/usr/share/acl2-8.0dfsg/books/misc/rtl-untranslate.lisp is in acl2-books-source 8.0dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 | ; Copyright (C) 2004-2015 Advanced Micro Devices, Inc.
; All rights reserved.
; License: A 3-clause BSD license. See the LICENSE file distributed with ACL2.
; Matt Kaufmann, included starting with ACL2 Version 2.8.
; Replacement function rtl-untranslate for predefined untranslate, suitable for
; untranslating (foo$ x $path) to (foo x) and e.g. (land a (land b c)) to
; (land a b c). Additional documentation may be written if requested.
(in-package "ACL2")
; We assume that all signal names end in $, and that a corresponding macro
; leaves off the $ to represent "optional" argument $path. Example:
; (sig$ n $path) <=> (sig n).
(program)
(include-book "symbol-btree")
(defun rtl-untrans-lop (lop x y width)
(cond ((and (consp y)
(eq (car y) lop)
(equal (car (last y)) width))
; This is the case (lop x (lop y1 y2 ... yk width) width).
(list* lop x (cdr y)))
(t
(list lop x y width))))
(defun sum-cat-sizes (lst acc)
(if (endp lst)
acc
(if (acl2-numberp (cadr lst))
(sum-cat-sizes (cddr lst)
(+ (cadr lst) acc))
nil)))
(defun rtl-untrans-cat (x xsize y ysize)
(cond ((and (consp y)
(eq (car y) 'cat)
(integerp ysize)
(eql ysize
(sum-cat-sizes (cdr y) 0)))
; This is the case (lop x (lop y1 y2 ... yk width) width).
(list* 'cat x xsize (cdr y)))
(t
(list 'cat x xsize y ysize))))
(defun cond1-length (term)
(case-match term
(('if1 & & z) (1+ (cond1-length z)))
(& 1)))
(defmacro rtl-untrans-and (&rest args)
(cons 'untranslate-and args))
(defmacro rtl-untrans-or (&rest args)
(cons 'untranslate-or args))
(defconst *rtl-untrans-boolean-primitives*
*untranslate-boolean-primitives*)
(mutual-recursion
; Changes from the original untranslate1 nest are indicated with:
;;; START addition for rtl-untrans1
; .....
;;; END addition for rtl-untrans1
; (not including obvious changes, like *untranslate-boolean-primitives* to
; *rtl-untrans-boolean-primitives*, untranslate1 to rtl-untrans1, and
; untranslate-if to rtl-untrans-if).
(defun rtl-untrans1 (term iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn wrld)
; Warning: It would be best to keep this in sync with
; obviously-iff-equiv-terms, specifically, giving similar attention in both to
; functions like implies, iff, and not, which depend only on the propositional
; equivalence class of each argument.
; Warning: Keep in sync with ACL2 source function untranslate1.
; We return a Lisp form that translates to term if iff-flg is nil and
; that translates to a term iff-equivalent to term if iff-flg is t.
; Wrld is an ACL2 logical world, which may be used to improve the
; appearance of the result, in particular to allow (nth k st) to be
; printed as (nth *field-name* st) if st is a stobj name and
; field-name is the kth field name of st; similarly for update-nth.
; It is perfectly appropriate for wrld to be nil if such extra
; information is not important.
; Note: The only reason we need the iff-flg is to let us translate (if
; x1 t x2) into (or x1 x2) when we are in an iff situation. We could
; ask type-set to check that x1 is Boolean, but that would require
; passing wrld into untranslate. That, in turn, would require passing
; wrld into such syntactic places as prettyify-clause and any other
; function that might want to print a term.
; Warning: This function may not terminate. We should consider making it
; primitive recursive by adding a natural number ("count") parameter.
