
(set-irrelevant-formals-ok t)
;; We load the IHS book, and some other useful books, that are part of
;; the standard 2.6 distribution.
(include-book "arithmetic/top-with-meta" :dir :system)
(include-book "ihs/ihs-definitions" :dir :system)
(include-book "ihs/ihs-lemmas" :dir :system)
(include-book "data-structures/structures" :dir :system)
(include-book "data-structures/array1" :dir :system)
(include-book "ihs/@logops" :dir :system)
(include-book "data-structures/list-defuns" :dir :system)
(include-book "data-structures/list-defthms" :dir :system)
(include-book "data-structures/deflist" :dir :system)
(include-book "data-structures/defalist" :dir :system)
(include-book "meta-lemmas") ;Always include last!
(minimal-ihs-theory)
(in-theory (enable @logops-theory array1-lemmas meta-lemma-theory))
(enable-theory (definition-free-theory (theory 'list-defuns)))
(enable-theory (definition-free-theory (theory 'alist-defuns)))
(in-theory (disable (force)))
(in-theory (enable nth-update-nth))
;;
;; Some induction schemes we'll need, courtesy of the Super-IHS book.
;;
(defun sub1-induction (x)
(if (zp x)
x
(sub1-induction (1- x))))
(defun sub1-logcdr-induction (m x)
(if (zp m)
x
(sub1-logcdr-induction (1- m) (logcdr x))))
(defun logcdr-logcdr-induction (b c)
(declare (xargs :measure (abs (ifix b))
:hints (("goal" :in-theory (enable logcdr)))))
(if (or (equal b -1) (zip b))
c
(logcdr-logcdr-induction (logcdr b) (logcdr c))))
(defun sub1-sub1-logcdr-induction (a b v)
(if (zp b)
(or a v)
(sub1-sub1-logcdr-induction (1- a) (1- b) (logcdr v))))
(defun sub1-logcdr-logcdr-induction (m x y)
(if (zp m)
(or x y)
(sub1-logcdr-logcdr-induction (1- m) (logcdr x) (logcdr y))))
(defun sub1-sub1-induction (m n)
(if (zp m)
n
(sub1-sub1-induction (1- m) (1- n))))
(defun sub1-logcdr-logcdr-carry-induction (m x y c)
(if (zp m)
(or x y c)
(sub1-logcdr-logcdr-carry-induction
(1- m)
(logcdr x)
(logcdr y)
(if (or (and (equal (logcar x) 1) (equal (logcar y) 1))
(and (equal (logcar x) 1) (equal c 1))
(and (equal (logcar y) 1) (equal c 1)))
1 0))))
;; A couple definitions used in the reader-generated type rules,
;; courtesy of the Super-IHS book
(defthm unsigned-byte-p-<=
(equal (unsigned-byte-p bits i)
(and (integerp bits)
(>= bits 0)
(integerp i)
(>= i 0)
(<= i (1- (expt 2 bits)))))
:rule-classes :definition
:hints (("goal" :in-theory (enable unsigned-byte-p))))
(defthm signed-byte-p-<=
(equal (signed-byte-p bits i)
(and (integerp bits)
(> bits 0)
(integerp i)
(>= i (- (expt 2 (- bits 1))))
(<= i (1- (expt 2 (- bits 1))))))
:rule-classes :definition :hints
(("goal" :in-theory (enable signed-byte-p))))
(in-theory (disable unsigned-byte-p-<= signed-byte-p-<=))
;; The following ~30 rules are IHS-related. Some were in the earlier
;; version of this proof. Many are stolen from Super-IHS. Some of
;; the more important Super-IHS rules have names starting with *ark*.
