/usr/share/acl2-8.0dfsg/books/misc/seq.lisp is in acl2-books-source 8.0dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 | ; The SEQ Macro Language
; Copyright (C) 2008-2014 Centaur Technology
;
; Contact:
; Centaur Technology Formal Verification Group
; 7600-C N. Capital of Texas Highway, Suite 300, Austin, TX 78731, USA.
; http://www.centtech.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@centtech.com>
(in-package "ACL2")
(include-book "xdoc/top" :dir :system)
(defsection seq
;; BOZO not really a macro library, need somewhere better to put this
:parents (macro-libraries)
:short "<i>Seq</i> is a macro language for applying actions to a stream."
:long "<p>In this context, a <i>stream</i> is any data structure that we want
to update in an essentially sequential/single-threaded way. It might be a
stobj, but it could also be a regular ACL2 list or some other kind of
structure. For example, in the @(see vl) Verilog parser, we typically use seq
to traverse a list of tokens, which are regular ACL2 objects.</p>
<p>Meanwhile, an <i>action</i> is some operation which typically inspects the
stream, and then returns a triple of the form @('(mv error val stream)'). When
the action is successful, @('error') is @('nil'), @('stream') is the updated
stream, and @('val') is perhaps some piece of information that was gleaned from
running this action. For instance, in the Verilog parser we may take a token
out of the stream and put it into val.</p>
<p>But an action may also fail, in which case it should set @('error') to some
non-nil value, typically an error message produced by @(see msg).</p>
<p>A Seq program is introduced by writing:</p>
@({
(seq <stream> ... statements ...)
})
<p>Where @('stream') is the name of the stream to operate on and update, and
the valid statements are described below. Every Seq program evaluates to an
@('(mv error val stream)') triple.</p>
<p>Some examples of using Seq can be found in @('misc/seq-examples.lsp').</p>
<h3>The Basic Assignment Statement</h3>
<p>In many ways, Seq resembles a loop-free, imperative programming language
with a mechanism to throw exceptions. Seq programs are written as blocks of
statements, and the fundamental statement is assignment:</p>
@({
(var := (action ... <stream>))
})
<p>Such an assignment statement has two effects when action is successful:</p>
<ol>
<li>It binds var to the val produced by the action, and</li>
<li>It rebinds stream to the updated stream produced by the action</li>
</ol>
<p>But action may also fail, in which case the failure stops execution of the
current block and we propagate the error upwards throughout the entire Seq
program.</p>
<h3>Alternative Forms of Assignment</h3>
<p>We have a couple of additional assignment statements. The first variant
simply allows you to ignore the val produced by an action, and is written:</p>
@({
(:= (action ... <stream>))
})
<p>The second variant allows you to destructure the val produced by the action,
and is written:</p>
@({
((foo . bar) := (action ... <stream>))
})
<p>@('NIL') has a special meaning in this second form, and can be used to
\"drop\" parts of val which are not interesting. For example, if action
produces the value (1 . 2), and you write:</p>
@({
((foo . nil) := action)
})
<p>Then @('foo') will be bound to 1 and the \"2\" part of val will be
inaccessible.</p>
<p>(Usually unnecessary): In place of @(':=') in any of the above, one can also
write:</p>
<ul>
<li>@(':w=') — weak count decrease</li>
<li>@(':s=') — strong count decrease</li>
</ul>
<p>These act the same as @(':='), except that they add some @('(mbe :logic
...)')-only checks that ensure that the returned stream has a weakly lower or
strongly lower @(see acl2-count) than the stream going into the action. This
is sometimes needed when using Seq in mutually-recursive functions.</p>
<h3>Conditional Execution</h3>
<p>A block can be only conditionally executed by wrapping it in a <b>when</b>
or <b>unless</b> clause. For example:</p>
@({
(when (integerp x)
(foo := (action1 ...)
(bar := (action2 ...)))
(unless (consp x)
(foo := (action ...)))
