This file is indexed.

/usr/share/acl2-8.0dfsg/books/misc/multi-v-uni.lisp is in acl2-books-source 8.0dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
;       A Mechanically Checked Proof of a
; Multiprocessor Result via a Uniprocessor View

;              J Strother Moore
;              Febuary 27, 1998

; This script proves the theorem described in the paper ``A Mechanically
; Checked Proof of a Multiprocessor Result via a Uniprocessor View'', J Moore,
; Formal Methods in System Design, 14(2), March, 1999, pp. 213-228.  See also

; http://www.cs.utexas.edu/users/moore/publications/multi-v-uni.pdf

(in-package "ACL2")

(defun make-mstate (alist mem code)
  (list alist mem code))
(defun pida (s) (nth 0 s))
(defun mem (s) (nth 1 s))
(defun code (s) (nth 2 s))

(defthm pida-make-mstate
  (equal (pida (make-mstate alist mem code)) alist))

(defthm mem-make-mstate
  (equal (mem (make-mstate alist mem code)) mem))

(defthm code-make-mstate
  (equal (code (make-mstate alist mem code)) code))

(in-theory (disable make-mstate pida mem code))

(defun make-ls (pcn regs)
  (list pcn regs))
(defun pcn (ls) (nth 0 ls))
(defun regs (ls) (nth 1 ls))

(defthm pcn-make-ls
  (equal (pcn (make-ls pcn regs)) pcn))

(defthm regs-make-ls
  (equal (regs (make-ls pcn regs)) regs))

(in-theory (disable make-ls pcn regs))

(defmacro modify (s &key
                    (pcn 'nil pcnp)
                    (regs 'nil regsp)
                    (pida 'nil pidap)
                    (mem 'nil memp)
                    (code 'nil codep))

; This is a weird macro which implements an overloaded form of modify.
; (modify s :pcn x) treats s as though it were a local state, while
; (modify s :mem x) treats s as though it were a mstate.

  (if (or pcnp regsp)
      `(make-ls
        ,(if pcnp pcn `(pcn ,s))
        ,(if regsp regs `(regs ,s)))
    `(make-mstate
      ,(if pidap
           pida
         `(pida ,s))
      ,(if memp mem `(mem ,s))
      ,(if codep code `(code ,s)))))

(defun bind (x y alist)
  (cond ((endp alist) (list (cons x y)))
        ((equal x (car (car alist)))
         (cons (cons x y) (cdr alist)))
        (t (cons (car alist) (bind x y (cdr alist))))))

(defun bound? (x alist)
  (cond ((endp alist) nil)
        ((equal x (caar alist)) (car alist))
        (t (bound? x (cdr alist)))))

(defmacro binding (x alist)
  `(cdr (bound? ,x ,alist)))

(defthm bound?-bind
  (equal (bound? var1 (bind var2 val alist))
         (if (equal var1 var2)
             (cons var1 val)
             (bound? var1 alist))))

(defun ls (pid s)
  (binding pid (pida s)))

(defun current-instruction (pid s)
  (nth (pcn (ls pid s)) (code s)))

; The code in question is:

#| ((LOAD OLD CTR)
    (INCR NEW OLD)
    (CAS CTR OLD NEW)
    (BR NEW 1)
    (JUMP 0))|#

(defun load-step (ins ls mem)
  (let ((reg (cadr ins))    ; (LOAD reg loc):   reg := mem(loc)
        (loc (caddr ins)))
    (mv (modify ls
                :pcn (1+ (pcn ls))
                :regs (bind reg (binding loc mem) (regs ls)))
        mem)))

(defun incr-step (ins ls mem)
  (let ((reg1 (cadr ins))    ; (INCR reg1 reg2): reg1 := reg2+1
        (reg2 (caddr ins)))
    (mv (modify ls
                :pcn (1+ (pcn ls))
                :regs (bind reg1
                            (1+ (binding reg2 (regs ls)))
                            (regs ls)))
        mem)))

