This file is indexed.

/usr/share/acl2-8.0dfsg/books/misc/rtl-untranslate.lisp is in acl2-books-source 8.0dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
; Copyright (C) 2004-2015 Advanced Micro Devices, Inc.
; All rights reserved.
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.

; Matt Kaufmann, included starting with ACL2 Version 2.8.

; Replacement function rtl-untranslate for predefined untranslate, suitable for
; untranslating (foo$ x $path) to (foo x) and e.g. (land a (land b c)) to
; (land a b c).  Additional documentation may be written if requested.

(in-package "ACL2")

; We assume that all signal names end in $, and that a corresponding macro
; leaves off the $ to represent "optional" argument $path.  Example:

; (sig$ n $path) <=> (sig n).

(program)

(include-book "symbol-btree")

(defun rtl-untrans-lop (lop x y width)
  (cond ((and (consp y)
              (eq (car y) lop)
              (equal (car (last y)) width))

; This is the case (lop x (lop y1 y2 ... yk width) width).

         (list* lop x (cdr y)))
        (t
         (list lop x y width))))

(defun sum-cat-sizes (lst acc)
  (if (endp lst)
      acc
    (if (acl2-numberp (cadr lst))
        (sum-cat-sizes (cddr lst)
                        (+ (cadr lst) acc))
      nil)))

(defun rtl-untrans-cat (x xsize y ysize)
  (cond ((and (consp y)
              (eq (car y) 'cat)
              (integerp ysize)
              (eql ysize
                   (sum-cat-sizes (cdr y) 0)))

; This is the case (lop x (lop y1 y2 ... yk width) width).

         (list* 'cat x xsize (cdr y)))
        (t
         (list 'cat x xsize y ysize))))

(defun cond1-length (term)
  (case-match term
    (('if1 & & z) (1+ (cond1-length z)))
    (& 1)))

(defmacro rtl-untrans-and (&rest args)
  (cons 'untranslate-and args))

(defmacro rtl-untrans-or (&rest args)
  (cons 'untranslate-or args))

(defconst *rtl-untrans-boolean-primitives*
  *untranslate-boolean-primitives*)

(mutual-recursion

; Changes from the original untranslate1 nest are indicated with:
;;; START addition for rtl-untrans1
; .....
;;; END addition for rtl-untrans1
; (not including obvious changes, like *untranslate-boolean-primitives* to
; *rtl-untrans-boolean-primitives*, untranslate1 to rtl-untrans1, and
; untranslate-if to rtl-untrans-if).

(defun rtl-untrans1 (term iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn wrld)

; Warning: It would be best to keep this in sync with
; obviously-iff-equiv-terms, specifically, giving similar attention in both to
; functions like implies, iff, and not, which depend only on the propositional
; equivalence class of each argument.

; Warning: Keep in sync with ACL2 source function untranslate1.

; We return a Lisp form that translates to term if iff-flg is nil and
; that translates to a term iff-equivalent to term if iff-flg is t.
; Wrld is an ACL2 logical world, which may be used to improve the
; appearance of the result, in particular to allow (nth k st) to be
; printed as (nth *field-name* st) if st is a stobj name and
; field-name is the kth field name of st; similarly for update-nth.
; It is perfectly appropriate for wrld to be nil if such extra
; information is not important.

; Note: The only reason we need the iff-flg is to let us translate (if
; x1 t x2) into (or x1 x2) when we are in an iff situation.  We could
; ask type-set to check that x1 is Boolean, but that would require
; passing wrld into untranslate.  That, in turn, would require passing
; wrld into such syntactic places as prettyify-clause and any other
; function that might want to print a term.

; Warning: This function may not terminate.  We should consider making it
; primitive recursive by adding a natural number ("count") parameter.