})
<p>This causes the bindings for @('foo') and @('bar') only to be executed when
the condition evaluates to non-@('nil').</p>
<h3>Return Statements</h3>
<p>The final statement of a Seq program must be a return statement, and \"early\"
return statements can also occur as the last statement of a when or unless
block. There are two versions of the return statement.</p>
@({
(return expr)
(return-raw action)
})
<p>Either one of these causes the entire Seq program to exit. In the first
form, @('expr') is expected to evaluate to a regular ACL2 object, and the result
of the Seq program will be @('(mv nil expr stream)').</p>
<p>In the second form, @('action') is expected to itself evaluate to an @('(mv
error val stream)') tuple, and the Seq program returns this value verbatim.</p>
<h3>Backtracking</h3>
<p>We also provide another macro, <b>seq-backtrack</b>, which cannot be used on
STOBJs, but can be used with regular, applicative structures. The general form
is:</p>
@({
(seq-backtrack stream block1 block2 ...)
})
<p>This macro has the following effect. First, we try to run @('block1'). If
it succeeds, we return the @('(mv error val new-stream)') that it returns.
Otherwise, we start again with the initial @('stream') and try to run the
remaining blocks, in order. If none of the blocks succeed, we return the
@('(mv error val new-stream)') encountered by the final block.</p>
<h3>Other Resources</h3>
<p>While Seq is convenient in certain cases, the @(see b*) macro is generally
more flexible.</p>
<p>See also @(see seqw), an expanded version of @(see seq) that supports the
creation of warnings while processing the stream.</p>")
(program)
; NAMETREES
;
; Nametrees are trees of variable names and nils which contain no duplicate
; names. They are used to give us automatic destructing of values returned by
; actions in our binding statements.
(defun seq-name-p (x)
(declare (xargs :guard t))
(cond ((not (symbolp x))
(cw "Error: ~x0 cannot be used as a variable name.~%" x))
((eq x t)
(cw "Error: t cannot be used as a variable name.~%"))
((equal (symbol-package-name x) "KEYWORD")
(cw "Error: ~x0 cannot be used as a variable name.~%" x))
(t t)))
(defun seq-aux-nametree-p (x)
(declare (xargs :guard t))
(if (consp x)
(and (seq-aux-nametree-p (car x))
(seq-aux-nametree-p (cdr x)))
(seq-name-p x)))
(defun seq-flatten-nametree (x)
(declare (xargs :guard (seq-aux-nametree-p x)))
(if (consp x)
(append (seq-flatten-nametree (car x))
(seq-flatten-nametree (cdr x)))
(if (not x)
nil
(list x))))
(defun seq-nametree-p (x)
(declare (xargs :guard t))
(and (seq-aux-nametree-p x)
(or (no-duplicatesp (seq-flatten-nametree x))
(cw "Error: the nametree ~x0 contains duplicates.~%" x))))
(defun seq-nametree-to-let-bindings (x path)
(declare (xargs :guard (seq-nametree-p x)))
(if (consp x)
(append (seq-nametree-to-let-bindings (car x) `(car ,path))
(seq-nametree-to-let-bindings (cdr x) `(cdr ,path)))
(if (not x)
nil
(list (list x path)))))
(defun seq-bind-p (x)
; The binding statements are:
;
; 1. (:= ACTION)
; 2. (NAMETREE := ACTION)
(declare (xargs :guard t))
(and (consp x)
(if (member-eq (first x) '(:= :w= :s=))
(and (or (true-listp x)
(cw "Error: Expected assignment to be a true-listp. ~x0.~%" x))
(or (= (length x) 2)
(cw "Error: Expected assignment to have length 2. ~x0.~%" x)))
(and (consp (cdr x))
(member-eq (second x) '(:= :w= :s=))
(or (true-listp x)
(cw "Error: Expected assignment to be a true-listp. ~x0.~%" x))
(or (= (length x) 3)
(cw "Error: Expected assignment to have length 3. ~x0.~%" x))
(or (seq-nametree-p (first x))
(cw "Error: Expected assignment to have a name-tree. ~x0.~%" x))))))
(defun seq-return-p (x)
; The return statements are:
;
; 1. (RETURN EXPR)
; 2. (RETURN-RAW ACTION)
;
(declare (xargs :guard t))
(and (consp x)
(or (eq (car x) 'return)
(eq (car x) 'return-raw))
(or (true-listp x)
(cw "Error: Expected return to be a true-listp. ~x0.~%" x))
(or (= (length x) 2)
(cw "Error: Expected return to have length 2. ~x0.~%" x))))
(mutual-recursion
(defun seq-when-p (x)
; The when statement has the form:
;
; (WHEN CONDITION &rest BLOCK)
;
; Where CONDITION is an ACL2 expression that evalutes to a single, ACL2 object.
