This file is indexed.

/usr/share/acl2-8.0dfsg/books/misc/simplify-defuns.lisp is in acl2-books-source 8.0dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
; Copyright (C) 2013, Regents of the University of Texas
; Written by Matt Kaufmann
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.

; simplify-defuns.lisp  --  see simplify-defuns.txt for documentation

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; TABLE OF CONTENTS
;;; -----------------
;;; Term Simplification
;;; Creating/Destroying % Symbols
;;; Definition and Lemma Generation (except lemmas for mutual-recursion)
;;; Lemma Generation for Mutual-recursion
;;; Translating Lemmas
;;; Top Level Routines
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(in-package "ACL2")

(program)
(set-state-ok t)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Term Simplification
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defun simplify-term1 (ttree term hyps equiv thints prove-assumptions ctx wrld
                             state)

; Adapted from tool2-fn in books/misc/expander.lisp.

  (prog2$
   (initialize-brr-stack state)
   (let* ((ens (ens state))
          (saved-pspv (make-pspv ens wrld state
                                 :displayed-goal term ; from, e.g., thm-fn
                                 :user-supplied-term term ;from, e.g., prove
                                 :orig-hints thints)) ;from, e.g., prove
          (new-lit (fcons-term* 'equal (fcons-term* 'hide 'xxx) term))
          (current-clause (add-literal new-lit
                                       (dumb-negate-lit-lst hyps) t)))
     (er-let* ;from waterfall1
      ((pair
        (find-applicable-hint-settings
         *initial-clause-id*
         current-clause
         nil saved-pspv ctx
         thints wrld nil state)))
      (let ((hint-settings (car pair))
            (thints (cdr pair)))
        (mv-let
         (hint-settings state)
         (cond ((null hint-settings)
                (mv nil state))
               (t (thanks-for-the-hint nil hint-settings nil state))) ;BB
         (er-let* ((pspv (load-hint-settings-into-pspv
                          t hint-settings saved-pspv nil wrld ctx state)))
           (cond
            ((intersectp-eq
              '(:do-not-induct :do-not :induct :use :cases :by)
              (strip-cars hint-settings))
             (er soft ctx
                 "It makes no sense for SIMPLIFY-TERM to be given hints for ~
                  \"Goal\" that include any of :do-not-induct, :do-not, ~
                  :induct, :use, :cases, or :by.  The hint ~p0 is therefore ~
                  illegal."
                 (cons "Goal" hint-settings)))
            (t (pprogn
                (initialize-proof-tree ;from waterfall
                 *initial-clause-id*
                 (list (list (implicate (conjoin hyps) term)))
                 ctx
                 state)
                (let* ;from simplify-clause1
                    ((rcnst
                      (change rewrite-constant
                              (access prove-spec-var pspv :rewrite-constant)
                              :force-info
                              (if (ffnnamep-lst 'if current-clause)
                                  'weak
                                t)))
                     (pts nil))
                  (mv-let
                   (contradictionp type-alist fc-pair-lst)
                   (forward-chain current-clause
                                  pts
                                  (access rewrite-constant
                                          rcnst :force-info)
                                  nil wrld ens
                                  (access rewrite-constant
                                          rcnst :oncep-override)
                                  state)
                   (declare (ignore fc-pair-lst))
                   (cond
                    (contradictionp
                     (er soft ctx
                         "Contradiction found in hypotheses using type-set ~
                          reasoning!"))
                    (t
                     (sl-let ;from simplify-clause1
                      (contradictionp simplify-clause-pot-lst)
                      (setup-simplify-clause-pot-lst current-clause
                                                     (pts-to-ttree-lst
                                                      pts)
                                                     nil ;; RBK: fc-pair-lst
                                                     type-alist
                                                     rcnst
                                                     wrld state
                                                     (initial-step-limit
                                                      wrld state))
                      (cond
                       (contradictionp
                        (er soft ctx
                            "Contradiction found in hypotheses using linear ~
                             reasoning!"))
                       (t

; We skip the call of process-equational-polys in simplify-clause1; I think
; that we can assume that by the time this is called, that call wouldn't have
; any effect anyhow.  By the way, we skipped remove-trivial-equivalence
; earlier.

; Now we continue as in rewrite-clause.