(defthm ash-*2-simplify
(implies
(and
(integerp x)
(integerp n)
(<= 0 n))
(equal (ash (* 2 x) n) (* 2 (ash x n))))
:hints (("goal" :in-theory (enable ash))))
(in-theory (disable ash-*2-simplify))
(defthm *ark*-ifix-ash
(equal (ifix (ash x y)) (ash x y)))
(defthm *ark*-open-logcons
(implies (syntaxp (constant-syntaxp b))
(equal (logcons b i)
(let ((b (bfix b)) (i (ifix i)))
(+ b (* 2 i)))))
:hints
(("goal" :in-theory (enable logcons))))
(defthm *ark*-sum-constants
(implies (and (syntaxp (constant-syntaxp x))
(syntaxp (constant-syntaxp y))
(equal sum (+ x y)))
(equal (+ x y z) (+ sum z))))
(defthm *ark*-ash-+-pos
(implies (and (integerp x)
(integerp y)
(integerp m)
(<= 0 m))
(equal (ash (+ x y) m)
(+ (ash x m) (ash y m))))
:hints
(("goal" :in-theory
(enable logops-recursive-definitions-theory)
:induct (sub1-induction m))))
(in-theory (disable *ARK*-ASH-+-POS))
(defthm logtail-+-ash
(implies
(and (integerp n1) (integerp n2) (integerp x) (integerp y)
(<= 0 n1) (<= n1 n2) )
(equal
(logtail n1 (+ x (ash y n2)))
(+ (logtail n1 x) (ash y (- n2 n1)))))
:hints (("goal" :in-theory
(enable LOGOPS-RECURSIVE-DEFINITIONS-THEORY logtail*)
:induct (sub1-sub1-logcdr-induction n2 n1 x))))
(defthm logcdr-logapp
(implies
(and
(integerp n)
(integerp x)
(integerp y)
(< 0 n))
(equal (logcdr (logapp n x y))
(logapp (1- n) (logcdr x) y)))
:hints (("goal" :in-theory (enable LOGOPS-RECURSIVE-DEFINITIONS-THEORY)
:induct (sub1-logcdr-induction n x))))
(defthm logcdr-loghead
(implies
(and
(integerp n)
(integerp x)
(< 0 n))
(equal (logcdr (loghead n x))
(loghead (1- n) (logcdr x))))
:hints (("goal" :in-theory (enable LOGOPS-RECURSIVE-DEFINITIONS-THEORY)
:induct (sub1-logcdr-induction n x))))
(defthm *ark*-logcar-i+j+2*k
(implies
(and (integerp i)
(integerp j)
(integerp k))
(equal (logcar (+ i j (* 2 k)))
(logcar (+ i j))))
:hints
(("Goal"
:use ((:instance logcar-i+2*j (i (+ i j)) (j k))))))
(defthm *ark*-logcar-+
(implies
(and (integerp i)
(integerp j))
(equal (logcar (+ i j))
(b-xor (logcar i) (logcar j))))
:hints
(("Goal" :in-theory (enable b-xor))))
(defthm *ark*-loghead-1
(implies
(integerp x)
(equal (loghead 1 x) (logcar x)))
:hints (("goal" :in-theory (enable loghead logcons))))
(defthm unsigned-byte-p-+
(implies
(and
(unsigned-byte-p n x)
(unsigned-byte-p n y))
(unsigned-byte-p (1+ n) (+ x y)))
:hints (("goal" :in-theory (enable unsigned-byte-p expt))))
(defthm unsigned-byte-p-logcdr-bridge
(implies
(unsigned-byte-p 9 x)
(unsigned-byte-p 8 (logcdr x)))
:hints (("goal" :in-theory (enable unsigned-byte-p))))
(defthm unsigned-byte-p-logcdr-bridge-2
(implies
(unsigned-byte-p 8 x)
(unsigned-byte-p 7 (logcdr x)))
:hints (("goal" :in-theory (enable unsigned-byte-p))))
(defthm *ark*-+*
(implies
(and (not (zip a)) (not (equal a -1))
(not (zip b)))
(equal
(+ a b)
(logcons
(b-xor (logcar a) (logcar b))
(+ (b-and (logcar a) (logcar b))
(logcdr a) (logcdr b)))))
:hints (("goal" :induct (logcdr-logcdr-induction a b)
:in-theory (e/d (LOGOPS-RECURSIVE-DEFINITIONS-THEORY b-and b-xor)
; Modified April 2016 by Matt K. upon the addition of a type-set bit for the
; set {1}. (Same change made in books/coi/super-ihs/super-ihs.lisp.)
(BITP-COMPOUND-RECOGNIZER)))))
(in-theory (disable *ark*-+*))
(defthm *ark*-logcdr-+1
(implies
(integerp x)
(and
(implies
(equal (logcar x) 0)
(equal (logcdr (+ 1 x)) (logcdr x)))
(implies
(equal (logcar x) 1)
(equal (logcdr (+ 1 x)) (+ 1 (logcdr x))))
(implies
(and
(equal (logcar x) 1)
(integerp y))
(equal (logcdr (+ 1 x y)) (+ 1 (logcdr x) (logcdr y))))
(implies
(and
(equal (logcar x) 1)
(integerp y))
(equal (logcdr (+ 1 y x)) (+ 1 (logcdr x) (logcdr y))))))
:hints (("goal" :in-theory (enable *ark*-+*))))
(defthm unsigned-byte-p-+-helper
(implies
(and
(unsigned-byte-p n x)
(unsigned-byte-p n y)
(unsigned-byte-p 1 c)
(integerp n)
(< 0 n))
(equal
(unsigned-byte-p n (+ x y c))
(not (logbitp n (+ x y c)))))
:rule-classes nil
:hints (("goal" :in-theory (enable logops-recursive-definitions-theory *ark*-+* logbitp*)
:induct (sub1-logcdr-logcdr-carry-induction n x y c))))
(defthm *ark*-unsigned-byte-p-+
(implies
(and
(unsigned-byte-p n x)
(unsigned-byte-p n y)
(integerp n)
(< 0 n))
(equal
(unsigned-byte-p n (+ x y))
(not (logbitp n (+ x y)))))
:hints (("goal" :use (:instance unsigned-byte-p-+-helper (c 0)))))
(in-theory (disable associativity-of-logapp))
;; Super-IHS associates logapp in a way that now seems backwards to
;; me. I shut off associativity-of-logapp, and prove a rule that
;; works "forwards", just to keep myself sane.