(let ((term (if preprocess-fn
(mv-let (erp term1)
(ev-fncall-w! preprocess-fn
(list term wrld)
wrld
nil ; user-stobj-alist
nil ; safe-mode
nil ; gc-off
nil ; hard-error-returns-nilp
t ; okp
)
(or (and (null erp) term1)
term))
term)))
(cond ((variablep term) term)
((fquotep term)
(cond ((or (acl2-numberp (cadr term))
(stringp (cadr term))
(characterp (cadr term))
(eq (cadr term) nil)
(eq (cadr term) t)
(keywordp (cadr term)))
(cadr term))
(t term)))
((flambda-applicationp term)
(make-let-or-let*
(collect-non-trivial-bindings (lambda-formals (ffn-symb term))
(rtl-untrans1-lst (fargs term)
nil
untrans-tbl sigs-btree lops-alist
preprocess-fn
wrld))
(rtl-untrans1 (lambda-body (ffn-symb term)) iff-flg untrans-tbl sigs-btree lops-alist
preprocess-fn wrld)))
((and (eq (ffn-symb term) 'nth)
(quotep (fargn term 1))
(integerp (cadr (fargn term 1)))
(<= 0 (cadr (fargn term 1))))
(let ((accessor-name (accessor-root (cadr (fargn term 1))
(fargn term 2)
wrld)))
(list 'nth
(or accessor-name
(cadr (fargn term 1)))
(rtl-untrans1 (fargn term 2) nil untrans-tbl sigs-btree lops-alist preprocess-fn
wrld))))
((and (eq (ffn-symb term) 'update-nth)
(quotep (fargn term 1))
(integerp (cadr (fargn term 1)))
(<= 0 (cadr (fargn term 1))))
(let ((accessor-name (accessor-root (cadr (fargn term 1))
(fargn term 3)
wrld)))
(list 'update-nth
(or accessor-name
(cadr (fargn term 1)))
(rtl-untrans1 (fargn term 2) nil untrans-tbl sigs-btree lops-alist preprocess-fn
wrld)
(rtl-untrans1 (fargn term 3) nil untrans-tbl sigs-btree lops-alist preprocess-fn
wrld))))
((and (eq (ffn-symb term) 'update-nth-array)
(quotep (fargn term 1))
(integerp (cadr (fargn term 1)))
(<= 0 (cadr (fargn term 1))))
(let ((accessor-name (accessor-root (cadr (fargn term 1))
(fargn term 4)
wrld)))
(list 'update-nth-array
(or accessor-name
(cadr (fargn term 1)))
(rtl-untrans1 (fargn term 2) nil untrans-tbl sigs-btree lops-alist preprocess-fn
wrld)
(rtl-untrans1 (fargn term 3) nil untrans-tbl sigs-btree lops-alist preprocess-fn
wrld)
(rtl-untrans1 (fargn term 4) nil untrans-tbl sigs-btree lops-alist preprocess-fn
wrld))))
((eq (ffn-symb term) 'binary-+)
(cons '+
(rtl-untrans1-lst (right-associated-args 'binary-+ term)
nil untrans-tbl sigs-btree lops-alist preprocess-fn wrld)))
((eq (ffn-symb term) 'unary-/)
(list '/ (rtl-untrans1 (fargn term 1) nil untrans-tbl sigs-btree lops-alist preprocess-fn
wrld)))
((eq (ffn-symb term) 'unary--)
(list '- (rtl-untrans1 (fargn term 1) nil untrans-tbl sigs-btree lops-alist preprocess-fn
wrld)))
((eq (ffn-symb term) 'if)
(case-match term
(('if x1 *nil* *t*)
(list 'not (rtl-untrans1 x1 t untrans-tbl sigs-btree lops-alist preprocess-fn wrld)))
(('if x1 x2 *nil*)
(rtl-untrans-and (rtl-untrans1 x1 t untrans-tbl sigs-btree lops-alist preprocess-fn wrld)
(rtl-untrans1 x2 iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn
wrld)
iff-flg))
(('if x1 *nil* x2)
(rtl-untrans-and (list 'not (rtl-untrans1 x1 t untrans-tbl sigs-btree lops-alist
preprocess-fn wrld))
(rtl-untrans1 x2 iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn
wrld)
iff-flg))
(('if x1 x1 x2)
(rtl-untrans-or (rtl-untrans1 x1 iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn
wrld)
(rtl-untrans1 x2 iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn
wrld)))
(('if x1 x2 *t*)
; Observe that (if x1 x2 t) = (if x1 x2 (not nil)) = (if x1 x2 (not x1)) =
; (if (not x1) (not x1) x2) = (or (not x1) x2).