                        (let ((local-rcnst
                               (change rewrite-constant rcnst
                                       :current-literal
                                       (make current-literal
                                             :not-flg nil
                                             :atm term)))
                              (gstack (initial-gstack 'simplify-clause
                                                      nil
                                                      current-clause)))
                          (sl-let
                           (rewritten-term ttree)
                           (rewrite-entry
                            (rewrite term nil 1)
                            :rdepth (rewrite-stack-limit wrld)
                            :obj '?
                            :fnstack nil
                            :ancestors nil
                            :step-limit step-limit
                            :pre-dwp nil
                            :backchain-limit 500
                            :geneqv
                            (cadr (car (last (getprop
                                              equiv
                                              'congruences
                                              nil
                                              'current-acl2-world
                                              wrld))))
                            :pequiv-info nil)
                           (sl-let
                            (bad-ass ttree)
                            (resume-suspended-assumption-rewriting
                             ttree
                             nil
                             gstack
                             simplify-clause-pot-lst
                             local-rcnst
                             wrld
                             state
                             step-limit)
                            (cond
                             (bad-ass
                              (er soft ctx
                                  "Generated false assumption, ~p0!  So, ~
                                   rewriting is aborted, just as it would be ~
                                   in the course of a regular ACL2 proof."
                                  bad-ass))
                             (prove-assumptions
                              (mv-let
                               (pairs pspv state)
                               (process-assumptions
                                0
                                (change prove-spec-var saved-pspv
                                        :tag-tree
                                        (set-cl-ids-of-assumptions
                                         ttree *initial-clause-id*))
                                wrld state)
                               (er-let*
                                   ((ttree
                                     (accumulate-ttree-and-step-limit-into-state
                                      (access prove-spec-var pspv :tag-tree)
                                      step-limit
                                      state))
                                    (thints (value thints)))
                                 (er-let*
                                 ((new-ttree
                                   (prove-loop1 1 nil pairs pspv
                                                thints ens wrld ctx state)))
                                 (value (cons rewritten-term
                                              (cons-tag-trees
                                               ttree
                                               new-ttree)))))))
                             (t
                              (value (cons rewritten-term
                                           ttree))))))))))))))))))))))))

(defun simplify-term* (remaining-iters ttree term hyps equiv thints
                                       prove-assumptions ctx wrld state)
  (if (zp remaining-iters)
      (value (list* term t ttree))
    (er-let*
     ((term-ttree (simplify-term1 ttree term hyps equiv thints
                                  prove-assumptions ctx wrld state)))
     (if (equal term (car term-ttree))
         (value (list* term nil ttree))
       (simplify-term* (1- remaining-iters) (cdr term-ttree) (car term-ttree)
                       hyps equiv thints prove-assumptions ctx wrld state)))))

(defun simplify-term
  (repeat-limit translate-flg inhibit-output form hyps equiv hints
                prove-assumptions ctx wrld state)
  (state-global-let*
   ((inhibit-output-lst
     (if inhibit-output
         (union-eq '(proof-tree prove) (@ inhibit-output-lst))
       (@ inhibit-output-lst))))
   (let ((name-tree 'simplify-term))
     (er-let*
      ((thints (translate-hints name-tree hints ctx wrld state))
       (thyps (if translate-flg
                  (translate-term-lst hyps t t t ctx wrld state)
                (value hyps)))
       (term (if translate-flg
                 (translate form t t t ctx wrld state)
               (value form))))
      (simplify-term* repeat-limit nil term hyps equiv thints prove-assumptions
                      ctx wrld state)))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Creating/Destroying % Symbols
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; All the code for dealing with % should be in this section.  So, it should be
; easy enough to modify the code to use other naming schemes.

(defun strip-leading-percent-from-symbol (sym)
  (let* ((name (symbol-name sym))
         (len (length name)))
    (if (and (not (int= len 0))
             (eq (char name 0) #\%))
        (intern-in-package-of-symbol (subseq name 1 len) sym)
      sym)))

(defun strip-leading-percent-from-symbol-list (sym-list acc)

; NOTE:  Reverses the list.

  (if (endp sym-list)
      acc
    (strip-leading-percent-from-symbol-list
     (cdr sym-list)
     (cons (strip-leading-percent-from-symbol (car sym-list))
           acc))))

(mutual-recursion

(defun strip-percents (term)
  (cond
   ((variablep term) term)
   ((fquotep term) term)
   ((flambdap (ffn-symb term))

; ((lambda (vars) body) . args)

    (let ((vars (lambda-formals (ffn-symb term)))
          (body (lambda-body (ffn-symb term)))
          (args (fargs term)))
      (fcons-term (make-lambda vars (strip-percents body))
                  (strip-percents-lst args nil))))
   (t
    (fcons-term (strip-leading-percent-from-symbol (ffn-symb term))
                (strip-percents-lst (fargs term) nil)))))

(defun strip-percents-lst (x acc)
  (cond ((endp x) (reverse acc))
        (t (strip-percents-lst (cdr x) (cons (strip-percents (car x)) acc)))))

)

(defun percentify (name)
  (concatenate 'string "%" name))

(defconst *%%p* "%%P")

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Definition and Lemma Generation (except lemmas for mutual-recursion)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defun sublis-fn! (alist term)
  (mv-let (erp new-term)
          (sublis-fn alist term nil)
          (assert$ (null erp)
                   new-term)))

(defun %f-is-f-lemmas-rev (%f f formals-decls orig-body
                              untranslated-new-body
                              translated-new-body
                              counter old-theory wrld)

; Conses, in reverse order, all new lemmas for proving %f-is-f.  This should
; not be called for mutually recursive functions.