(defthm logapp-logapp
(implies
(and
(integerp n1) (integerp n2)
(integerp a) (integerp b) (integerp c)
(<= 0 n2) (<= n2 n1))
(equal
(logapp n1 (logapp n2 a b) c)
(logapp n2 a (logapp (- n1 n2) b c))))
:hints (("goal" :in-theory (enable LOGOPS-RECURSIVE-DEFINITIONS-THEORY)
:induct (sub1-sub1-logcdr-induction n1 n2 a))))
(defthm equal-logapp-x
(implies
(and (integerp n) (integerp x) (integerp y) (integerp z) (<= 0 n)
(equal (loghead n z) (loghead n x)))
(equal
(equal (logapp n x y) z)
(equal y (logtail n z))))
:hints (("goal" :in-theory (enable LOGOPS-RECURSIVE-DEFINITIONS-THEORY)
:induct (sub1-logcdr-logcdr-induction n x z))))
(defthm loghead-+-simple
(implies
(and
(integerp x) (integerp y) (integerp n)
(<= 0 n)
(equal (loghead n x) 0))
(equal
(loghead n (+ x y))
(loghead n y)))
:hints (("goal" :in-theory (enable LOGOPS-RECURSIVE-DEFINITIONS-THEORY)
:induct (sub1-logcdr-logcdr-induction n x y))))
(defthm logtail-+-simple
(implies
(and
(integerp x) (integerp y) (integerp n)
(<= 0 n)
(equal (loghead n x) 0))
(equal
(logtail n (+ x y))
(+ (logtail n x) (logtail n y))))
:hints (("goal" :in-theory (enable LOGOPS-RECURSIVE-DEFINITIONS-THEORY)
:induct (sub1-logcdr-logcdr-induction n x y))))
(defthm *ark*-loghead-ash-pos-rewrite
(implies
(and
(integerp n1)
(integerp n2)
(integerp x)
(<= 0 n1)
(<= 0 n2))
(equal (loghead n1 (ash x n2))
(if (<= n1 n2)
0
(ash (loghead (- n1 n2) x) n2))))
:hints (("goal" :in-theory (enable LOGOPS-RECURSIVE-DEFINITIONS-THEORY)
:induct (sub1-sub1-induction n1 n2))))
(defthm logtail-ash-pos-rewrite
(implies
(and
(integerp n1)
(integerp n2)
(integerp x)
(<= 0 n1)
(<= 0 n2))
(equal (logtail n1 (ash x n2))
(if (<= n1 n2)
(ash x (- n2 n1))
(logtail (- n1 n2) x))))
:hints (("goal" :in-theory (enable LOGOPS-RECURSIVE-DEFINITIONS-THEORY)
:induct (sub1-sub1-induction n1 n2))))
(defthm loghead-*2
(implies
(and
(integerp n) (< 0 n) (integerp x))
(equal
(equal (loghead n (* 2 x)) 0)
(equal (loghead (1- n) x) 0)))
:hints (("goal" :in-theory (enable loghead*))))
(defthm logcar-identity
(implies (unsigned-byte-p 1 x)
(equal (logcar x) x))
:hints
(("goal" :in-theory
(enable unsigned-byte-p logcar))))
(defthm unsigned-byte-p-logcar
(unsigned-byte-p 1 (logcar x))
:hints
(("goal" :in-theory
(enable unsigned-byte-p logcar))))
(defthm logapp-1-logcar-logcdr
(implies
(integerp x)
(equal (logapp 1 (logcar x) (logcdr x))
x))
:hints (("goal" :in-theory (enable logapp))))
(defthm unsigned-byte-p-1-
(implies
(and
(integerp n) (<= 0 n)
(unsigned-byte-p n x))
(equal
(unsigned-byte-p n (1- x))
(< 0 x)))
:hints (("goal" :in-theory (enable unsigned-byte-p))))
(defthm +-ash-logapp
(implies
(and (integerp x) (integerp n) (integerp a) (integerp b)
(<= 0 n))
(equal (+ (ash x n) (logapp n a b))
(logapp n a (+ x b))))
:hints (("goal" :in-theory (enable LOGOPS-RECURSIVE-DEFINITIONS-THEORY)
:induct (sub1-logcdr-induction n a))))
(defthm equal-logcar-1