(defun cas-step (ins ls mem)
; (CAS loc reg1 reg2): If mem(loc)=reg1
;                         then mem(loc):=reg2 ; reg2:=nil
;                         else reg1:=mem(loc) ; reg2:=t
  (let ((loc (cadr ins))
        (reg1 (caddr ins))
        (reg2 (cadddr ins)))
    (cond
     ((equal (binding reg1 (regs ls))
             (binding loc mem))
      (mv (modify ls
                  :pcn (1+ (pcn ls))
                  :regs (bind reg2 nil (regs ls)))
          (bind loc (binding reg2 (regs ls)) mem)))
     (t (mv (modify ls
                    :pcn (1+ (pcn ls))
                    :regs (bind reg1 (binding loc mem)
                                (bind reg2 t (regs ls))))
            mem)))))

(defun br-step (ins ls mem)
  (let ((reg (cadr ins)) ; (BR reg adr): if reg, go to adr
        (adr (caddr ins)))
    (mv (modify ls
                :pcn (if (binding reg (regs ls))
                        adr
                      (1+ (pcn ls))))
        mem)))

(defun jump-step (ins ls mem)
  (let ((adr (cadr ins)) ; (JUMP adr):  goto to adr
        )
    (mv (modify ls
                :pcn adr)
        mem)))

(defun execute (pid ins s)
  (let ((ls (ls pid s)))
    (mv-let (new-ls new-mem)
            (case (car ins)
              (load   (load-step   ins ls (mem s)))
              (incr   (incr-step   ins ls (mem s)))
              (cas (cas-step ins ls (mem s)))
              (br  (br-step  ins ls (mem s)))
              (jump   (jump-step   ins ls (mem s)))
              (otherwise (mv ls (mem s))))
            (modify s
                    :pida
                    (bind pid new-ls (pida s))
                    :mem new-mem))))

(defun mstep (pid s)
  (cond ((bound? pid (pida s))
         (execute pid
                  (current-instruction pid s)
                  s))
        (t s)))

(defun mrun (oracle s)
  (if (endp oracle)
      s
    (mrun (cdr oracle)
          (mstep (car oracle) s))))

; We now develop the basic rules for dealing with mrun.

(defthm multrun-opener
  (equal (mrun (cons pid L) s)
         (mrun L (mstep pid s)))
  :hints (("goal" :in-theory (disable mstep))))

(defthm mstep-opener
  (implies (consp (current-instruction pid s))
           (equal (mstep pid s)
                  (if (bound? pid (pida s))
                      (execute pid
                               (current-instruction pid s)
                               s)
                    s))))

(in-theory (disable mstep))

(defthm mrun-append
  (equal (mrun (append L1 L2) s)
         (mrun L2 (mrun L1 s))))

(defthm code-mstep
  (equal (code (mstep pid s))
         (code s))
  :hints (("Goal" :in-theory (enable mstep))))

(defthm code-mrun
  (equal (code (mrun L s))
         (code s)))

(defthm bound?-mstep
  (iff (bound? pid (pida (mstep active-pid s)))
       (bound? pid (pida s)))
  :hints (("Goal" :in-theory (enable mstep))))

(defthm bound?-mrun
  (iff (bound? pid (pida (mrun L s)))
       (bound? pid (pida s))))

(defthm bound?-pida
  (implies (not (member-equal pid L))
           (equal (bound? pid (pida (mrun L s)))
                  (bound? pid (pida s))))
  :hints (("Goal" :in-theory (enable mstep))))

; ----------------------------------------------------------------------------

; We now develop the single processor view of the system.

(defun make-ustate (uls umem ucode)
  (list uls umem ucode))
(defun uls (us) (nth 0 us))
(defun umem (us) (nth 1 us))
(defun ucode (us) (nth 2 us))

(defthm uls-make-ustate
  (equal (uls (make-ustate uls umem ucode)) uls))
(defthm umem-make-ustate
  (equal (umem (make-ustate uls umem ucode)) umem))
(defthm ucode-make-ustate
  (equal (ucode (make-ustate uls umem ucode)) ucode))
(in-theory (disable make-ustate uls umem ucode))

(defun current-uinstruction (us)
  (nth (pcn (uls us)) (ucode us)))