  (let ((term (if preprocess-fn
                  (mv-let (erp term1)
                          (ev-fncall-w! preprocess-fn
                                       (list term wrld)
                                       wrld
                                       nil ; user-stobj-alist
                                       nil ; safe-mode
                                       nil ; gc-off
                                       nil ; hard-error-returns-nilp
                                       t   ; okp
                                       )
                          (or (and (null erp) term1)
                              term))
                term)))
    (cond ((variablep term) term)
          ((fquotep term)
           (cond ((or (acl2-numberp (cadr term))
                      (stringp (cadr term))
                      (characterp (cadr term))
                      (eq (cadr term) nil)
                      (eq (cadr term) t)
                      (keywordp (cadr term)))
                  (cadr term))
                 (t term)))
          ((flambda-applicationp term)
           (make-let-or-let*
            (collect-non-trivial-bindings (lambda-formals (ffn-symb term))
                                          (rtl-untrans1-lst (fargs term)
                                                            nil
                                                            untrans-tbl sigs-btree lops-alist
                                                            preprocess-fn
                                                            wrld))
            (rtl-untrans1 (lambda-body (ffn-symb term)) iff-flg untrans-tbl sigs-btree lops-alist
                          preprocess-fn wrld)))
          ((and (eq (ffn-symb term) 'nth)
                (quotep (fargn term 1))
                (integerp (cadr (fargn term 1)))
                (<= 0 (cadr (fargn term 1))))
           (let ((accessor-name (accessor-root (cadr (fargn term 1))
                                               (fargn term 2)
                                               wrld)))
             (list 'nth
                   (or accessor-name
                       (cadr (fargn term 1)))
                   (rtl-untrans1 (fargn term 2) nil untrans-tbl sigs-btree lops-alist preprocess-fn
                                 wrld))))
          ((and (eq (ffn-symb term) 'update-nth)
                (quotep (fargn term 1))
                (integerp (cadr (fargn term 1)))
                (<= 0 (cadr (fargn term 1))))
           (let ((accessor-name (accessor-root (cadr (fargn term 1))
                                               (fargn term 3)
                                               wrld)))
             (list 'update-nth
                   (or accessor-name
                       (cadr (fargn term 1)))
                   (rtl-untrans1 (fargn term 2) nil untrans-tbl sigs-btree lops-alist preprocess-fn
                                 wrld)
                   (rtl-untrans1 (fargn term 3) nil untrans-tbl sigs-btree lops-alist preprocess-fn
                                 wrld))))
          ((and (eq (ffn-symb term) 'update-nth-array)
                (quotep (fargn term 1))
                (integerp (cadr (fargn term 1)))
                (<= 0 (cadr (fargn term 1))))
           (let ((accessor-name (accessor-root (cadr (fargn term 1))
                                               (fargn term 4)
                                               wrld)))
             (list 'update-nth-array
                   (or accessor-name
                       (cadr (fargn term 1)))
                   (rtl-untrans1 (fargn term 2) nil untrans-tbl sigs-btree lops-alist preprocess-fn
                                 wrld)
                   (rtl-untrans1 (fargn term 3) nil untrans-tbl sigs-btree lops-alist preprocess-fn
                                 wrld)
                   (rtl-untrans1 (fargn term 4) nil untrans-tbl sigs-btree lops-alist preprocess-fn
                                 wrld))))
          ((eq (ffn-symb term) 'binary-+)
           (cons '+
                 (rtl-untrans1-lst (right-associated-args 'binary-+ term)
                                   nil untrans-tbl sigs-btree lops-alist preprocess-fn wrld)))
          ((eq (ffn-symb term) 'unary-/)
           (list '/ (rtl-untrans1 (fargn term 1) nil untrans-tbl sigs-btree lops-alist preprocess-fn
                                  wrld)))
          ((eq (ffn-symb term) 'unary--)
           (list '- (rtl-untrans1 (fargn term 1) nil untrans-tbl sigs-btree lops-alist preprocess-fn
                                  wrld)))
          ((eq (ffn-symb term) 'if)
           (case-match term
             (('if x1 *nil* *t*)
              (list 'not (rtl-untrans1 x1 t untrans-tbl sigs-btree lops-alist preprocess-fn wrld)))
             (('if x1 x2  *nil*)
              (rtl-untrans-and (rtl-untrans1 x1 t untrans-tbl sigs-btree lops-alist preprocess-fn wrld)
                               (rtl-untrans1 x2 iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn
                                             wrld)
                               iff-flg))
             (('if x1 *nil* x2)
              (rtl-untrans-and (list 'not (rtl-untrans1 x1 t untrans-tbl sigs-btree lops-alist
                                                        preprocess-fn wrld))
                               (rtl-untrans1 x2 iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn
                                             wrld)
                               iff-flg))
             (('if x1 x1 x2)
              (rtl-untrans-or (rtl-untrans1 x1 iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn
                                            wrld)
                              (rtl-untrans1 x2 iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn
                                            wrld)))
             (('if x1 x2 *t*)