(equal (equal (logcar x) 1)
(not (equal (logcar x) 0)))
:hints (("goal" :in-theory (enable logcar))))
(defthm logapp-loghead
(implies
(and (integerp n1) (integerp n2) (integerp x) (integerp y)
(<= 0 n1) (<= n1 n2))
(equal
(logapp n1 (loghead n2 x) y)
(logapp n1 x y)))
:hints (("goal" :induct (sub1-sub1-logcdr-induction n1 n2 x)
:in-theory (enable LOGOPS-RECURSIVE-DEFINITIONS-THEORY))))
(defthm logtail-almost-all
(implies
(and
(unsigned-byte-p (1+ n) x)
(integerp n) (<= 0 n))
(equal (logtail n x) (logbit n x)))
:hints (("goal" :induct (sub1-logcdr-induction n x)
:in-theory (enable LOGOPS-RECURSIVE-DEFINITIONS-THEORY logbit))))
(defthm equal-x-logapp-x
(implies
(and (integerp x) (integerp y) (integerp n) (<= 0 n))
(equal
(equal x (logapp n x y))
(equal (logtail n x) y)))
:hints (("goal" :induct (sub1-logcdr-induction n x)
:in-theory (enable LOGOPS-RECURSIVE-DEFINITIONS-THEORY))))
(defthm equal-x-loghead-x
(implies
(and (integerp x) (integerp n) (<= 0 n))
(equal
(equal x (loghead n x))
(unsigned-byte-p n x)))
:hints (("goal" :induct (sub1-logcdr-induction n x)
:in-theory (enable LOGOPS-RECURSIVE-DEFINITIONS-THEORY))))
(defthm equal-logbit-logbit-logcdr-bridge
(implies
(and (integerp x) (integerp n) (<= 0 n))
(equal
(equal (logbit n (logcdr x)) (logbit (1+ n) x))
t))
:hints (("goal" :in-theory (enable logbit logbitp*))))
(defthm unsigned-byte-p-logcdr
(implies
(unsigned-byte-p n x)
(unsigned-byte-p n (logcdr x)))
:hints (("goal" :in-theory (enable unsigned-byte-p))))
(defthm unsigned-byte-p-1-logbit
(unsigned-byte-p 1 (logbit n x))
:hints (("goal" :in-theory (enable logbit))))
(defthm unsigned-byte-p-1-b-xor
(unsigned-byte-p 1 (b-xor x y))
:hints (("goal" :in-theory (enable b-xor))))
(defthm ash-0-arg2
(implies
(integerp x)
(equal (ash x 0) x))
:hints (("goal" :in-theory (enable ash))))
;;;;;;;;;;;;;;;;;;;;
;; Finally, we're ready to model the problem and do the proof...
;; We model the relevant parts of the Mostek 6502 state
(defstobj st
(f1 :type (unsigned-byte 8) :initially 0)
(f2 :type (unsigned-byte 8) :initially 0)
(f1save :type (unsigned-byte 8) :initially 0)
(a :type (unsigned-byte 8) :initially 0)
(low :type (unsigned-byte 8) :initially 0)
(cflg :type (unsigned-byte 1) :initially 0)
(zflg :type (unsigned-byte 1) :initially 0)
(x :type (unsigned-byte 8) :initially 0))
;; Now, we prove some rules about the types of the Mostek 6502 state.
;; Normally the following "type" lemmas would be generated
;; automatically by our READER, but we want to share this example
;; without distributing the READER so we take a shortcut: we steal
;; some automatically generated update/accessor lemmas from another
;; example that does use the READER and edit them a little.
;; Most of these are not necessary, but the simplest thing for me to
;; do is put them all in. Fortunately, the state is small!
(DEFTHM F1-LINEAR
(IMPLIES (STP ST)