  (let* ((%f-name (symbol-name %f))
         (f-name (symbol-name f))
         (%%f-name (percentify %f-name))
         (%%f (intern-in-package-of-symbol %%f-name %f))
         (f-body-is-%f-body_s
          (intern-in-package-of-symbol
           (concatenate 'string f-name "-BODY-IS-" %f-name "-BODY_S")
           %f))
         (%%f-is-f
          (intern-in-package-of-symbol
           (concatenate 'string %%f-name "-IS-" f-name)
           %f))
         (f-is-%f
          (intern-in-package-of-symbol
           (concatenate 'string f-name "-IS-" %f-name)
           %f))
         (new-theory
          (intern (concatenate 'string "THEORY-"
                               (coerce (explode-atom (1+ counter) 10)
                                       'string))
                  "ACL2"))
         (recp

; We use %f below even though f might be slightly better, because that way only
; the input defs need to be included.

          (getprop %f 'recursivep nil 'current-acl2-world wrld))
         (formals (car formals-decls))
         (%%f-formals (cons %%f formals))
         ( %f-formals (cons  %f formals))
         (  f-formals (cons   f formals))
         (equal-bodies (and (not recp)
                            (equal untranslated-new-body orig-body))))

; The lemmas below are in reverse order.

    `((local
       (deftheory ,new-theory
         (union-theories '(,f-is-%f)
                         (theory ',old-theory))))

      (defthm ,f-is-%f
        (equal ,f-formals
               ,%f-formals)
        :hints (,(if recp
                     `("Goal"
                       :by
                       (:functional-instance
                        ,%%f-is-f
                        (,%%f ,%f))
                       :do-not '(preprocess) ; avoid dumb clausifier
                       :expand (,%f-formals))
                   `("Goal" :expand

; Uh oh: simplification can replace a formal with a constant.  Since %f and f
; are non-recursive, it is safe to cause all calls to be expanded.

                     ((:free ,formals ,%f-formals)
                      (:free ,formals ,f-formals))
                     :in-theory (theory ',old-theory)
                     :do-not '(preprocess) ; avoid dumb clausifier
                     ,@(and (not equal-bodies)
                            `(:use ,f-body-is-%f-body_s))))))

      ,@(cond
         (recp `((local
                  (defthm ,%%f-is-f
                    (equal ,%%f-formals
                           ,f-formals)
                    :hints (("Goal"
                             :in-theory
                             (union-theories
                              '((:induction ,%%f))
                              (theory ',old-theory))
                             :do-not '(preprocess) ; avoid dumb clausifier
                             :expand (,%%f-formals ,f-formals)
                             :induct t))))
                 (local
                  (defun ,%%f ,formals
                    ,@(cdr formals-decls) ; to include original measure etc.
                    ,(untranslate (sublis-fn! (list (cons %f %%f))
                                              translated-new-body)
                                  nil wrld)))))
         (equal-bodies nil)
         (t `((local
               (defthm ,f-body-is-%f-body_s

; Presumably the same simplification that created %body_s from %body should
; prove this theorem.

                 (equal ,untranslated-new-body ,orig-body)
                 :hints (("Goal" :do-not '(preprocess) ; avoid dumb clausifier
                          ))
                 :rule-classes nil))))))))

(defun get-state-value (sym state)
  (if (f-boundp-global sym state)
      (f-get-global sym state)
    nil))

(defun simplify-repeat-limit (state)

; This supplies the number of iterations of our calls to the rewriter.

  (or (get-state-value 'simplify-repeat-limit state)

; We could play with this limit.  But see the comment about
; simplify-repeat-limit in f-is-%f-induction-step-lemmas.

      3))

(defun simplify-inhibit (state)
  (let ((val (get-state-value 'simplify-inhibit state)))
    (case val
      ((t) nil)
      ((nil) '(prove proof-tree warning observation event summary))
      (otherwise val))))

(defun simplify-defun (info def lemmas counter old-theory ens wrld state)

; Def is (defun %foo ...) or (defund %foo ...).