; Observe that (if x1 x2 t) = (if x1 x2 (not nil)) = (if x1 x2 (not x1)) =
; (if (not x1) (not x1) x2) = (or (not x1) x2).

              (rtl-untrans-or (list 'not (rtl-untrans1 x1 t untrans-tbl sigs-btree lops-alist
                                                       preprocess-fn wrld))
                              (rtl-untrans1 x2 iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn
                                            wrld)))
             (('if x1 *t* x2)
              (cond
               ((or iff-flg
                    (and (nvariablep x1)
                         (not (fquotep x1))
                         (member-eq (ffn-symb x1)
                                    *rtl-untrans-boolean-primitives*)))
                (rtl-untrans-or (rtl-untrans1 x1 t untrans-tbl sigs-btree lops-alist
                                              preprocess-fn wrld)
                                (rtl-untrans1 x2 iff-flg untrans-tbl sigs-btree lops-alist
                                              preprocess-fn wrld)))
               (t (rtl-untrans-if term iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn wrld))))
             (& (rtl-untrans-if term iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn wrld))))
;;; START addition for rtl-untrans1
        ((eq (ffn-symb term) 'if1)
         (cond ((> (cond1-length term) 2)
                (cons 'cond1 (rtl-untrans-into-cond1-clauses term untrans-tbl sigs-btree lops-alist
                                                             preprocess-fn wrld)))
               (t (list 'if1
                        (rtl-untrans1 (fargn term 1) nil untrans-tbl sigs-btree
                                      lops-alist preprocess-fn wrld)
                        (rtl-untrans1 (fargn term 2) nil untrans-tbl sigs-btree
                                      lops-alist preprocess-fn wrld)
                        (rtl-untrans1 (fargn term 3) nil untrans-tbl sigs-btree
                                      lops-alist preprocess-fn wrld)))))
;;; END addition for rtl-untrans1
          ((and (eq (ffn-symb term) 'not)
                (nvariablep (fargn term 1))
                (not (fquotep (fargn term 1)))
                (member-eq (ffn-symb (fargn term 1)) '(< o<)))
           (list (if (eq (ffn-symb (fargn term 1)) '<) '<= 'o<=)
                 (rtl-untrans1 (fargn (fargn term 1) 2) nil untrans-tbl sigs-btree lops-alist
                               preprocess-fn wrld)
                 (rtl-untrans1 (fargn (fargn term 1) 1) nil untrans-tbl sigs-btree lops-alist
                               preprocess-fn wrld)))
          ((eq (ffn-symb term) 'not)
           (dumb-negate-lit (rtl-untrans1 (fargn term 1) t untrans-tbl sigs-btree lops-alist
                                          preprocess-fn wrld)))
          ((member-eq (ffn-symb term) '(implies iff))
           (fcons-term* (ffn-symb term)
                        (rtl-untrans1 (fargn term 1) t untrans-tbl sigs-btree lops-alist preprocess-fn
                                      wrld)
                        (rtl-untrans1 (fargn term 2) t untrans-tbl sigs-btree lops-alist preprocess-fn
                                      wrld)))
          ((eq (ffn-symb term) 'cons) (rtl-untrans-cons term untrans-tbl sigs-btree lops-alist
                                                        preprocess-fn wrld))
          ((and (eq (ffn-symb term) 'synp)

; Even though translate insists that the second argument of synp is quoted, can
; we really guarantee that every termp given to rtl-untrans came through
; translate?  Not necessarily; for example, maybe substitution was performed
; for some reason (say, in the proof-builder one replaces the quoted argument
; by a variable known to be equal to it).