(AND (<= 0 (NTH 0 ST)) (<= (NTH 0 ST) 255)))
:RULE-CLASSES (:LINEAR :REWRITE) :HINTS
(("goal" :IN-THEORY
(UNION-THEORIES (CURRENT-THEORY 'GROUND-ZERO)
'(STP F1P)))))
(DEFTHM F1-TYPE
(IMPLIES (STP ST)
(AND (INTEGERP (NTH 0 ST))
(UNSIGNED-BYTE-P 8 (NTH 0 ST))))
:HINTS
(("goal" :IN-THEORY
(UNION-THEORIES (CURRENT-THEORY 'GROUND-ZERO)
'(SIGNED-BYTE-P-<= UNSIGNED-BYTE-P-<= F1P))
:EXPAND (STP ST)))
:rule-classes (:rewrite :type-prescription))
(DEFTHM F1-UPDATE-TYPE-HELPER
(IMPLIES (STP ST)
(IFF (STP (UPDATE-NTH 0 V ST)) (F1P V)))
:HINTS
(("goal" :EXPAND (:FREE (X) (STP X)) :IN-THEORY
(SET-DIFFERENCE-THEORIES (CURRENT-THEORY 'GROUND-ZERO)
'(NTH UPDATE-NTH))))
:RULE-CLASSES NIL)
(DEFTHM F1-UPDATE-TYPE
(IMPLIES (STP ST)
(IFF (STP (UPDATE-NTH 0 V ST))
(UNSIGNED-BYTE-P 8 V)))
:HINTS
(("goal" :IN-THEORY
(UNION-THEORIES '(UNSIGNED-BYTE-P SIGNED-BYTE-P F1P)
(CURRENT-THEORY 'GROUND-ZERO))
:USE F1-UPDATE-TYPE-HELPER)))
(DEFTHM F2-LINEAR
(IMPLIES (STP ST)
(AND (<= 0 (NTH 1 ST)) (<= (NTH 1 ST) 255)))
:RULE-CLASSES (:LINEAR :REWRITE) :HINTS
(("goal" :IN-THEORY
(UNION-THEORIES (CURRENT-THEORY 'GROUND-ZERO)
'(STP F2P)))))
(DEFTHM F2-TYPE
(IMPLIES (STP ST)
(AND (INTEGERP (NTH 1 ST))
(UNSIGNED-BYTE-P 8 (NTH 1 ST))))
:HINTS
(("goal" :IN-THEORY
(UNION-THEORIES (CURRENT-THEORY 'GROUND-ZERO)
'(SIGNED-BYTE-P-<= UNSIGNED-BYTE-P-<= F2P))
:EXPAND (STP ST)))
:rule-classes (:rewrite :type-prescription))
(DEFTHM F2-UPDATE-TYPE-HELPER
(IMPLIES (STP ST)
(IFF (STP (UPDATE-NTH 1 V ST)) (F2P V)))
:HINTS
(("goal" :EXPAND (:FREE (X) (STP X)) :IN-THEORY
(SET-DIFFERENCE-THEORIES (CURRENT-THEORY 'GROUND-ZERO)
'(NTH UPDATE-NTH))))
:RULE-CLASSES NIL)
(DEFTHM F2-UPDATE-TYPE
(IMPLIES (STP ST)
(IFF (STP (UPDATE-NTH 1 V ST))
(UNSIGNED-BYTE-P 8 V)))
:HINTS
(("goal" :IN-THEORY
(UNION-THEORIES '(UNSIGNED-BYTE-P SIGNED-BYTE-P F2P)
(CURRENT-THEORY 'GROUND-ZERO))
:USE F2-UPDATE-TYPE-HELPER)))
(DEFTHM F1SAVE-LINEAR
(IMPLIES (STP ST)
(AND (<= 0 (NTH 2 ST)) (<= (NTH 2 ST) 255)))
:RULE-CLASSES (:LINEAR :REWRITE) :HINTS
(("goal" :IN-THEORY
(UNION-THEORIES (CURRENT-THEORY 'GROUND-ZERO)
'(STP F1SAVEP)))))
(DEFTHM F1SAVE-TYPE
(IMPLIES (STP ST)
(AND (INTEGERP (NTH 2 ST))
(UNSIGNED-BYTE-P 8 (NTH 2 ST))))
:HINTS
(("goal" :IN-THEORY
(UNION-THEORIES (CURRENT-THEORY 'GROUND-ZERO)
'(SIGNED-BYTE-P-<= UNSIGNED-BYTE-P-<= F1SAVEP))
:EXPAND (STP ST)))
:rule-classes (:rewrite :type-prescription))
(DEFTHM F1SAVE-UPDATE-TYPE-HELPER
(IMPLIES (STP ST)
(IFF (STP (UPDATE-NTH 2 V ST)) (F1SAVEP V)))
:HINTS
(("goal" :EXPAND (:FREE (X) (STP X)) :IN-THEORY
(SET-DIFFERENCE-THEORIES (CURRENT-THEORY 'GROUND-ZERO)
'(NTH UPDATE-NTH))))
:RULE-CLASSES NIL)
(DEFTHM F1SAVE-UPDATE-TYPE
(IMPLIES (STP ST)
(IFF (STP (UPDATE-NTH 2 V ST))
(UNSIGNED-BYTE-P 8 V)))
:HINTS
(("goal" :IN-THEORY
(UNION-THEORIES '(UNSIGNED-BYTE-P SIGNED-BYTE-P F1SAVEP)
(CURRENT-THEORY 'GROUND-ZERO))
:USE F1SAVE-UPDATE-TYPE-HELPER)))
(DEFTHM A-LINEAR
(IMPLIES (STP ST)