; This object is interpreted as a boolean, i.e., condition is said to be met if
; the object is non-nil.
;
; The block is skipped unless the condition is met. The block may end with a
; return statement to cause an early return from any enclosing blocks.
(declare (xargs :guard t))
(and (consp x)
(eq (car x) 'when)
(or (true-listp x)
(cw "Error: \"when\" must be a true-listp. ~x0.~%" x))
(or (>= (length x) 3)
(cw "Error: \"when\" must have at least length 3. ~x0.~%" x))
(seq-block-p (cddr x) nil)))
(defun seq-unless-p (x)
; The unless statement has the form:
;
; (UNLESS CONDITION &rest BLOCK)
;
; And is simply an alias for (WHEN (NOT CONDITION) &rest BLOCK)
(declare (xargs :guard t))
(and (consp x)
(eq (car x) 'unless)
(or (true-listp x)
(cw "Error: \"unless\" must be a true-listp. ~x0.~%" x))
(or (>= (length x) 3)
(cw "Error: \"unless\" must have at least length 3. ~x0.~%" x))
(seq-block-p (cddr x) nil)))
(defun seq-block-p (x toplevelp)
; A block is a list of other statements. A top-level block must end with
; a return statement, but other blocks need not do so.
(declare (xargs :guard t))
(cond ((atom x)
(cw "Error: expected a block, but found ~x0.~%" x))
((atom (cdr x))
(if toplevelp
(or (seq-return-p (car x))
(cw "Error: top-level block must end with a return ~
statement, but ends with ~x0.~%" x))
(or (seq-bind-p (car x))
(seq-when-p (car x))
(seq-unless-p (car x))
(seq-return-p (car x))
(cw "Error: invalid final block statement: ~x0.~%" (car x)))))
(t
(and (or (seq-bind-p (car x))
(seq-when-p (car x))
(seq-unless-p (car x))
(cw "Error: invalid interior block statement: ~x0.~%" (car x)))
(seq-block-p (cdr x) toplevelp))))))
; BOUND NAMES
;
; We write functions to collect all of the names found in any NAMETREE within a
; statement or block. These names are needed in order to handle WHEN and
; UNLESS statements without early returns, and to set up the initial lexical
; environment for the block.
(defun seq-bind-names (x)
(declare (xargs :guard (seq-bind-p x)))
(if (member-eq (car x) '(:= :w= :s=))
nil
(seq-flatten-nametree (first x))))
(mutual-recursion
(defun seq-when-names (x)
(declare (xargs :guard (seq-when-p x)))
(seq-block-names (cddr x) nil))
(defun seq-unless-names (x)
(declare (xargs :guard (seq-unless-p x)))
(seq-block-names (cddr x) nil))
(defun seq-stmt-names (x)
(declare (xargs :guard (or (seq-bind-p x)
(seq-when-p x)
(seq-unless-p x)
(seq-return-p x))))
(cond ((seq-bind-p x) (seq-bind-names x))
((seq-when-p x) (seq-when-names x))
((seq-unless-p x) (seq-unless-names x))
((seq-return-p x) nil)))
(defun seq-block-names (x toplevelp)
(declare (xargs :guard (seq-block-p x toplevelp)))
(if (atom (cdr x))
(seq-stmt-names (car x))
(append (seq-stmt-names (car x))
(seq-block-names (cdr x) toplevelp)))))
(defun seq-process-bind (x stream rest)
; X is a bind statement, stream is the name of the stream we are processing,
; and rest is the expansion of the rest of the lines in the block. We are to
; write the MV code for this bind statement.
(declare (xargs :guard (and (seq-bind-p x)
(seq-name-p stream))))
(cond ((eq (car x) :=)
(let ((action (second x)))
`(mv-let (!!!error !!!val ,stream)
,action
(if !!!error
(mv !!!error !!!val ,stream)
(check-vars-not-free (!!!error !!!val !!!stream)
,rest)))))
((or (eq (car x) :w=)
(eq (car x) :s=))
(let ((action (second x)))
`(let ((!!!stream ,stream))
(mv-let (!!!error !!!val ,stream)
,action
(cond (!!!error
(mv !!!error !!!val ,stream))
((not (mbt (,(case (car x) (:s= '<) (:w= '<=))
(len ,stream)
(len !!!stream))))
(prog2$ (er hard? "SEQ count failed for (~x0 ~x1.)~%"
',(car x) ',action)
(mv "SEQ count failure." nil !!!stream)))
(t
(check-vars-not-free (!!!error !!!val !!!stream)
,rest)))))))
(t
(let* ((nametree (first x))
(type (second x))
(action (third x)))
(if (and nametree (symbolp nametree))
;; We have only a single variable. We can write some cleaner
;; mv-let code without any of this nametree destucturing.