(defun uexecute (ins us actual-mem)
  (LET
    ((LS (uls us)))
    (MV-LET (NEW-LS NEW-MEM)
            (CASE (CAR INS)
              (LOAD (LOAD-STEP INS LS actual-mem))
              (INCR (INCR-STEP INS LS actual-mem))
              (CAS (CAS-STEP INS LS actual-mem))
              (BR (BR-STEP INS LS actual-mem))
              (JUMP (JUMP-STEP INS LS actual-mem))
              (OTHERWISE (MV LS actual-mem)))
            (make-ustate new-ls
                         new-mem
                         (ucode us)))))

(defun ustep (us actual-mem)
  (uexecute (current-uinstruction us) us actual-mem))

(defun urun (us M)
  (cond ((endp M) us)
        ((endp (cdr M))
         (make-ustate (uls us)
                      (car M)
                      (ucode us)))
        (t (urun (ustep us (car M)) (cdr M)))))

; Originally, I defined (ascendingp M) to just check that the sequence
; of 'ctr bindings was weakly ascending.  That was insufficient to
; make our main theorem a theorem!  Imagine that ctr is fixed in
; M1-M6.  When the CAS is executed, it will do the write,
; increasing the CTR, say on the step applied to M3.  But the step
; applied to M4 will use M4, not the new memory!  The ascending
; predicate must be stronger.

(defthm urun-opener
  (equal (urun us (cons mem M))
         (if (endp M)
             (make-ustate (uls us) mem (ucode us))
             (urun (ustep us mem) M)))
  :hints (("goal" :in-theory (disable ustep))))

(defthm ustep-opener
  (implies (consp (current-uinstruction us))
           (equal (ustep us mem)
                  (uexecute
                           (current-uinstruction us)
                           us
                           mem))))
(in-theory (disable ustep))

(defun proj (pid s)
  (make-ustate (ls pid s)
               (mem s)
               (code s)))

(defun initial-subsequence (L pid)
  (cond ((endp L) nil)
        ((equal (car L) pid) nil)
        (t (cons (car L) (initial-subsequence (cdr L) pid)))))

(defthm acl2-count-member-equal
  (implies (member-equal pid L)
           (<= (acl2-count (member-equal pid L))
               (acl2-count L)))
  :rule-classes :linear)

(defun partition-oracle (pid L)
  (cond ((member-equal pid L)
         (cons (initial-subsequence L pid)
               (partition-oracle pid (cdr (member-equal pid L)))))
        (t (list L))))

(defun new-oracle (pid s partitions)
  (cond ((endp partitions) nil)
        (t (cons (mem (mrun (car partitions) s))
                 (new-oracle pid
                             (mstep pid (mrun (car partitions) s))
                             (cdr partitions))))))

(defun proj-oracle (pid s L)
  (new-oracle pid s (partition-oracle pid L)))

(defthm new-oracle-opener
  (equal (new-oracle pid s (cons part L))
         (cons (mem (mrun part s))
               (new-oracle pid
                           (mstep pid (mrun part s))
                           L))))

(defun mrun-is-urun-hint (pid L s)
  (cond ((member-equal pid L)
         (mrun-is-urun-hint
          pid
          (cdr (member-equal pid L))
          (mstep pid (mrun (initial-subsequence L pid) s))))
        (t s)))

(defthm consp-new-oracle
  (iff (consp (new-oracle pid s L))
       (consp L)))

(defthm initial-subsequence-elim
  (implies (member-equal pid L)
           (equal (append (initial-subsequence L pid)
                          (cons pid (cdr (member-equal pid L))))
                  L))
  :rule-classes :elim)

(defthm ustep-is-mstep
  (implies (and (not (member-equal pid L))
                (bound? pid (pida s))
                (equal code (code s)))
           (equal (ustep (make-ustate (binding pid (pida s))
                                      (mem s)
                                      code)
                         (mem (mrun L s)))
                  (make-ustate
                   (binding pid
                            (pida
                             (mstep pid (mrun L s))))
                   (mem (mstep pid (mrun L s)))
                   (code s))))
  :hints (("Goal" :do-not-induct t
           :in-theory (set-difference-theories (enable ustep mstep)
                                               '(load-step
                                                 incr-step
                                                 cas-step
                                                 br-step
                                                 jump-step)))))