(AND (<= 0 (NTH 3 ST)) (<= (NTH 3 ST) 255)))
:RULE-CLASSES (:LINEAR :REWRITE) :HINTS
(("goal" :IN-THEORY
(UNION-THEORIES (CURRENT-THEORY 'GROUND-ZERO)
'(STP AP)))))
(DEFTHM A-TYPE
(IMPLIES (STP ST)
(AND (INTEGERP (NTH 3 ST))
(UNSIGNED-BYTE-P 8 (NTH 3 ST))))
:HINTS
(("goal" :IN-THEORY
(UNION-THEORIES (CURRENT-THEORY 'GROUND-ZERO)
'(SIGNED-BYTE-P-<= UNSIGNED-BYTE-P-<= AP))
:EXPAND (STP ST)))
:rule-classes (:rewrite :type-prescription))
(DEFTHM A-UPDATE-TYPE-HELPER
(IMPLIES (STP ST)
(IFF (STP (UPDATE-NTH 3 V ST)) (AP V)))
:HINTS
(("goal" :EXPAND (:FREE (X) (STP X)) :IN-THEORY
(SET-DIFFERENCE-THEORIES (CURRENT-THEORY 'GROUND-ZERO)
'(NTH UPDATE-NTH))))
:RULE-CLASSES NIL)
(DEFTHM A-UPDATE-TYPE
(IMPLIES (STP ST)
(IFF (STP (UPDATE-NTH 3 V ST))
(UNSIGNED-BYTE-P 8 V)))
:HINTS
(("goal" :IN-THEORY
(UNION-THEORIES '(UNSIGNED-BYTE-P SIGNED-BYTE-P AP)
(CURRENT-THEORY 'GROUND-ZERO))
:USE A-UPDATE-TYPE-HELPER)))
(DEFTHM LOW-LINEAR
(IMPLIES (STP ST)
(AND (<= 0 (NTH 4 ST)) (<= (NTH 4 ST) 255)))
:RULE-CLASSES (:LINEAR :REWRITE) :HINTS
(("goal" :IN-THEORY
(UNION-THEORIES (CURRENT-THEORY 'GROUND-ZERO)
'(STP LOWP)))))
(DEFTHM LOW-TYPE
(IMPLIES (STP ST)
(AND (INTEGERP (NTH 4 ST))
(UNSIGNED-BYTE-P 8 (NTH 4 ST))))
:HINTS
(("goal" :IN-THEORY
(UNION-THEORIES (CURRENT-THEORY 'GROUND-ZERO)
'(SIGNED-BYTE-P-<= UNSIGNED-BYTE-P-<= LOWP))
:EXPAND (STP ST)))
:rule-classes (:rewrite :type-prescription))
(DEFTHM LOW-UPDATE-TYPE-HELPER
(IMPLIES (STP ST)
(IFF (STP (UPDATE-NTH 4 V ST)) (LOWP V)))
:HINTS
(("goal" :EXPAND (:FREE (X) (STP X)) :IN-THEORY
(SET-DIFFERENCE-THEORIES (CURRENT-THEORY 'GROUND-ZERO)
'(NTH UPDATE-NTH))))
:RULE-CLASSES NIL)
(DEFTHM LOW-UPDATE-TYPE
(IMPLIES (STP ST)
(IFF (STP (UPDATE-NTH 4 V ST))
(UNSIGNED-BYTE-P 8 V)))
:HINTS
(("goal" :IN-THEORY
(UNION-THEORIES '(UNSIGNED-BYTE-P SIGNED-BYTE-P LOWP)
(CURRENT-THEORY 'GROUND-ZERO))
:USE LOW-UPDATE-TYPE-HELPER)))
(DEFTHM CFLG-LINEAR
(IMPLIES (STP ST)
(AND (<= 0 (NTH 5 ST)) (<= (NTH 5 ST) 1)))
:RULE-CLASSES (:LINEAR :REWRITE) :HINTS
(("goal" :IN-THEORY
(UNION-THEORIES (CURRENT-THEORY 'GROUND-ZERO)
'(STP CFLGP)))))
(DEFTHM CFLG-TYPE
(IMPLIES (STP ST)
(AND (INTEGERP (NTH 5 ST))
(UNSIGNED-BYTE-P 1 (NTH 5 ST))))
:HINTS
(("goal" :IN-THEORY
(UNION-THEORIES (CURRENT-THEORY 'GROUND-ZERO)
'(SIGNED-BYTE-P-<= UNSIGNED-BYTE-P-<= CFLGP))
:EXPAND (STP ST)))
:rule-classes (:rewrite :type-prescription))
(DEFTHM CFLG-UPDATE-TYPE-HELPER
(IMPLIES (STP ST)
(IFF (STP (UPDATE-NTH 5 V ST)) (CFLGP V)))
:HINTS
(("goal" :EXPAND (:FREE (X) (STP X)) :IN-THEORY
(SET-DIFFERENCE-THEORIES (CURRENT-THEORY 'GROUND-ZERO)
'(NTH UPDATE-NTH))))
:RULE-CLASSES NIL)
(DEFTHM CFLG-UPDATE-TYPE
(IMPLIES (STP ST)
(IFF (STP (UPDATE-NTH 5 V ST))
(UNSIGNED-BYTE-P 1 V)))
:HINTS
(("goal" :IN-THEORY
(UNION-THEORIES '(UNSIGNED-BYTE-P SIGNED-BYTE-P CFLGP)
(CURRENT-THEORY 'GROUND-ZERO))
:USE CFLG-UPDATE-TYPE-HELPER)))
(DEFTHM ZFLG-LINEAR
(IMPLIES (STP ST)