(case type
(:= `(mv-let (!!!error ,nametree ,stream)
,action
(if !!!error
(mv !!!error ,nametree ,stream)
(check-vars-not-free (!!!error !!!val !!!stream) ,rest))))
((:w= :s=)
`(let ((!!!stream ,stream))
(mv-let (!!!error ,nametree ,stream)
,action
(cond (!!!error
(mv !!!error ,nametree ,stream))
((not (mbt (,(case type (:s= '<) (:w= '<=))
(len ,stream)
(len !!!stream))))
(prog2$ (er hard? "SEQ count failed for (~x0 ~x1 ~x2.)~%"
',nametree ',type ',action)
(mv "SEQ count failure." nil !!!stream)))
(t
(check-vars-not-free (!!!error !!!val !!!stream) ,rest)))))))
;; Multiple variables; do the destructuring.
(case type
(:= `(mv-let (!!!error !!!val ,stream)
,action
(if !!!error
(mv !!!error !!!val ,stream)
(let ,(seq-nametree-to-let-bindings nametree '!!!val)
(check-vars-not-free (!!!error !!!val !!!stream)
,rest)))))
((:w= :s=)
`(let ((!!!stream ,stream))
(mv-let (!!!error !!!val ,stream)
,action
(cond (!!!error
(mv !!!error !!!val ,stream))
((not (mbt (,(case type (:s= '<) (:w= '<=))
(len ,stream)
(len !!!stream))))
(prog2$ (er hard? "SEQ count failed for (~x0 ~x1 ~x2.)~%"
',nametree ',type ',action)
(mv "SEQ count failure." nil !!!stream)))
(t
(let ,(seq-nametree-to-let-bindings nametree '!!!val)
(check-vars-not-free (!!!error !!!val !!!stream) ,rest)))))))))))))
;(seq-process-bind '(:= action) 'stream '<rest>)
;(seq-process-bind '(foo := action) 'stream '<rest>)
;(seq-process-bind '((foo . bar) := action) 'stream '<rest>)
;(seq-process-bind '((foo . nil) := action) 'stream '<rest>)
(defun seq-list-ends-with-returnp (x)
(declare (xargs :guard (consp x)))
(if (atom (cdr x))
(seq-return-p (car x))
(seq-list-ends-with-returnp (cdr x))))
;(seq-list-ends-with-returnp '(1 2 3))
;(seq-list-ends-with-returnp '(1 2 (return 3)))
(defun seq-make-let-pairs-for-when (names)
(declare (xargs :guard t))
(cond ((atom names)
nil)
((atom (cdr names))
(list `(,(car names) (car !!!val))))
(t
(list* `(,(car names) (car !!!val))
`(!!!val (cdr !!!val))
(seq-make-let-pairs-for-when (cdr names))))))
;(seq-make-let-pairs-for-when '(a b c))
;(seq-make-let-pairs-for-when nil)
(mutual-recursion
(defun seq-process-unless (x stream rest)
; Unless statements are easily transformed into when statements.
(declare (xargs :guard (and (seq-unless-p x)
(seq-name-p stream))))
(let ((condition (second x))
(subblock (cddr x)))
(seq-process-when (list* 'when
`(not ,condition)
subblock)
stream rest)))
(defun seq-process-when (x stream rest)
; X is a when statement, stream is the name of the stream we are processing,
; and rest is the expansion for the statements that come after this when
; statement in the current block. We are to write the MV code for this when
; statement.
(declare (xargs :guard (and (seq-when-p x)
(seq-name-p stream))))
(let* ((condition (second x))
(subblock (cddr x))
(ends-with-returnp (seq-list-ends-with-returnp subblock))
(bound-in-subblock (seq-block-names subblock nil)))
(cond
; Easy case 1. The subblock ends with a return, so we always either process it
; or rest but never both.