(defthm member-equal-initial-subsequence
  (not (member-equal pid (initial-subsequence L pid))))

(defmacro processp (pid s)
  `(bound? ,pid (pida ,s)))

(defthm commutative-diagram
  (implies (processp pid s)
           (equal (urun (proj pid s)
                        (proj-oracle pid s L))
                  (proj pid (mrun L s))))
  :hints (("Goal" :induct (mrun-is-urun-hint pid L s))))

(defthm umem-proj
  (equal (umem (proj pid s)) (mem s)))

(defthm commutative-diagram-corollary
  (implies (processp pid s)
           (equal (mem (mrun L s))
                  (umem
                   (urun (proj pid s)
                         (proj-oracle pid s L)))))
  :hints (("Goal" :in-theory (disable proj proj-oracle))))

(in-theory (disable commutative-diagram-corollary))

; if you enable this rule, (disable ustep-is-mstep commutative-diagram)!

(defthm len-new-oracle
  (equal (len (new-oracle pid s L))
         (len L)))

(defthm uls-proj (equal (uls (proj pid s)) (ls pid s)))

(defthm ucode-proj (equal (ucode (proj pid s)) (code s)))

; ----------------------------------------------------------------------------

; We now develop the Preorder Projection Theorem.

(encapsulate
 ((P (s) t)
  (R (mem1 mem2) t))
 (local
  (defun P (s) (declare (ignore s)) t))
 (local
  (defun R (mem1 mem2) (declare (ignore mem1 mem2)) t))
 (defthm R-reflexive
   (implies (P s)
            (R (mem s) (mem s))))
 (defthm R-transitive
   (implies (and (R mem1 mem2)
                 (R mem2 mem3))
            (R mem1 mem3)))
 (defthm P-mstep
   (implies (P s) (P (mstep pid s))))
 (defthm R-mstep
   (implies (P s)
            (R (mem s) (mem (mstep pid s))))))

(defun R-urunp (us M)
  (declare (xargs :measure (acl2-count M)))
  (cond ((endp M) t)
        ((R (umem us) (car M))
         (R-urunp (ustep us (car M))
                  (cdr M)))
        (t nil)))

(defthm R-urunp-opener
  (equal (R-urunp us (cons mem M))
         (and (R (umem us) mem)
              (R-urunp (ustep us mem) M))))

(defthm P-mrun
  (implies (P s) (P (mrun L s))))

(defthm R-mrun
  (implies (P s)
           (R (mem s) (mem (mrun L s))))
  :hints (("Subgoal *1/3"
           :use
           (:instance R-mstep
                      (pid (car L))
                      (s s))
           :in-theory (disable R-mstep))))

(defthm preorder-projection
  (implies (and (P s)
                (bound? pid (pida s)))
           (R-urunp (proj pid s) (proj-oracle pid s L)))
  :hints (("Goal" :induct (mrun-is-urun-hint pid L s))))

; The above theorem is interesting because it lets us conclude
; something about a urun of a projection from an analogous thing about
; a mrun.  I show how to use this in the example proof below.
; -----------------------------------------------------------------------------

; Utilities about occurrences and oracles...

(defun occurrences (pid L)
  (cond ((endp L) 0)
        ((equal pid (car L))
         (1+ (occurrences pid (cdr L))))
        (t (occurrences pid (cdr L)))))

(defthm equal-len-n
  (implies (and (syntaxp (quotep n))
                (< 0 n))
           (equal (equal (len x) n)
                  (and (consp x)
                       (equal (len (cdr x)) (1- n))))))

(in-theory (disable equal-len-n))

(defthm equal-len-0
  (equal (equal (len x) 0) (endp x)))

(defthm alt-occurrences
  (equal (occurrences pid L)
         (if (member-equal pid L)
             (1+ (occurrences pid (cdr (member-equal pid L))))
           0))
  :rule-classes
  ((:definition :clique (occurrences)
                :controller-alist ((occurrences nil t)))))

(defthm occurrences-non-0-implies-member-equal
  (implies (< 0 (occurrences pid L))
           (member-equal pid L)))

(defthm len-partition-oracle
  (equal (len (partition-oracle pid L))
         (1+ (occurrences pid L))))

(defthm len-proj-oracle
  (equal (len (proj-oracle pid s L))
         (1+ (occurrences pid L))))

; -----------------------------------------------------------------------------

; We now develop the proof of the program per se.