                (quotep (fargn term 2)))

; We store the quotation of the original form of a syntaxp or bind-free
; hypothesis in the second arg of its expansion.  We do this so that we
; can use it here and output something that the user will recognise.

           (cadr (fargn term 2)))
;;; START addition for rtl-untrans1
        ((eq (ffn-symb term) 'binary-cat) ; (cat x xsize y ysize)
         (rtl-untrans-cat
          (rtl-untrans1 (fargn term 1) nil untrans-tbl
                        sigs-btree lops-alist preprocess-fn wrld)
          (rtl-untrans1 (fargn term 2) nil untrans-tbl
                        sigs-btree lops-alist preprocess-fn wrld)
          (rtl-untrans1 (fargn term 3) nil untrans-tbl
                        sigs-btree lops-alist preprocess-fn wrld)
          (rtl-untrans1 (fargn term 4) nil untrans-tbl
                        sigs-btree lops-alist preprocess-fn wrld)))
        ((and (eq (fargn term 2) '$path)
              (let ((fn (symbol-btree-lookup (ffn-symb term) sigs-btree)))
                (and fn
                     (list fn
                           (rtl-untrans1 (fargn term 1) nil untrans-tbl
                                         sigs-btree lops-alist preprocess-fn wrld))))))
;;; END addition for rtl-untrans1
          ((and (eq (ffn-symb term) 'return-last)
                (quotep (fargn term 1))
                (let* ((key (unquote (fargn term 1)))
                       (fn (and (symbolp key)
                                key
                                (let ((tmp (return-last-lookup key
                                                               wrld)))
                                  (if (consp tmp) (car tmp) tmp)))))
                  (and fn
                       (cons fn
                             (rtl-untrans1-lst (cdr (fargs term)) nil
                                               untrans-tbl
                                               sigs-btree lops-alist
                                               preprocess-fn wrld))))))
          (t
           (let* ((pair (cdr (assoc-eq (ffn-symb term)
                                       untrans-tbl)))
                  (op (car pair))
                  (flg (cdr pair)))
             (cond
              (op (cons op
                          (rtl-untrans1-lst
                           (cond
                            ((and flg
                                  (cdr (fargs term))
                                  (null (cddr (fargs term))))
                             (right-associated-args (ffn-symb term)
                                                    term))
                            (t (fargs term)))
                           nil untrans-tbl sigs-btree lops-alist
                           preprocess-fn wrld)))
              (t
;;; START addition for rtl-untrans1
             (let ((op (cdr (assoc-eq (ffn-symb term) lops-alist))))
               (cond
                (op (rtl-untrans-lop op
                                     (rtl-untrans1 (fargn term 1) nil untrans-tbl
                                                   sigs-btree lops-alist
                                                   preprocess-fn wrld)
                                     (rtl-untrans1 (fargn term 2) nil untrans-tbl
                                                   sigs-btree lops-alist
                                                   preprocess-fn wrld)
                                     (rtl-untrans1 (fargn term 3) nil untrans-tbl
                                                   sigs-btree lops-alist
                                                   preprocess-fn wrld)))
                (t
;;; END addition for rtl-untrans1
                 (mv-let
                  (ad-list base)
                  (make-reversed-ad-list term nil)
                  (cond (ad-list
                         (pretty-parse-ad-list
                          ad-list '(#\R) 1
                          (rtl-untrans1 base nil untrans-tbl
                                        sigs-btree lops-alist
                                        preprocess-fn wrld)))
                        (t (cons (ffn-symb term)
                                 (rtl-untrans1-lst (fargs term) nil
                                                   untrans-tbl
                                                   sigs-btree lops-alist
                                                   preprocess-fn
                                                   wrld)))))))))))))))

(defun rtl-untrans-cons1 (term untrans-tbl sigs-btree lops-alist preprocess-fn wrld)

; This function digs through a 'cons nest, untranslating each of the
; elements and the final non-cons cdr.  It returns two results:  the
; list of untranslated elements and the untranslated final term.