(AND (<= 0 (NTH 6 ST)) (<= (NTH 6 ST) 1)))
:RULE-CLASSES (:LINEAR :REWRITE) :HINTS
(("goal" :IN-THEORY
(UNION-THEORIES (CURRENT-THEORY 'GROUND-ZERO)
'(STP ZFLGP)))))
(DEFTHM ZFLG-TYPE
(IMPLIES (STP ST)
(AND (INTEGERP (NTH 6 ST))
(UNSIGNED-BYTE-P 1 (NTH 6 ST))))
:HINTS
(("goal" :IN-THEORY
(UNION-THEORIES (CURRENT-THEORY 'GROUND-ZERO)
'(SIGNED-BYTE-P-<= UNSIGNED-BYTE-P-<= ZFLGP))
:EXPAND (STP ST)))
:rule-classes (:rewrite :type-prescription))
(DEFTHM ZFLG-UPDATE-TYPE-HELPER
(IMPLIES (STP ST)
(IFF (STP (UPDATE-NTH 6 V ST)) (ZFLGP V)))
:HINTS
(("goal" :EXPAND (:FREE (X) (STP X)) :IN-THEORY
(SET-DIFFERENCE-THEORIES (CURRENT-THEORY 'GROUND-ZERO)
'(NTH UPDATE-NTH))))
:RULE-CLASSES NIL)
(DEFTHM ZFLG-UPDATE-TYPE
(IMPLIES (STP ST)
(IFF (STP (UPDATE-NTH 6 V ST))
(UNSIGNED-BYTE-P 1 V)))
:HINTS
(("goal" :IN-THEORY
(UNION-THEORIES '(UNSIGNED-BYTE-P SIGNED-BYTE-P ZFLGP)
(CURRENT-THEORY 'GROUND-ZERO))
:USE ZFLG-UPDATE-TYPE-HELPER)))
(DEFTHM X-LINEAR
(IMPLIES (STP ST)
(AND (<= 0 (NTH 7 ST)) (<= (NTH 7 ST) 255)))
:RULE-CLASSES (:LINEAR :REWRITE) :HINTS
(("goal" :IN-THEORY
(UNION-THEORIES (CURRENT-THEORY 'GROUND-ZERO)
'(STP XP)))))
(DEFTHM X-TYPE
(IMPLIES (STP ST)
(AND (INTEGERP (NTH 7 ST))
(UNSIGNED-BYTE-P 8 (NTH 7 ST))))
:HINTS
(("goal" :IN-THEORY
(UNION-THEORIES (CURRENT-THEORY 'GROUND-ZERO)
'(SIGNED-BYTE-P-<= UNSIGNED-BYTE-P-<= XP))
:EXPAND (STP ST)))
:rule-classes (:rewrite :type-prescription))
(DEFTHM X-UPDATE-TYPE-HELPER
(IMPLIES (STP ST)
(IFF (STP (UPDATE-NTH 7 V ST)) (XP V)))
:HINTS
(("goal" :EXPAND (:FREE (X) (STP X)) :IN-THEORY
(SET-DIFFERENCE-THEORIES (CURRENT-THEORY 'GROUND-ZERO)
'(NTH UPDATE-NTH))))
:RULE-CLASSES NIL)
(DEFTHM X-UPDATE-TYPE
(IMPLIES (STP ST)
(IFF (STP (UPDATE-NTH 7 V ST))
(UNSIGNED-BYTE-P 8 V)))
:HINTS
(("goal" :IN-THEORY
(UNION-THEORIES '(UNSIGNED-BYTE-P SIGNED-BYTE-P XP)
(CURRENT-THEORY 'GROUND-ZERO))
:USE X-UPDATE-TYPE-HELPER)))
;; We now model the algorithm contained in Legato's paper. We use the
;; line numbers from page 7 of his note.
;; We use an awkward modeling style to avoid use of the reader. This
;; means that
;; 1. We employ IHS functions directly. logapp, loghead, logtail,
;; ash, logcdr, unsigned-byte-p etc. are all described in the IHS
;; library that comes with the ACL2 distribution.
;; 2. We employ an awkward, multiple-let-binding style.
;;
;; Note also that the Mostek 6502 microprocessor commands of this
;; program assume a big-endian byte, while we prefer a small-endian
;; style for proofs. We model the operations how we like, but this
;; sometimes makes the model confusing. Note for example that a
;; "right shift" command is implemented using the IHS function logcdr.
;; ldx #8
(defun line1 (st)
(declare (xargs :stobjs st))
(let ((st (update-x 8 st)))
st))
;; lda #0
(defun line2 (st)
(declare (xargs :stobjs st))
(let ((st (update-a 0 st)))
st))
; Added by Matt K. for v2-7; needed for several guard proofs below.