(defmacro ctr (s)
  `(binding 'ctr (mem ,s)))

(defun good-local-statep (ls)
  (and (integerp (pcn ls))
       (<= 0 (pcn ls))
       (<= (pcn ls) 4)
       (integerp (binding 'old (regs ls)))
       (implies (equal (pcn ls) 2)
                (equal (1+ (binding 'old (regs ls)))
                       (binding 'new (regs ls))))))

(defun pida-invariantp (alist)
  (cond ((endp alist)
         (equal alist nil))
        (t (and (consp (car alist))
                (good-local-statep (cdar alist))
                (pida-invariantp (cdr alist))))))

(defun good-statep (s)
  (and (pida-invariantp (pida s))
       (integerp (ctr s))
       (equal (code s)
              '((LOAD OLD CTR)
                (INCR NEW OLD)
                (CAS CTR OLD NEW)
                (BR NEW 1)
                (JUMP 0)))))

; See the essay at the bottom for some explanation of the next two
; lemmas.

(defthm good-local-statep!
  (implies (good-local-statep ls)
           (and (integerp (pcn ls))
                (<= 0 (pcn ls))
                (<= (pcn ls) 4)
                (integerp (binding 'old (regs ls)))
                (implies (equal (pcn ls) 2)
                         (equal (1+ (binding 'old (regs ls)))
                                (binding 'new (regs ls))))))
  :rule-classes
  ((:type-prescription
    :corollary
    (implies (good-local-statep ls)
             (integerp (pcn ls))))
   (:type-prescription
    :corollary
    (implies (good-local-statep ls)
             (integerp (binding 'old (regs ls)))))
   (:rewrite
    :corollary
    (implies (and (good-local-statep ls)
                  (equal (pcn ls) 2))
             (equal (binding 'new (regs ls)) ; note orientation
                    (1+ (binding 'old (regs ls))))))
   (:linear
    :corollary
    (implies (good-local-statep ls)
             (and (<= 0 (pcn ls))
                  (<= (pcn ls) 4))))))

(defthm pida-invariantp!
  (implies (and (pida-invariantp alist)
                (bound? pid alist))
           (good-local-statep (binding pid alist)))
  :rule-classes :type-prescription)

(defthm pida-invariantp-bind
  (implies (pida-invariantp alist)
           (equal (pida-invariantp (bind pid ls alist))
                  (good-local-statep ls))))

; The following theorem was not needed by ACL2 Version 1.9, which existed in
; 1998 when this proof was first done.  The reason is that Version 1.9
; opened recursive functions more agressively than subsequent ACL2 releases.

; Basically (nth pcn '((LOAD OLD CTR) ...)) is the expansion of the
; (current-instruction s) under our good-statep hypothesis.  When trying to
; prove that good-statep is preserved by mstep, one must consider which
; instruction mstep is executing.  When, for example, executing a LOAD into
; OLD, we must be able to show that the memory location being laoded is an
; integer.  But the only such knowledge about mem is for CTR.  Thus, the only
; legal LOAD to OLD is (LOAD OLD CTR).  Any other LOAD to OLD would break the
; good-statep invariant.  So the only way to prove the invariance of
; good-statep is to make sure that each of the five instructions in our program
; preserves it.  Thus rule forces ACL2 to case split on the pcn and consider
; each of the possbilities.