  (cond ((variablep term) (mv nil (rtl-untrans1 term nil untrans-tbl sigs-btree lops-alist
                                                preprocess-fn wrld)))
        ((fquotep term) (mv nil (rtl-untrans1 term nil untrans-tbl sigs-btree lops-alist preprocess-fn
                                              wrld)))
        ((eq (ffn-symb term) 'cons)
         (mv-let (elements x)
                 (rtl-untrans-cons1 (fargn term 2) untrans-tbl sigs-btree lops-alist preprocess-fn
                                    wrld)
                 (mv (cons (rtl-untrans1 (fargn term 1) nil untrans-tbl sigs-btree lops-alist
                                         preprocess-fn wrld)
                           elements)
                     x)))
        (t (mv nil (rtl-untrans1 term nil untrans-tbl sigs-btree lops-alist preprocess-fn wrld)))))

(defun rtl-untrans-cons (term untrans-tbl sigs-btree lops-alist preprocess-fn wrld)

; Term is a non-quote term whose ffn-symb is 'cons.  We untranslate
; it into a CONS, a LIST, or a LIST*.

  (mv-let (elements x)
          (rtl-untrans-cons1 term untrans-tbl sigs-btree lops-alist preprocess-fn wrld)
          (cond ((eq x nil) (cons 'list elements))
                ((null (cdr elements)) (list 'cons (car elements) x))
                (t (cons 'list* (append elements (list x)))))))

(defun rtl-untrans-if (term iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn wrld)
  (cond ((> (case-length nil term) 2)
         (case-match term
                     (('if (& key &) & &)
                      (list* 'case key
                             (rtl-untrans-into-case-clauses
                              key term iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn
                              wrld)))))
        ((> (cond-length term) 2)
         (cons 'cond (rtl-untrans-into-cond-clauses term iff-flg untrans-tbl sigs-btree lops-alist
                                                    preprocess-fn
                                                    wrld)))
        (t (list 'if
                 (rtl-untrans1 (fargn term 1) t untrans-tbl sigs-btree lops-alist preprocess-fn wrld)
                 (rtl-untrans1 (fargn term 2) iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn
                               wrld)
                 (rtl-untrans1 (fargn term 3) iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn
                               wrld)))))

(defun rtl-untrans-into-case-clauses (key term iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn
                                          wrld)

; We generate the clauses of a (case key ...) stmt equivalent to term.
; We only call this function when the case-length of term is greater
; than 1.  If we called it when case-length were 1, it would not
; terminate.

  (case-match term
              (('if (pred !key ('quote val)) x y)
               (cond ((and (or (eq pred 'equal)
                               (eq pred 'eql))
                           (eqlablep val))
                      (cond ((or (eq val t)
                                 (eq val nil)
                                 (eq val 'otherwise))
                             (cons (list (list val)
                                         (rtl-untrans1 x iff-flg untrans-tbl sigs-btree lops-alist
                                                       preprocess-fn wrld))
                                   (rtl-untrans-into-case-clauses
                                    key y iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn wrld)
                                  ))
                            (t (cons (list val (rtl-untrans1 x iff-flg
                                                             untrans-tbl sigs-btree lops-alist
                                                             preprocess-fn
                                                             wrld))
                                     (rtl-untrans-into-case-clauses
                                      key y iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn
                                      wrld)))))
                     ((and (eq pred 'member)
                           (eqlable-listp val))
                      (cons (list val (rtl-untrans1 x iff-flg untrans-tbl sigs-btree lops-alist
                                                    preprocess-fn wrld))
                            (rtl-untrans-into-case-clauses
                             key y iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn wrld)))
                     (t (list (list 'otherwise
                                    (rtl-untrans1 term iff-flg untrans-tbl sigs-btree lops-alist
                                                  preprocess-fn wrld))))))
              (& (list (list 'otherwise
                             (rtl-untrans1 term iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn
                                           wrld))))))

(defun rtl-untrans-into-cond-clauses (term iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn
                                           wrld)

; We know cond-length is greater than 1; else this doesn't terminate.