; We return (mv erp new-def lemmas-out counter latest-theory state), where
; lemmas-out extends lemmas but is equal to lemmas if info is 'mut-rec.
; Except, if def is not intended to be simplified, new-def is nil.

; WARNING: This function does not modify the declare forms of def, even if %f
; is mentioned in those declare forms.

  (let* ((fn (cadr def))
         (new-fn (strip-leading-percent-from-symbol fn))
         (orig-body (car (last def))))
    (if (eq new-fn fn)
        (mv nil nil lemmas counter old-theory state)
      (mv-let
       (erp simp state)
       (pprogn
        (fms "~x0" (list (cons #\0 (cadr def))) *standard-co* state nil)
        (simplify-term (simplify-repeat-limit state)
                       t ; translate-flg
                       (simplify-inhibit state)
                       orig-body
                       nil ;hyps
                       'equal ; equiv
                       nil ; hints
                       t ; prove-assumptions
                       'simplify-defun wrld state))
       (if erp
           (mv-let (erp val state)
                   (er soft 'simplify-defun
                       "Simplification failed for the definition of ~x0."
                       fn)
                   (declare (ignore erp val))
                   (mv t nil nil counter old-theory state))
         (let* ((new-body (car simp))
                (untranslated-new-body
                 (untranslate new-body nil wrld))
                (new-body-stripped (strip-percents new-body))
                (untranslated-new-body-stripped
                 (untranslate new-body-stripped nil wrld))
                (formals-decls (butlast (cddr def) 1))
                (new-lemmas
                 (if (eq info 'mut-rec)
                     nil
                   (%f-is-f-lemmas-rev fn new-fn formals-decls
                                       orig-body
                                       untranslated-new-body
                                       new-body
                                       counter old-theory wrld)))
                (first-new-lemma (car new-lemmas))
                (new-theory-p
                 (case-match first-new-lemma
                   (('local ('deftheory . &))
                    t)
                   (& nil)))
                (new-theory
                 (if new-theory-p
                     (cadr (cadr first-new-lemma))
                   old-theory))
                (new-counter (if new-theory-p (1+ counter) counter)))
           (mv nil
               `(,(if (enabled-runep (list :definition fn) ens wrld)
                      'defun
                    'defund)
                 ,new-fn
                 ,@formals-decls
                 ,untranslated-new-body-stripped)
               (append new-lemmas lemmas)
               new-counter
               new-theory
               state)))))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Lemma Generation for Mutual-recursion
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defun mut-rec-formals (defs formals)

; We return a list containing the unique formal parameter common to all the
; defs (each of the form (defun ...)) if there is one, else nil.

  (if (endp defs)
      formals
    (let* ((def (car defs))
           (new-formals (and (true-listp def) (caddr def)))
           (formals-okp (if formals
                            (equal formals new-formals)
                          (and (consp new-formals)
                               new-formals
                               (null (cdr new-formals))))))
      (and formals-okp
           (mut-rec-formals (cdr defs) new-formals)))))

(defun f-is-%f-list (defs formals acc)

; Returns a list of (equal (f . formals) (%f . formals)) in forward order.

  (if (endp defs)
      acc
    (f-is-%f-list (cdr defs)
                  formals
                  (let* ((%f (cadar defs))
                         (f (strip-leading-percent-from-symbol %f)))
                    (if (eq %f f)
                        acc
                      (cons `(equal (,f ,@formals)
                                    (,%f ,@formals))
                            acc))))))

(defun f-is-%f-base-lemmas (f-is-%f-list formals zp-formals acc)

; Result is in correct order if f-is-%f-list is in reverse order.

  (if (endp f-is-%f-list)
      acc
    (f-is-%f-base-lemmas
     (cdr f-is-%f-list)
     formals zp-formals
     (cons (let* ((equality (car f-is-%f-list))
                  ( f (car (cadr equality)))
                  (%f (car (caddr equality)))
                  (lemma-name
                   (intern (concatenate 'string
                                        (symbol-name f)
                                        "-IS-"
                                        (symbol-name %f)
                                        "-BASE")
                           "ACL2")))
             `(local
               (defthm ,lemma-name
                 (implies ,zp-formals
                          ,equality)

; Experimentation shows that it can be valuable first to expand without doing
; any real simplification, and then to rewrite.  We have seen assumptions get
; generated when we allow the current-theory in "Goal".

                 :hints (("Goal" :expand (( ,f ,@formals)
                                          (,%f ,@formals))))
#|
                 :hints (("Goal" :expand (( ,f ,@formals)
                                          (,%f ,@formals))
                          :do-not '(preprocess)
                          :in-theory (theory 'minimal-theory))
                         '(:computed-hint-replacement
                           t
                           :in-theory (current-theory :here)))
|#
                 )))
           acc))))

(defun f-is-%f-induction-step-lemmas (f-is-%f-list formals hyp acc)

; Result is in correct order if %f-is-f-list is in reverse order.