(defthm pcn-case-split
  (equal (nth pcn
              '((LOAD OLD CTR)     ; 0
                (INCR NEW OLD)     ; 1
                (CAS CTR OLD NEW)  ; 2
                (BR NEW 1)         ; 3
                (JUMP 0)))         ; 4
         (case pcn
           (0 '(LOAD OLD CTR))
           (1 '(INCR NEW OLD))
           (2 '(CAS CTR OLD NEW))
           (3 '(BR NEW 1))
           (4 '(JUMP 0))
           (otherwise (if (zp pcn)
                          '(LOAD OLD CTR)
                          nil)))))

; So it is easy to see now that good-statep is preserved by mstep,

(defthm good-statep-mstep
  (implies (good-statep s)
           (good-statep (mstep pid s)))
  :hints
  (("Goal" :in-theory (enable mstep))))

; and hence by mrun.

(defthm good-statep-mrun
  (implies (good-statep s)
           (good-statep (mrun L s))))

; Now we define the predicate on M that insures that memory values are
; legal.  They dominate the value seen by the selected process.

(defun ascendingp (us M)
  (declare (xargs :measure (acl2-count M)))
  (cond ((endp M) t)
        (t (and (integerp (binding 'ctr (car M)))
                (<= (binding 'ctr (umem us))
                    (binding 'ctr (car M)))
                (ascendingp (ustep us (car M)) (cdr M))))))

; To prove that by our preorder-projection we really just need two
; facts:

(defthm ctr-<=-ctr-mstep
  (implies (good-statep s)
           (<= (ctr s) (ctr (mstep pid s))))
  :rule-classes :linear
  :hints (("Goal" :in-theory (enable mstep))))

(defthm integerp-ctr-mstep
  (implies (good-statep s)
           (integerp (ctr (mstep pid s))))
  :hints (("Goal" :in-theory (enable mstep)))
  :rule-classes (:rewrite :type-prescription))

; So the projection property tells us that the projected state/oracle
; ascend.

(defthm preorder-projection-corollary
  (implies (and (good-statep s)
                (processp pid s))
           (ascendingp (proj pid s)
                       (proj-oracle pid s L)))
  :hints (("Goal"
           :use
           ((:functional-instance
             preorder-projection
             (P good-statep)
             (R (lambda (mem1 mem2)
                  (and (integerp (binding 'ctr mem2))
                       (<= (binding 'ctr mem1) (binding 'ctr mem2)))))
             (R-urunp ascendingp))))))

(defthm ascendingp-opener
  (equal (ascendingp us (cons mem M))
         (and (integerp (binding 'ctr mem))
              (<= (binding 'ctr (umem us))
                  (binding 'ctr mem))
              (ascendingp (ustep us mem) M)))
  :hints (("goal" :in-theory (disable ustep))))

(defthm crux-lemma
  (let ((M (list* M1 M2 M3 M4 M5 M6 M7 end)))
    (implies (and (endp end)
                  (ascendingp us M)
                  (good-local-statep (uls us))
                  (equal (ucode us)
                         '((LOAD OLD CTR)
                           (INCR NEW OLD)
                           (CAS CTR OLD NEW)
                           (BR NEW 1)
                           (JUMP 0))))
             (< (binding 'ctr (umem us)) (binding 'ctr (umem (urun us M))))))
  :rule-classes nil
  :hints
  (("Goal" :cases ((equal (pcn (uls us)) 0)
                   (equal (pcn (uls us)) 1)
                   (equal (pcn (uls us)) 2)
                   (equal (pcn (uls us)) 3)
                   (equal (pcn (uls us)) 4)))))

(defun good-u-statep (us)
  (and (good-local-statep (uls us))
       (equal (ucode us)
              '((LOAD OLD CTR)
                (INCR NEW OLD)
                (CAS CTR OLD NEW)
                (BR NEW 1)
                (JUMP 0)))))