(rtl-untrans-or (list 'not (rtl-untrans1 x1 t untrans-tbl sigs-btree lops-alist
preprocess-fn wrld))
(rtl-untrans1 x2 iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn
wrld)))
(('if x1 *t* x2)
(cond
((or iff-flg
(and (nvariablep x1)
(not (fquotep x1))
(member-eq (ffn-symb x1)
*rtl-untrans-boolean-primitives*)))
(rtl-untrans-or (rtl-untrans1 x1 t untrans-tbl sigs-btree lops-alist
preprocess-fn wrld)
(rtl-untrans1 x2 iff-flg untrans-tbl sigs-btree lops-alist
preprocess-fn wrld)))
(t (rtl-untrans-if term iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn wrld))))
(& (rtl-untrans-if term iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn wrld))))
;;; START addition for rtl-untrans1
((eq (ffn-symb term) 'if1)
(cond ((> (cond1-length term) 2)
(cons 'cond1 (rtl-untrans-into-cond1-clauses term untrans-tbl sigs-btree lops-alist
preprocess-fn wrld)))
(t (list 'if1
(rtl-untrans1 (fargn term 1) nil untrans-tbl sigs-btree
lops-alist preprocess-fn wrld)
(rtl-untrans1 (fargn term 2) nil untrans-tbl sigs-btree
lops-alist preprocess-fn wrld)
(rtl-untrans1 (fargn term 3) nil untrans-tbl sigs-btree
lops-alist preprocess-fn wrld)))))
;;; END addition for rtl-untrans1
((and (eq (ffn-symb term) 'not)
(nvariablep (fargn term 1))
(not (fquotep (fargn term 1)))
(member-eq (ffn-symb (fargn term 1)) '(< o<)))
(list (if (eq (ffn-symb (fargn term 1)) '<) '<= 'o<=)
(rtl-untrans1 (fargn (fargn term 1) 2) nil untrans-tbl sigs-btree lops-alist
preprocess-fn wrld)
(rtl-untrans1 (fargn (fargn term 1) 1) nil untrans-tbl sigs-btree lops-alist
preprocess-fn wrld)))
((eq (ffn-symb term) 'not)
(dumb-negate-lit (rtl-untrans1 (fargn term 1) t untrans-tbl sigs-btree lops-alist
preprocess-fn wrld)))
((member-eq (ffn-symb term) '(implies iff))
(fcons-term* (ffn-symb term)
(rtl-untrans1 (fargn term 1) t untrans-tbl sigs-btree lops-alist preprocess-fn
wrld)
(rtl-untrans1 (fargn term 2) t untrans-tbl sigs-btree lops-alist preprocess-fn
wrld)))
((eq (ffn-symb term) 'cons) (rtl-untrans-cons term untrans-tbl sigs-btree lops-alist
preprocess-fn wrld))
((and (eq (ffn-symb term) 'synp)
; Even though translate insists that the second argument of synp is quoted, can
; we really guarantee that every termp given to rtl-untrans came through
; translate? Not necessarily; for example, maybe substitution was performed
; for some reason (say, in the proof-builder one replaces the quoted argument
; by a variable known to be equal to it).
(quotep (fargn term 2)))
; We store the quotation of the original form of a syntaxp or bind-free
; hypothesis in the second arg of its expansion. We do this so that we
; can use it here and output something that the user will recognise.
(cadr (fargn term 2)))
;;; START addition for rtl-untrans1
((eq (ffn-symb term) 'binary-cat) ; (cat x xsize y ysize)
(rtl-untrans-cat
(rtl-untrans1 (fargn term 1) nil untrans-tbl
sigs-btree lops-alist preprocess-fn wrld)
(rtl-untrans1 (fargn term 2) nil untrans-tbl
sigs-btree lops-alist preprocess-fn wrld)
(rtl-untrans1 (fargn term 3) nil untrans-tbl
sigs-btree lops-alist preprocess-fn wrld)
(rtl-untrans1 (fargn term 4) nil untrans-tbl
sigs-btree lops-alist preprocess-fn wrld)))
((and (eq (fargn term 2) '$path)
(let ((fn (symbol-btree-lookup (ffn-symb term) sigs-btree)))
(and fn
(list fn
(rtl-untrans1 (fargn term 1) nil untrans-tbl
sigs-btree lops-alist preprocess-fn wrld))))))
;;; END addition for rtl-untrans1
((and (eq (ffn-symb term) 'return-last)
(quotep (fargn term 1))
(let* ((key (unquote (fargn term 1)))
(fn (and (symbolp key)
key
(let ((tmp (return-last-lookup key