  (case-match term
              (('if x1 x2 x3)
               (cons (list (rtl-untrans1 x1 t untrans-tbl sigs-btree lops-alist preprocess-fn wrld)
                           (rtl-untrans1 x2 iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn
                                         wrld))
                     (rtl-untrans-into-cond-clauses x3 iff-flg untrans-tbl sigs-btree lops-alist
                                                    preprocess-fn wrld)))
              (& (list (list t (rtl-untrans1 term iff-flg untrans-tbl sigs-btree lops-alist
                                             preprocess-fn wrld))))))

;;; START addition for rtl-untrans1
(defun rtl-untrans-into-cond1-clauses (term untrans-tbl sigs-btree lops-alist
                                            preprocess-fn wrld)

; We know cond1-length is greater than 1; else this doesn't terminate.

  (case-match term
              (('if1 x1 x2 x3)
               (cons (list (rtl-untrans1 x1 nil untrans-tbl sigs-btree lops-alist
                                         preprocess-fn wrld)
                           (rtl-untrans1 x2 nil untrans-tbl sigs-btree lops-alist
                                         preprocess-fn wrld))
                     (rtl-untrans-into-cond1-clauses x3 untrans-tbl sigs-btree lops-alist
                                                     preprocess-fn wrld)))
              (& (list (list t (rtl-untrans1 term nil untrans-tbl sigs-btree
                                             lops-alist preprocess-fn wrld))))))
;;; END addition for rtl-untrans1

(defun rtl-untrans1-lst (lst iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn wrld)
  (cond ((null lst) nil)
        (t (cons (rtl-untrans1 (car lst) iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn wrld)
                 (rtl-untrans1-lst (cdr lst) iff-flg untrans-tbl sigs-btree lops-alist preprocess-fn
                                   wrld)))))

;; RAG - I relaxed the guards for < and complex to use realp instead
;; of rationalp.  I also added complexp, realp, and floor1.

)

; Sigs-btree should associate each signals with any non-nil value.
; Lops-alist should contain (binary-land . land) etc.

; Here's how we manage that.

(defun str=-up-to (str1 str2 i bound)
  (declare (xargs :mode :program))
  (if (>= i bound)
      t
    (and (eql (char str1 i)
              (char str2 i))
         (str=-up-to str1 str2 (1+ i) bound))))

(defun all-dollar-symbs (alist)
  (declare (xargs :guard (symbol-alistp alist)
                  :mode :program))
  (if (endp alist)
      t
    (and (let* ((name (symbol-name (caar alist)))
                (len (length name)))
           (and (not (eql len 0))
                (eql (char name (1- len))
                     #\$)
                (symbolp (cdar alist))
                (let* ((name2 (symbol-name (cdar alist)))
                       (len2 (length name2)))
                  (and (eql len2 (1- len))
                       (str=-up-to name name2 0 len2)))))
         (all-dollar-symbs (cdr alist)))))

(table rtl-tbl nil nil :guard
       (cond
        ((eq key 'lops-alist)
         t)
        ((eq key 'sigs-btree)

; It is tempting to require the following:

;        (and (symbol-btreep val)
;             (all-dollar-symbs (symbol-btree-to-alist val)))

; But for performance reasons we won't make any check.
         t)

        (t nil)))

(table rtl-tbl 'lops-alist
       '((binary-land . land)
         (binary-lior . lior)
         (binary-lxor . lxor)))

#|
; Example:

(defun cons-all-to-strip-$ (lst acc)
  (declare (xargs :guard (true-listp lst)
                  :mode :program))
  (if (endp lst)
      acc ; this function doesn't reverse
    (cons-all-to-strip-$ (cdr lst)
                   (cons (cons (car lst)
                               (intern-in-package-of-symbol
                                (coerce
                                 (butlast
                                  (coerce (symbol-name (car lst)) 'list)
                                  1)
                                 'string)
                                (car lst)))
                         acc))))

(table rtl-tbl 'sigs-btree
       (symbol-alist-to-btree
        (cons-all-to-strip-$
         '(a$ b$ c$)
         nil)))

; Another example, using the next definitions below:

(table rtl-tbl 'sigs-btree
       (symbol-alist-to-btree
        (dollar-alist '(a b c) nil)))

|# ; |

(defun dollarfy (sym)
  (declare (xargs :mode :logic
                  :guard (symbolp sym)))

; The extra effort below is so that, for example, (dollarfy 'exp) evaluates to
; acl2::exp$ rather than common-lisp::exp$.