(defthm crux
  (implies (and (equal (len M) 7)
                (ascendingp us M)
                (good-u-statep us))
           (< (binding 'ctr (umem us))
              (binding 'ctr (umem (urun us M)))))
  :rule-classes
  ((:rewrite :corollary
             (implies (and (equal (len M) 7)
                           (equal mem (umem us))
                           (ascendingp us M)
                           (good-u-statep us))
                      (< (binding 'ctr mem)
                         (binding 'ctr (umem (urun us M)))))))
  :hints (("Goal" :do-not-induct t
           :use
           (:instance crux-lemma
                      (m1 (car M))
                      (m2 (cadr M))
                      (m3 (caddr M))
                      (m4 (cadddr M))
                      (m5 (car (cddddr M)))
                      (m6 (cadr (cddddr M)))
                      (m7 (caddr (cddddr M)))
                      (end (cdddr (cddddr M))))
           :in-theory
           (set-difference-theories
            (enable equal-len-n)
            '(len umem ascendingp good-local-statep uls
                   ucode urun
                   urun-opener
                   ascendingp-opener)))))

(defthm lemma
  (implies (and (good-statep s)
                (processp pid s)
                (equal 6 (occurrences pid L)))
           (< (ctr s)
              (ctr (mrun L s))))
  :rule-classes nil
  :hints (("Goal"
           :do-not-induct t
           :in-theory
           (union-theories '(commutative-diagram-corollary)
                           (disable proj proj-oracle
                                    good-local-statep
                                    ustep-is-mstep
                                    commutative-diagram)))))

; -----------------------------------------------------------------------------

; Essay on good-local-statep! and pida-invariantp!

; Our goal formulas will have a hypothesis of (good-statep s).  This
; will expand to (pida-invariantp (pida s)).  From this we will have
; to be able to conclude such things as (integerp (pcn (binding pid
; (pida s)))).  How do we arrange for this to happen?

; Since the integerp fact is "type-like" we build it in at the
; :type-prescription level.  The lemma good-local-statep! causes us to
; backchain from (integerp (pcn ...)) to (good-local-statep ls).  But in
; general we won't have (good-local-statep ls) in the goal.  Instead we
; have to continue to backchain to (pida-invariantp ...).
; Furthermore, we have to do this backchain at the :type-prescription
; level for it to have the desired effect.

; We could reduce these two lemmas to one, eliminating the talk about
; good-local-statep and going directly from pida-invariantp down to
; integerp.  I chose this way because it is more illustrative of a
; hierarchical decomposition.

; -----------------------------------------------------------------------------

; I now finish the proof off.  We're here concerned with the Pigeon
; Hold Principle and the problem that the actual oracle may contain
; more than 6 occurrences of pid.

(defun cardinality (x)
  (if (endp x)
      0
    (if (member-equal (car x) (cdr x))
        (cardinality (cdr x))
      (1+ (cardinality (cdr x))))))

(defun delete-all (x L)
  (cond ((endp L) L)
        ((equal x (car L)) (delete-all x (cdr L)))
        (t (cons (car L) (delete-all x (cdr L))))))

(defthm acl2-count-delete-all
  (<= (acl2-count (delete-all x L))
      (acl2-count L))
  :rule-classes :linear)

(defthm not-member-equal-delete-all
  (implies (not (member-equal x L))
           (equal (delete-all x L) L)))

(defthm member-equal-delete-all
  (iff (member-equal x (delete-all y L))
       (if (equal x y)
           nil
         (member-equal x L))))

(defun choose (n L)
  (cond ((endp L) nil)
        ((<= n (occurrences (car L) (cdr L))) (car L))
        (t (choose n
                   (delete-all (car L) (cdr L))))))

(defthm cardinality<=len
  (<= (cardinality x) (len x))
  :rule-classes :linear)

(defun weird-induction-hint (L)
  (cond ((endp L) t)
        (t (weird-induction-hint (delete-all (car L) (cdr L))))))

(in-theory (disable initial-subsequence-elim))

(defthm cardinality-delete-all
  (equal (cardinality (delete-all x L))
         (if (member-equal x L)
             (1- (cardinality L))
           (cardinality L))))

(defthm alt-cardinality
  (equal (cardinality L)
         (if (endp L)
             0
           (1+ (cardinality (delete-all (car L) (cdr L))))))
  :rule-classes
  ((:definition :clique (cardinality)
                :controller-alist ((cardinality t)))))

(in-theory (disable cardinality-delete-all))