wrld)))
(if (consp tmp) (car tmp) tmp)))))
(and fn
(cons fn
(rtl-untrans1-lst (cdr (fargs term)) nil
untrans-tbl
sigs-btree lops-alist
preprocess-fn wrld))))))
(t
(let* ((pair (cdr (assoc-eq (ffn-symb term)
untrans-tbl)))
(op (car pair))
(flg (cdr pair)))
(cond
(op (cons op
(rtl-untrans1-lst
(cond
((and flg
(cdr (fargs term))
(null (cddr (fargs term))))
(right-associated-args (ffn-symb term)
term))
(t (fargs term)))
nil untrans-tbl sigs-btree lops-alist
preprocess-fn wrld)))
(t
;;; START addition for rtl-untrans1
(let ((op (cdr (assoc-eq (ffn-symb term) lops-alist))))
(cond
(op (rtl-untrans-lop op
(rtl-untrans1 (fargn term 1) nil untrans-tbl
sigs-btree lops-alist
preprocess-fn wrld)
(rtl-untrans1 (fargn term 2) nil untrans-tbl
sigs-btree lops-alist
preprocess-fn wrld)
(rtl-untrans1 (fargn term 3) nil untrans-tbl
sigs-btree lops-alist
preprocess-fn wrld)))
(t
;;; END addition for rtl-untrans1
(mv-let
(ad-list base)
(make-reversed-ad-list term nil)
(cond (ad-list
(pretty-parse-ad-list
ad-list '(#\R) 1
(rtl-untrans1 base nil untrans-tbl
sigs-btree lops-alist
preprocess-fn wrld)))
(t (cons (ffn-symb term)
(rtl-untrans1-lst (fargs term) nil
untrans-tbl
sigs-btree lops-alist
preprocess-fn
wrld)))))))))))))))
(defun rtl-untrans-cons1 (term untrans-tbl sigs-btree lops-alist preprocess-fn wrld)
; This function digs through a 'cons nest, untranslating each of the
; elements and the final non-cons cdr. It returns two results: the
; list of untranslated elements and the untranslated final term.
(cond ((variablep term) (mv nil (rtl-untrans1 term nil untrans-tbl sigs-btree lops-alist
preprocess-fn wrld)))
((fquotep term) (mv nil (rtl-untrans1 term nil untrans-tbl sigs-btree lops-alist preprocess-fn
wrld)))
((eq (ffn-symb term) 'cons)
(mv-let (elements x)
(rtl-untrans-cons1 (fargn term 2) untrans-tbl sigs-btree lops-alist preprocess-fn
wrld)
(mv (cons (rtl-untrans1 (fargn term 1) nil untrans-tbl sigs-btree lops-alist
preprocess-fn wrld)
elements)
x)))
(t (mv nil (rtl-untrans1 term nil untrans-tbl sigs-btree lops-alist preprocess-fn wrld)))))
(defun rtl-untrans-cons (term untrans-tbl sigs-btree lops-alist preprocess-fn wrld)
; Term is a non-quote term whose ffn-symb is 'cons. We untranslate
; it into a CONS, a LIST, or a LIST*.
(mv-let (elements x)
(rtl-untrans-cons1 term untrans-tbl sigs-btree lops-alist preprocess-fn wrld)
(cond ((eq x nil) (cons 'list elements))
((null (cdr elements)) (list 'cons (car elements) x))
(t (cons 'list* (append elements (list x)))))))
(defun rtl-untrans-if (term iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn wrld)
(cond ((> (case-length nil term) 2)
(case-match term
(('if (& key &) & &)
(list* 'case key
(rtl-untrans-into-case-clauses
key term iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn
wrld)))))
((> (cond-length term) 2)
(cons 'cond (rtl-untrans-into-cond-clauses term iff-flg untrans-tbl sigs-btree lops-alist
preprocess-fn
wrld)))
(t (list 'if
(rtl-untrans1 (fargn term 1) t untrans-tbl sigs-btree lops-alist preprocess-fn wrld)
(rtl-untrans1 (fargn term 2) iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn
wrld)
(rtl-untrans1 (fargn term 3) iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn
wrld)))))
(defun rtl-untrans-into-case-clauses (key term iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn
wrld)
; We generate the clauses of a (case key ...) stmt equivalent to term.
; We only call this function when the case-length of term is greater
; than 1. If we called it when case-length were 1, it would not
; terminate.