  (if (endp f-is-%f-list)
      acc
    (f-is-%f-induction-step-lemmas
     (cdr f-is-%f-list)
     formals hyp
     (cons (let* ((equality (car f-is-%f-list))
                  ( f (car (cadr equality)))
                  (%f (car (caddr equality)))
                  (lemma-name
                   (intern (concatenate 'string
                                        (symbol-name f)
                                        "-IS-"
                                        (symbol-name %f)
                                        "-INDUCTION_STEP")
                           "ACL2"))
                  (f-formals (cons f formals))
                  (%f-formals (cons %f formals)))
             `(local
               (defthm ,lemma-name
                 (implies ,hyp
                          (equal ,f-formals ,%f-formals))
                 :instructions
                 (:promote
                  (:dv 1)
                  :x-dumb :nx :x-dumb :top
                  (:s :normalize nil :backchain-limit 1000
                      :expand :lambdas
                      :repeat

; Probably 3 is enough, because of simplify-repeat-limit.  At any rate, we need
; at least 1 in order to apply the earlier such lemmas to the body of f.

                      4)))))
           acc))))

(defun f-is-%f-lemmas-mut-rec (f-is-%f-list formals acc)

; Result is in correct order if f-is-%f-list is in reverse order.

  (if (endp f-is-%f-list)
      acc
    (f-is-%f-lemmas-mut-rec
     (cdr f-is-%f-list)
     formals
     (cons (let* ((equality (car f-is-%f-list))
                  ( f (car (cadr equality)))
                  (%f (car (caddr equality)))
                  (lemma-name
                   (intern (concatenate 'string
                                        (symbol-name f)
                                        "-IS-"
                                        (symbol-name %f))
                           "ACL2")))
             `(defthm ,lemma-name
                (equal (,f ,@formals) (,%f ,@formals))
                :hints (("Goal" :do-not '(preprocess)))))
           acc))))

(defun mutual-recursion-lemmas (formals f-is-%f-list counter old-theory)

; The lemmas need to be returned in reverse order.

  (let* ((%%p-name (concatenate 'string
                                *%%p*
                                (coerce (explode-atom counter 10)
                                        'string)))
         (%%p (intern %%p-name "ACL2"))
         (%%p-formals (cons %%p formals))
         (%%p-property (intern (concatenate 'string %%p-name "-PROPERTY")
                               "ACL2"))
         (%%p-base (intern (concatenate 'string
                                        %%p-name
                                        "-BASE")
                           "ACL2"))
         (%%p-induction-step (intern (concatenate 'string
                                                  %%p-name
                                                  "-INDUCTION_STEP")
                                     "ACL2"))
         (not-zp-formal `(not (zp ,@formals)))
         (formal (car formals))
         (%%p-formal-minus-1 `(,%%p (1- ,formal)))
         (induction-hyp `(and ,not-zp-formal ,%%p-formal-minus-1))
         (%%p-holds (intern (concatenate 'string
                                         %%p-name
                                         "-HOLDS")
                            "ACL2"))
         (%%p-implies-f-is-%f-theory
          (intern (concatenate 'string
                               %%p-name
                               "-IMPLIES-F-IS-%F-THEORY")
                  "ACL2"))
         (new-theory
          (intern (concatenate 'string "THEORY-"
                               (coerce (explode-atom (1+ counter) 10)
                                       'string))
                  "ACL2")))
    `((local
       (deftheory ,new-theory
         (union-theories (set-difference-theories
                          (current-theory :here)
                          (current-theory ',%%p-holds))
                         (theory ',old-theory))))

      (encapsulate
       ()
       (local (in-theory (union-theories
                          '(,%%p-holds)
                          (theory ',%%p-implies-f-is-%f-theory))))
       ,@(f-is-%f-lemmas-mut-rec f-is-%f-list formals nil))

      (local
       (defthm ,%%p-holds
         ,%%p-formals
         :hints (("Goal" :induct (%%sub1-induction ,@formals)
                  :do-not '(preprocess)
                  :in-theory (union-theories '(,%%p-base
                                               ,%%p-induction-step
                                               (:induction %%sub1-induction))
                                             (theory 'minimal-theory))))))

      (local
       (encapsulate
        ()

        (local (in-theory (disable ,%%p
                                   ,%%p-base ; just an optimization
                                   )))

        (local (deflabel %%induction-start))