(defthm len-delete-all
  (equal (len (delete-all x L))
         (- (len L) (occurrences x L))))

(defthm occurrence-delete-all
  (equal (occurrences x (delete-all y L))
         (if (equal x y)
             0
           (occurrences x L))))

; Here is the crucial fact:

(defthm pigeon-hole-principle
  (implies (and (integerp i)
                (<= 0 i)
                (< (* i (cardinality L)) (len L)))
           (< i (occurrences (choose i L) L)))
  :rule-classes :linear)

; Given (< (* 5 (cardinality L)) (len L)) we know (<= 6 (occurrences
; (choose 5 L) L)).  Thus we can partition L into two bits:

(defun first-n-occurrences (n x L)
  (cond ((zp n) nil)
        ((endp L) L)
        ((equal x (car L))
         (cons (car L) (first-n-occurrences (1- n) x (cdr L))))
        (t (cons (car L) (first-n-occurrences n x (cdr L))))))

(defun all-but-first-n-occurrences (n x L)
  (cond ((zp n) L)
        ((endp L) L)
        ((equal x (car L))
         (all-but-first-n-occurrences (1- n) x (cdr L)))
        (t (all-but-first-n-occurrences n x (cdr L)))))

(defthm partition-after-first-n
  (implies (<= n (occurrences x L))
           (equal L (append (first-n-occurrences n x L)
                            (all-but-first-n-occurrences n x L))))
  :rule-classes nil)

; Of course, if everything in L is bound in (pida s), then choose
; returns something bound in (pida s).

(defun all-bound? (L alist)
  (cond ((endp L) t)
        (t (and (bound? (car L) alist)
                (all-bound? (cdr L) alist)))))


(defthm all-bound?-implies-choose-bound
  (implies (and (all-bound? L alist)
                (integerp n)
                (<= 0 n)
                (< n (occurrences (choose n L) L)))
           (bound? (choose n L) alist)))

; Given that, we can apply lemma to get past the first 6
; steps of the chosen pid, and then appeal to the fact

(defthm pida-invariantp-mstep
  (implies (good-statep s)
           (pida-invariantp (pida (mstep pid s))))
  :hints (("Goal" :in-theory (disable good-statep-mstep)
                  :use good-statep-mstep)))

(defthm ctr-<=-ctr-mrun
  (implies (good-statep s)
           (<= (ctr s) (ctr (mrun L s))))
  :rule-classes :linear)

; Finally, to appeal to lemma we need to know:

(defthm occurrences-first-n-occurrences
  (implies (and (integerp n)
                (<= 0 n)
                (<= n (occurrences x L)))
           (equal (occurrences x (first-n-occurrences n x L))
                  n)))

(defun every-element-a-processp (L s)
  (all-bound? L (pida s)))

; So here is our main goal, stated simply:

(defthm theorem
  (implies (and (good-statep s)
                (every-element-a-processp L s)
                (< (* 5 (cardinality L)) (len L)))
           (< (ctr s) (ctr (mrun L s))))
  :hints (("Goal"
           :in-theory (disable good-statep)
           :use ((:instance lemma (s s)
                              (pid (choose 5 L))
                              (L (first-n-occurrences 6 (choose 5 L) L)))
                 (:instance partition-after-first-n
                            (n 6)
                            (x (choose 5 L))
                            (L L))))))

; -----------------------------------------------------------------------------
; I finish by proving that good states exist.  In particular, the
; function n-processor-s0 constructs one for n processors,
; provided you give it a memory with a integerp ctr.

(defun pida0 (n)
  (cond ((zp n) nil)
        (t (cons (cons n (make-ls 0 '((old . 0)(new . 0))))
                 (pida0 (1- n))))))

(defun n-processor-s0 (n mem)
  (make-mstate (pida0 n)
               mem
               '((LOAD OLD CTR)
                 (INCR NEW OLD)
                 (CAS CTR OLD NEW)
                 (BR NEW 1)
                 (JUMP 0))))

(defthm good-states-exist
  (implies (integerp (binding 'ctr mem))
           (good-statep (n-processor-s0 n mem))))