(case-match term
(('if (pred !key ('quote val)) x y)
(cond ((and (or (eq pred 'equal)
(eq pred 'eql))
(eqlablep val))
(cond ((or (eq val t)
(eq val nil)
(eq val 'otherwise))
(cons (list (list val)
(rtl-untrans1 x iff-flg untrans-tbl sigs-btree lops-alist
preprocess-fn wrld))
(rtl-untrans-into-case-clauses
key y iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn wrld)
))
(t (cons (list val (rtl-untrans1 x iff-flg
untrans-tbl sigs-btree lops-alist
preprocess-fn
wrld))
(rtl-untrans-into-case-clauses
key y iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn
wrld)))))
((and (eq pred 'member)
(eqlable-listp val))
(cons (list val (rtl-untrans1 x iff-flg untrans-tbl sigs-btree lops-alist
preprocess-fn wrld))
(rtl-untrans-into-case-clauses
key y iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn wrld)))
(t (list (list 'otherwise
(rtl-untrans1 term iff-flg untrans-tbl sigs-btree lops-alist
preprocess-fn wrld))))))
(& (list (list 'otherwise
(rtl-untrans1 term iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn
wrld))))))
(defun rtl-untrans-into-cond-clauses (term iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn
wrld)
; We know cond-length is greater than 1; else this doesn't terminate.
(case-match term
(('if x1 x2 x3)
(cons (list (rtl-untrans1 x1 t untrans-tbl sigs-btree lops-alist preprocess-fn wrld)
(rtl-untrans1 x2 iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn
wrld))
(rtl-untrans-into-cond-clauses x3 iff-flg untrans-tbl sigs-btree lops-alist
preprocess-fn wrld)))
(& (list (list t (rtl-untrans1 term iff-flg untrans-tbl sigs-btree lops-alist
preprocess-fn wrld))))))
;;; START addition for rtl-untrans1
(defun rtl-untrans-into-cond1-clauses (term untrans-tbl sigs-btree lops-alist
preprocess-fn wrld)
; We know cond1-length is greater than 1; else this doesn't terminate.
(case-match term
(('if1 x1 x2 x3)
(cons (list (rtl-untrans1 x1 nil untrans-tbl sigs-btree lops-alist
preprocess-fn wrld)
(rtl-untrans1 x2 nil untrans-tbl sigs-btree lops-alist
preprocess-fn wrld))
(rtl-untrans-into-cond1-clauses x3 untrans-tbl sigs-btree lops-alist
preprocess-fn wrld)))
(& (list (list t (rtl-untrans1 term nil untrans-tbl sigs-btree
lops-alist preprocess-fn wrld))))))
;;; END addition for rtl-untrans1
(defun rtl-untrans1-lst (lst iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn wrld)
(cond ((null lst) nil)
(t (cons (rtl-untrans1 (car lst) iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn wrld)
(rtl-untrans1-lst (cdr lst) iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn
wrld)))))
;; RAG - I relaxed the guards for < and complex to use realp instead
;; of rationalp. I also added complexp, realp, and floor1.
)
; Sigs-btree should associate each signals with any non-nil value.
; Lops-alist should contain (binary-land . land) etc.
; Here's how we manage that.
(defun str=-up-to (str1 str2 i bound)
(declare (xargs :mode :program))
(if (>= i bound)
t
(and (eql (char str1 i)
(char str2 i))
(str=-up-to str1 str2 (1+ i) bound))))
(defun all-dollar-symbs (alist)
(declare (xargs :guard (symbol-alistp alist)
:mode :program))
(if (endp alist)
t
(and (let* ((name (symbol-name (caar alist)))
(len (length name)))
(and (not (eql len 0))
(eql (char name (1- len))
#\$)
(symbolp (cdar alist))
(let* ((name2 (symbol-name (cdar alist)))
(len2 (length name2)))
(and (eql len2 (1- len))
(str=-up-to name name2 0 len2)))))
(all-dollar-symbs (cdr alist)))))
(table rtl-tbl nil nil :guard
(cond
((eq key 'lops-alist)
t)
((eq key 'sigs-btree)
; It is tempting to require the following:
; (and (symbol-btreep val)
; (all-dollar-symbs (symbol-btree-to-alist val)))
; But for performance reasons we won't make any check.
t)
(t nil)))
(table rtl-tbl 'lops-alist
'((binary-land . land)
(binary-lior . lior)
(binary-lxor . lxor)))
#|
; Example:
(defun cons-all-to-strip-$ (lst acc)
(declare (xargs :guard (true-listp lst)
:mode :program))
(if (endp lst)
acc ; this function doesn't reverse
(cons-all-to-strip-$ (cdr lst)
(cons (cons (car lst)
(intern-in-package-of-symbol
(coerce
(butlast
(coerce (symbol-name (car lst)) 'list)
1)
'string)
(car lst)))
acc))))
(table rtl-tbl 'sigs-btree
(symbol-alist-to-btree
(cons-all-to-strip-$
'(a$ b$ c$)
nil)))
; Another example, using the next definitions below:
(table rtl-tbl 'sigs-btree
(symbol-alist-to-btree
(dollar-alist '(a b c) nil)))
|# ; |
(defun dollarfy (sym)
(declare (xargs :mode :logic
:guard (symbolp sym)))
; The extra effort below is so that, for example, (dollarfy 'exp) evaluates to
; acl2::exp$ rather than common-lisp::exp$.