(local (in-theory (enable unsigned-byte-p logbitp)))
;; loop ror f1
(defun line3 (st)
(declare (xargs :stobjs st
:guard-hints (("goal" :in-theory
(enable logapp loghead logcar stp)))))
(let ((temp (cflg st)))
(let ((st (update-cflg (logcar (f1 st)) st)))
(let ((st (update-f1 (logapp 7 (logcdr (f1 st)) temp) st)))
st))))
;; bcc zcoef
;; clc
(defun line5 (st)
(declare (xargs :stobjs st))
(let ((st (update-cflg 0 st)))
st))
;; adc f2 - set a to a + f2 + c
(defun line6 (st)
(declare (xargs :stobjs st
:guard-hints (("goal" :in-theory
(enable logapp loghead
logcar logbit)))))
(let ((temp (+ (a st) (f2 st) (cflg st))))
(let ((st (update-a (loghead 8 temp) st)))
(let ((st (update-cflg (logbit 8 temp) st)))
st))))
;; zcoef ror a
(defun line7 (st)
(declare (xargs :stobjs st
:guard-hints (("goal" :in-theory
(enable logapp loghead logcar)))))
(let ((temp (cflg st)))
(let ((st (update-cflg (logcar (a st)) st)))
(let ((st (update-a (logapp 7 (logcdr (a st)) temp) st)))
st))))
;; ror low
(defun line8 (st)
(declare (xargs :stobjs st
:guard-hints (("goal" :in-theory
(enable logapp loghead logcar)))))
(let ((temp (cflg st)))
(let ((st (update-cflg (logcar (low st)) st)))
(let ((st (update-low (logapp 7 (logcdr (low st)) temp) st)))
st))))
;; dex
(defun line9 (st)
(declare (xargs :stobjs st
:guard-hints (("goal" :in-theory
(enable logapp loghead logcar)))))
(let ((temp (loghead 8 (1- (x st)))))
(let ((st (update-zflg (if (equal temp 0) 1 0) st)))
(let ((st (update-x temp st)))
st))))
;; bne loop
;;; Now, compose line models into a program
(defun multloop (st)
(declare (xargs :stobjs st
:measure (nfix (x st))
:hints (("goal" :in-theory
(enable unsigned-byte-p nfix)))))
(if (and (integerp (x st)) (< 0 (x st)))
(let ((st (line3 st)))
(let ((st (if (equal (cflg st) 1)
(let ((st (line5 st)))
(line6 st))
st)))
(let ((st (line7 st)))
(let ((st (line8 st)))
(let ((st (line9 st)))
(if (equal (zflg st) 0)
(multloop st)
st))))))
st))
(defun multprog (st)
(declare (xargs :stobjs st))
(let ((st (line1 st)))
(let ((st (line2 st)))
(multloop st))))
;; Here's the result of the computation - a 16 bit product that winds
;; up in two 8-bit registers.
(defun result (st)
(declare (xargs :stobjs st))
(logapp 8 (low st) (a st)))
#|
Let's test our program!
ACL2 !>:q
Exiting the ACL2 read-eval-print loop. To re-enter, execute (LP).
ACL2>(update-f2 79 st)
(#(0) #(79) #(0) #(0) #(0) #*0 #*0 #(0))
ACL2>(update-f1 84 st)
(#(84) #(79) #(0) #(0) #(0) #*0 #*0 #(0))
ACL2>(multprog st)
(#(0) #(79) #(0) #(25) #(236) #*0 #*1 #(0))
ACL2>(result st)
6636
ACL2>(* 79 84)
6636
ACL2>
|#
(in-theory (disable stp))
;; We're finally ready to do the proof.
;; The following rules instruct the prover to open up the
;; multiplication in a way consistent with how the 6502 program
;; calculates the product.
(defthm ash-*-casesplit-v1
(implies
(and
(equal (logcar x) 0)
(integerp x) (integerp y) (integerp n) (<= 0 n))
(equal (ash (* y x) n) (ash (* y (logcdr x)) (1+ n))))
:hints (("goal" :in-theory (enable ash-*2-simplify ash*))))
(defthm ash-*-casesplit-v2
(implies
(and
(equal (logcar x) 1)
(integerp x) (integerp y) (integerp n) (<= 0 n))
(equal (ash (* y x) n) (+ (ash y n) (ash (* y (logcdr x)) (1+ n)))))
:hints (("goal" :in-theory
(enable *ARK*-ASH-+-POS ash-*2-simplify ash*))))
(defthm *-logcar-casesplit
(implies
(and (integerp x) (integerp y))
(equal
(* (logcar x) y)
(if (equal (logcar x) 0) 0 y)))
:hints (("goal" :in-theory (enable logcar))))
;; The symbolic result of the loop leaves our result a mess. We use
;; this rule to put the result "back together" again so that we can
;; reason about the effect of one iteration of the loop.
(defthm +-reconstruct-bridge
(implies
(and
(equal (logcdr (+ x y)) z)
(integerp x) (integerp y))
(equal
(logapp
1
(b-xor (logcar x) (logcar y))
z)
(+ x y)))
:hints (("goal" :in-theory (enable logapp*))))
;; simplify result function if the upper byte is set to 0
(defthm result-update-nth
(implies
(stp st)
(equal
(result (update-nth 3 0 st))
(low st))))
; Added by Matt K. for v2-7:
(local (in-theory (disable unsigned-byte-p logbitp)))
;; Prove that the loop works. Note that the theorem's conclusion is a
;; generalization of the needed behavior that allows for induction.
(defthm loop-works
(implies
(and
(stp st)
(<= (x st) 8))
(equal (result (multloop st))
(+
(logtail (x st) (result st))
(ash (* (loghead (x st) (f1 st)) (f2 st)) (- 8 (x st))))))
:hints (("goal" :in-theory (enable logtail* logbitp* ash*))))
;; With the loop proved, the program's proof is straightforward.
(defthm prog-works
(implies
(stp st)
(equal (result (multprog st))
(* (f1 st) (f2 st))))
:hints (("goal" :in-theory (disable multloop result))))
|