  (let* ((old-name (symbol-name sym))
         (name (concatenate 'string old-name "$")))
    (if (eq (intern old-name "ACL2") sym)
        (intern name "ACL2")
      (intern-in-package-of-symbol name sym))))

(defun dollar-alist (syms acc)
  (declare (xargs :mode :logic
                  :guard (and (symbol-listp syms) (alistp acc))))
  (if (endp syms)
      acc
    (dollar-alist (cdr syms)
                  (acons (dollarfy (car syms))
                         (car syms)
                         acc))))

(defun rtl-untranslate (term iff-flg wrld)
  (let ((rtl-tbl (table-alist 'rtl-tbl wrld)))
    (rtl-untrans1 term iff-flg
                  (untrans-table wrld)
                  (cdr (assoc 'sigs-btree rtl-tbl))
                  (cdr (assoc 'lops-alist rtl-tbl))
                  (untranslate-preprocess-fn wrld)
                  wrld)))

(defun rtl-untranslate-lst (lst iff-flg wrld)
  (let ((rtl-tbl (table-alist 'rtl-tbl wrld)))
    (rtl-untrans1-lst lst
                      iff-flg
                      (untrans-table wrld)
                      (cdr (assoc-eq 'sigs-btree rtl-tbl))
                      (cdr (assoc-eq 'lops-alist rtl-tbl))
                      (untranslate-preprocess-fn wrld)
                      wrld)))

(table user-defined-functions-table
       'untranslate 'rtl-untranslate)

(table user-defined-functions-table
       'untranslate-lst 'rtl-untranslate-lst)

(defmacro extend-sigs-btree (name)

; Extend rtl-untranslate so that (name$ n $path) appears as (name n).

  (let ((name$ (dollarfy name)))
    `(table rtl-tbl 'sigs-btree
            (rebalance-symbol-btree
             (symbol-btree-update
              ',name$ ',name
              (cdr (assoc 'sigs-btree (table-alist 'rtl-tbl world))))))))

(defmacro rebalance-sigs-btree ()
  `(table rtl-tbl 'sigs-btree
          (rebalance-symbol-btree
           (cdr (assoc 'sigs-btree (table-alist 'rtl-tbl world))))))

; Finally, we deal with the right-assoc-macros-table, so that DV and numeric
; dive commands will work in the proof-builder.

(defun expand-address-cat (car-addr raw-term term wrld)
  (declare (ignore term wrld))
  (cond
   ((member car-addr '(1 2))
    (list car-addr))
   ((evenp car-addr)
    (msg "It is illegal to dive to arguments in even-numbered positions of a ~
          CAT expression, after the first.  Hence, address ~x0 is illegal for ~
          (untranslated) term~|~x1."
         car-addr raw-term))
   ((eql car-addr (- (length raw-term) 2))
    (make-list (floor (1- car-addr) 2) :initial-element 3))
   (t (append (make-list (floor (1- car-addr) 2) :initial-element 3)
              (list 1)))))

(add-dive-into-macro cat expand-address-cat)

(defun expand-address-lxor (car-addr raw-term term wrld)

; For example, (lxor a b c d 7) is the untranslated form of the term
; (binary-lxor a (binary-lxor b (binary-lxor c d '7) '7) '7), in which case (dv
; 2) expands to (dive 2 1), (dv 3) to (dive 2 2 1), (dv 4) to (dive 2 2 2), and
; (dv 5) to, say, (dive 3).

  (declare (ignore term wrld))
  (let* ((diff (- car-addr
                  (- (length raw-term) 2))))
    (cond ((eql diff 0)
           (make-list (1- car-addr) :initial-element 2))
          ((< diff 0)
           (append (make-list (1- car-addr) :initial-element 2)
                   '(1)))
          ((eql diff 1)
           (list 3))
          (t (msg "Argument position ~x0 is too big for diving into ~
                   (untranslated) term~|~x1."
                  car-addr raw-term)))))

(add-dive-into-macro lxor expand-address-lxor)
(add-dive-into-macro lior expand-address-lxor)
(add-dive-into-macro land expand-address-lxor)