(let* ((old-name (symbol-name sym))
(name (concatenate 'string old-name "$")))
(if (eq (intern old-name "ACL2") sym)
(intern name "ACL2")
(intern-in-package-of-symbol name sym))))
(defun dollar-alist (syms acc)
(declare (xargs :mode :logic
:guard (and (symbol-listp syms) (alistp acc))))
(if (endp syms)
acc
(dollar-alist (cdr syms)
(acons (dollarfy (car syms))
(car syms)
acc))))
(defun rtl-untranslate (term iff-flg wrld)
(let ((rtl-tbl (table-alist 'rtl-tbl wrld)))
(rtl-untrans1 term iff-flg
(untrans-table wrld)
(cdr (assoc 'sigs-btree rtl-tbl))
(cdr (assoc 'lops-alist rtl-tbl))
(untranslate-preprocess-fn wrld)
wrld)))
(defun rtl-untranslate-lst (lst iff-flg wrld)
(let ((rtl-tbl (table-alist 'rtl-tbl wrld)))
(rtl-untrans1-lst lst
iff-flg
(untrans-table wrld)
(cdr (assoc-eq 'sigs-btree rtl-tbl))
(cdr (assoc-eq 'lops-alist rtl-tbl))
(untranslate-preprocess-fn wrld)
wrld)))
(table user-defined-functions-table
'untranslate 'rtl-untranslate)
(table user-defined-functions-table
'untranslate-lst 'rtl-untranslate-lst)
(defmacro extend-sigs-btree (name)
; Extend rtl-untranslate so that (name$ n $path) appears as (name n).
(let ((name$ (dollarfy name)))
`(table rtl-tbl 'sigs-btree
(rebalance-symbol-btree
(symbol-btree-update
',name$ ',name
(cdr (assoc 'sigs-btree (table-alist 'rtl-tbl world))))))))
(defmacro rebalance-sigs-btree ()
`(table rtl-tbl 'sigs-btree
(rebalance-symbol-btree
(cdr (assoc 'sigs-btree (table-alist 'rtl-tbl world))))))
; Finally, we deal with the right-assoc-macros-table, so that DV and numeric
; dive commands will work in the proof-builder.
(defun expand-address-cat (car-addr raw-term term wrld)
(declare (ignore term wrld))
(cond
((member car-addr '(1 2))
(list car-addr))
((evenp car-addr)
(msg "It is illegal to dive to arguments in even-numbered positions of a ~
CAT expression, after the first. Hence, address ~x0 is illegal for ~
(untranslated) term~|~x1."
car-addr raw-term))
((eql car-addr (- (length raw-term) 2))
(make-list (floor (1- car-addr) 2) :initial-element 3))
(t (append (make-list (floor (1- car-addr) 2) :initial-element 3)
(list 1)))))
(add-dive-into-macro cat expand-address-cat)
(defun expand-address-lxor (car-addr raw-term term wrld)
; For example, (lxor a b c d 7) is the untranslated form of the term
; (binary-lxor a (binary-lxor b (binary-lxor c d '7) '7) '7), in which case (dv
; 2) expands to (dive 2 1), (dv 3) to (dive 2 2 1), (dv 4) to (dive 2 2 2), and
; (dv 5) to, say, (dive 3).
(declare (ignore term wrld))
(let* ((diff (- car-addr
(- (length raw-term) 2))))
(cond ((eql diff 0)
(make-list (1- car-addr) :initial-element 2))
((< diff 0)
(append (make-list (1- car-addr) :initial-element 2)
'(1)))
((eql diff 1)
(list 3))
(t (msg "Argument position ~x0 is too big for diving into ~
(untranslated) term~|~x1."
car-addr raw-term)))))
(add-dive-into-macro lxor expand-address-lxor)
(add-dive-into-macro lior expand-address-lxor)
(add-dive-into-macro land expand-address-lxor)
|