        ,@(f-is-%f-induction-step-lemmas f-is-%f-list formals induction-hyp
                                         nil)

        (defthm ,%%p-induction-step
          (implies ,induction-hyp
                   ,%%p-formals)
          :instructions
          (:promote :x-dumb (:s :normalize nil)))
        ))

      (local
       (encapsulate
        ()

        (local
         (in-theory (disable ,%%p-property)))

        ,@(f-is-%f-base-lemmas f-is-%f-list formals `(zp ,@formals) nil)

        (defthm ,%%p-base
          (implies (zp ,@formals)
                   ,%%p-formals)
          :instructions
          (:promote :x-dumb (:s :normalize nil)))
        ))

      (local
       (deftheory ,%%p-implies-f-is-%f-theory
         (union-theories (set-difference-theories (current-theory :here)
                                                  (current-theory ',%%p))
                         (theory 'minimal-theory))))

      (local
       (defthm ,%%p-property
         (implies (,%%p ,@formals)
                  (%%and-tree ,@f-is-%f-list))
         :HINTS
         (("Goal"
           :in-theory (union-theories '(,%%p) (theory 'minimal-theory))))))

      (local
       (defun ,%%p ,formals
         (declare (xargs :normalize nil))
         (%%and-tree ,@f-is-%f-list))))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Translating Lemmas
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defun my-translate-rule-class-alist (token alist seen orig-name corollary ctx
                                            wrld state)
  (cond
   ((null alist)
    (value (alist-to-keyword-alist seen nil)))
   (t
    (er-let*
     ((val (case (car alist)
             (:COROLLARY
              (value corollary))
             (:HINTS
              (value nil))
             (:INSTRUCTIONS
              (value nil))
             (:OTF-FLG
              (value (cadr alist)))
             (:TRIGGER-FNS
              (value (reverse (strip-leading-percent-from-symbol-list
                               (cadr alist) nil))))
             (:TRIGGER-TERMS
              (er-let*
               ((terms (translate-term-lst (cadr alist)
                                           t t t ctx wrld state)))
               (value (strip-percents-lst terms nil))))
             (:TYPED-TERM
              (er-let*
               ((term (translate (cadr alist) t t t ctx wrld state)))
               (value (strip-percents term))))
             (:BACKCHAIN-LIMIT-LST
              (value (cadr alist)))
             (:MATCH-FREE
              (value (cadr alist)))
             (:CLIQUE
              (let ((clique (cond ((null (cadr alist)) nil)
                                  ((atom (cadr alist))
                                   (strip-leading-percent-from-symbol
                                    (cadr alist)))
                                  (t (strip-leading-percent-from-symbol-list
                                      (cadr alist) nil)))))
                (value clique)))
             (:TYPE-SET
              (value (cadr alist)))
             #|
             (:CONTROLLER-ALIST
              (value (cadr alist)))
             (:LOOP-STOPPER
              (value (cadr alist)))
             (:PATTERN
              (er-let*
               ((term (translate (cadr alist) t t t ctx wrld state)))
; known-stobjs = t (stobjs-out = t)
               (value term)))
             (:CONDITION
              (er-let*
               ((term (translate (cadr alist) t t t ctx wrld state)))
; known-stobjs = t (stobjs-out = t)
               (value term)))
             (:SCHEME
              (er-let*
               ((term (translate (cadr alist) t t t ctx wrld state)))
; known-stobjs = t (stobjs-out = t)
               (value term)))
|#
             (otherwise
              (er soft ctx
                  "The key ~x0 is not yet implemented for rule class ~
                   translation."
                  (car alist))))))
     (my-translate-rule-class-alist
      token
      (cddr alist)
      (if val
          (let ((new-seen (cons (cons (car alist) val) seen)))
            (if (eq (car alist) :COROLLARY)
                (cons (cons :HINTS `(("Goal"
                                      :use

; !! This is dicey, because the original rule may have more than one
; :type-prescription corollary.  But if that is the case, we will get an error
; when we try to prove this theorem, and we should see the error.