(ends-with-returnp
`(if ,condition
,(seq-process-block subblock stream nil)
,rest))
; Easy case 2. The subblock doesn't end with a return, so we may process it or
; and rest; but since it binds no variables so the only thing that it changes is
; the stream.
((not bound-in-subblock)
`(mv-let (!!!error !!!val ,stream)
(if ,condition
,(seq-process-block subblock stream nil)
(mv nil nil ,stream))
(if !!!error
(mv !!!error !!!val ,stream)
(check-vars-not-free (!!!error !!!val) ,rest))))
; Hard case. The subblock does not end with a return. So if the condition is
; met, we're just going to do some additional bindings and stream manipulation
; before the processing rest. The hard part of this is dealing with all of the
; things that variables that might have been bound in the subblock.
; Our basic approach is to add a return statement to the end of the subblock
; before processing it, which returns to us a list of all the values for the
; variables it binds. We can then rebind these variables before giving them to
; rest.
(t
(let* ((return-stmt `(return (list ,@bound-in-subblock)))
(return-expansion `(mv nil (list ,@bound-in-subblock) ,stream))
(new-subblock (append subblock (list return-stmt)))
(rebindings (seq-make-let-pairs-for-when bound-in-subblock)))
`(mv-let (!!!error !!!val ,stream)
(if ,condition
,(seq-process-block new-subblock stream nil)
,return-expansion)
(if !!!error
(mv !!!error !!!val ,stream)
; At this point, !!!val holds the list of all the values for the variables
; which were bound in the subblock. We just need to redo these bindings so
; that they are available in rest.
(let* ,rebindings
(check-vars-not-free (!!!error !!!val) ,rest)))))))))
(defun seq-process-stmt (x stream rest)
(declare (xargs :guard (and (or (seq-bind-p x)
(seq-when-p x)
(seq-unless-p x)
(seq-return-p x))
(seq-name-p stream))))
(cond ((seq-bind-p x)
(seq-process-bind x stream rest))
((seq-when-p x)
(seq-process-when x stream rest))
((seq-unless-p x)
(seq-process-unless x stream rest))
(t
(let ((type (first x))
(value (second x)))
(cond ((eq type 'return)
`(mv nil ,value ,stream))
((eq type 'return-raw)
value))))))
(defun seq-process-block (x stream toplevelp)
(declare (xargs :guard (and (seq-block-p x toplevelp)
(seq-name-p stream))))
(if (atom (cdr x))
(seq-process-stmt (car x) stream `(mv nil nil ,stream))
(let ((rest (seq-process-block (cdr x) stream toplevelp)))
(seq-process-stmt (car x) stream rest)))))
(defun seq-make-initial-let-pairs (names)
(declare (xargs :guard t))
(if (atom names)
nil
(cons `(,(car names) nil)
(seq-make-initial-let-pairs (cdr names)))))
;(seq-make-initial-let-pairs '(a b c d))
(defun seq-fn (stream block)
(declare (xargs :guard (and (seq-name-p stream)
(seq-block-p block t))))
(let* ((names (seq-block-names block t))
(initial-bindings (seq-make-initial-let-pairs (remove-duplicates names))))
`(let ,initial-bindings
(declare (ignorable ,@names))
,(seq-process-block block stream t))))
;(seq-fn 'tokens *hid-block*)
(defmacro seq (stream &rest block)
(seq-fn stream block))
(defun seq-block-list-p (x toplevelp)
(declare (xargs :guard t))
(if (atom x)
(eq x nil)
(and (seq-block-p (car x) toplevelp)
(seq-block-list-p (cdr x) toplevelp))))
(defun seq-backtrack-fn (stream blocks)
(declare (xargs :guard (and (seq-name-p stream)
(seq-block-list-p blocks t)
(consp blocks))))
(if (atom (cdr blocks))
`(seq ,stream . ,(car blocks))
`(mv-let (!!!error !!!val updated-stream)
(seq ,stream . ,(car blocks))
(if (not !!!error)
(mv !!!error !!!val updated-stream)
(check-vars-not-free (!!!error !!!val)
,(seq-backtrack-fn stream (cdr blocks)))))))
(defmacro seq-backtrack (stream &rest blocks)
(seq-backtrack-fn stream blocks))
|