                                      (,token ,orig-name))))
                      new-seen)
              new-seen))
        seen)
      orig-name corollary
      ctx wrld state)))))

(defun my-translate-rule-class1 (name class ctx wrld state)
  (let ((orig-corollary (cadr (assoc-keyword :corollary (cdr class)))))
    (er-let*
     ((corollary
       (cond (orig-corollary
              (translate orig-corollary t t t ctx wrld state))
             (t (value nil))))
; known-stobjs = t (stobjs-out = t)
      (alist
       (my-translate-rule-class-alist (car class)
                                      (cdr class)
                                      nil
                                      name
                                      (and corollary
                                           (untranslate
                                            (strip-percents corollary)
                                            t wrld))
                                      ctx wrld state)))
     (value (cons (car class) alist)))))

(defun my-translate-rule-class (name x ctx wrld state)
  (cond
   ((symbolp x) (value x))
   (t (my-translate-rule-class1 name x ctx wrld state))))

(defun my-translate-rule-classes1 (name classes ctx wrld state)
  (cond
   ((atom classes)
    (value nil))
   (t (er-let*
       ((class (my-translate-rule-class name (car classes) ctx wrld state))
        (rst (my-translate-rule-classes1 name (cdr classes) ctx wrld state)))
       (value (cons class rst))))))

(defun my-translate-rule-classes (name classes ctx wrld state)
  (cond ((atom classes) (value classes))
        (t (my-translate-rule-classes1 name classes ctx wrld state))))

(defun strip-percents-from-lemma (lemma ctx wrld state)
  (case-match lemma
    ((defthm name formula . other)
     (cond
      ((member-eq defthm '(defthm defthmd))
       (let ((new-name (strip-leading-percent-from-symbol name)))
         (if (eq name new-name)
             (value nil)
           (let ((rcs (cadr (assoc-keyword :rule-classes other))))
             (er-let*
              ((term (translate formula t t t ctx wrld state))
               (classes (my-translate-rule-classes name rcs ctx wrld state)))
              (value `(,defthm ,new-name
                        ,(untranslate (strip-percents term) t wrld)
                        :hints (("Goal" :use ,name))
                        ,@(and classes
                               (list :rule-classes
                                     classes)))))))))
      (t (value nil))))
    (& (value nil))))

(defun strip-percents-from-lemmas (lemmas acc ctx wrld state)
  (if (endp lemmas)
      (value (reverse acc))
    (er-let* ((new-lemma (strip-percents-from-lemma (car lemmas) ctx wrld
                                                    state)))
             (strip-percents-from-lemmas
              (cdr lemmas)
              (if new-lemma (cons new-lemma acc) acc)
              ctx wrld state))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Top Level Routines
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defun simplify-defuns (defs all-defs acc lemmas counter old-theory ens wrld
                         state)
  (cond
   ((endp defs)
    (let ((formals (mut-rec-formals all-defs nil)))
      (if formals
          (let* ((new-lemmas ; ((local (deftheory new-theory ...)) ...)
                  (mutual-recursion-lemmas formals
                                           (f-is-%f-list all-defs formals nil)
                                           counter
                                           old-theory))
                 (new-deftheory (cadr (car new-lemmas))))
            (mv nil
                (cons 'mutual-recursion (reverse acc))
                (append new-lemmas lemmas)
                (1+ counter)
                (cadr new-deftheory)
                state))
        (mv-let (erp val state)
                (er soft 'simplify-defuns
                    "Did not find a unique singleton list of formals for the ~
                     mutual-recursion nest starting with:~%~x0."
                    (car all-defs))
                (declare (ignore erp val))
                (mv t nil nil counter old-theory state)))))
   (t (mv-let
       (erp def new-lemmas counter new-theory state)
       (simplify-defun 'mut-rec (car defs) lemmas counter old-theory ens wrld
                       state)
       (if erp
           (mv t nil nil counter new-theory state)
         (simplify-defuns (cdr defs) all-defs
                          (if def (cons def acc) acc)
                          new-lemmas counter
                          new-theory ens wrld state))))))

(defun simplify-form (form lemmas counter old-theory ens wrld state)
  (let ((car-form (and (consp form) (car form))))
    (case car-form
      ((defun defund) (simplify-defun nil form lemmas counter old-theory ens
                                      wrld state))
      (mutual-recursion
       (simplify-defuns (cdr form) (cdr form) nil lemmas counter old-theory
                        ens wrld state))
      (defuns (mv-let (erp val state)
                      (er soft 'simplify-form
                          "Simplify-form does not yet handle DEFUNS, but it ~
                           could.")
                      (declare (ignore erp val))
                      (mv t nil nil counter old-theory state)))
      (otherwise (mv nil nil lemmas counter old-theory state)))))

(defun simplify-forms (forms defs lemmas counter old-theory ens wrld state)
  (cond ((endp forms)
         (pprogn
          (newline *standard-co* state)
          (mv nil
              (reverse defs)
              (case-match lemmas
                ((('local ('deftheory . &))
                  . &)
                 (cdr lemmas))
                (& lemmas))
              state)))
        (t (mv-let (erp simp-form lemmas new-counter new-theory state)
                   (simplify-form (car forms) lemmas counter old-theory ens
                                  wrld state)
                   (cond
                    (erp (mv t nil nil state))
                    (simp-form (simplify-forms
                                (cdr forms) (cons simp-form defs) lemmas
                                new-counter new-theory ens wrld state))
                    (t (simplify-forms (cdr forms) defs lemmas new-counter
                                       new-theory ens wrld state)))))))

(defun final-deftheory-1 (lemmas acc)
  (cond
   ((endp lemmas)
    acc)
   ((eq (caar lemmas) 'defthm)
    (final-deftheory-1 (cdr lemmas) (cons (cadar lemmas) acc)))
   ((eq (caar lemmas) 'encapsulate)
    (final-deftheory-1 (cdr lemmas)
                       (final-deftheory-1 (cddar lemmas) acc)))
   (t
    (final-deftheory-1 (cdr lemmas) acc))))

(defun final-deftheory (lemmas)
  `(deftheory %-removal-theory
     (union-theories
      ',(final-deftheory-1 lemmas nil)
      (theory 'minimal-theory))))

(defun initial-equality-events (in-defs out-defs)

; Returns an initial list of events, in forward order, for the f-is-%f lemmas.
; Matt K. mod for v2-9.1:  Remove support for pre-v2-7.

  (declare (ignore out-defs))
  (list (car in-defs) ; first out-def is in-package
        '(local
          (defun %%sub1-induction (n)
            (if (zp n)
                n
              (%%sub1-induction (1- n)))))
        '(local
          (defun %%and-tree-fn (args len)
            (declare (xargs :mode :program))
            (if (< len 20)
                (cons 'and args)
              (let* ((len2 (floor len 2)))
                (list 'and
                      (%%and-tree-fn (take len2 args) len2)
                      (%%and-tree-fn (nthcdr len2 args) (- len len2)))))))
        '(local
          (defmacro %%and-tree (&rest args)
            (%%and-tree-fn args (length args))))))

(include-book "file-io")

(defun write-lemma-file (infile outfile initial-events ctx state)
  (er-let*
   ((in-lemmas (read-list infile ctx state))
    (out-lemmas (strip-percents-from-lemmas in-lemmas nil ctx (w state)
                                            state)))
   (write-list (cons (car in-lemmas) ; in-package form
                     (append initial-events out-lemmas))
               outfile ctx state)))

(defun write-lemma-files (thm-file-pairs erp ctx state)
  (if (endp thm-file-pairs)
      (mv erp nil state)
    (mv-let (erp val state)
            (write-lemma-file (caar thm-file-pairs)
                              (cadar thm-file-pairs)
                              (cddar thm-file-pairs)
                              ctx state)
            (declare (ignore val))
            (write-lemma-files (cdr thm-file-pairs) erp ctx state))))

(defun transform-defuns-fn (in-defs-file    ; %f definitions
                            out-defs-file   ;  f definitions
                            equalities-file ; thms (equal (%f ..) (f ..))
                            extra-initial-events-for-defs
                            extra-initial-events-for-lemmas
                            thm-file-pairs  ; (.. ( infile  ; thms (.. %f ..)
                                            ;       outfile ; thms (..  f ..)
                                            ;       . initial-events
                                            ;     ) ..
                                            ; )
                            state)
  (let ((ctx 'transform-defuns)
        (first-lemma '(local
                       (deftheory theory-0 (theory 'minimal-theory)))))
    (mv-let
     (erp in-defs state)
     (read-list in-defs-file ctx state)
     (if erp
         (silent-error state)
       (mv-let
        (erp out-defs lemmas state)
        (if (or out-defs-file equalities-file)
            (simplify-forms in-defs nil (list first-lemma) 0 'theory-0 (ens state)
                            (w state) state)
          (mv nil nil nil state))
        (if erp
            (silent-error state)
          (er-progn
           (if out-defs-file
               (write-list (append (list (car in-defs) ; in-package form
                                         '(set-ignore-ok t)
                                         '(set-irrelevant-formals-ok t)
                                         '(set-bogus-mutual-recursion-ok t))
                                   extra-initial-events-for-defs
                                   out-defs)
                           out-defs-file ctx state)
             (value nil))
           (if equalities-file
               (write-list (append
                            (initial-equality-events in-defs out-defs)
                            extra-initial-events-for-lemmas
                            (reverse (cons (final-deftheory lemmas)
                                           lemmas)))
                           equalities-file ctx state)
             (value nil))
           (write-lemma-files thm-file-pairs nil ctx state))))))))

(defmacro transform-defuns (in-defs-file
                            &key out-defs equalities
                            defs-extra eq-extra thm-file-pairs)
  `(transform-defuns-fn ,in-defs-file ,out-defs ,equalities
                        ,defs-extra ,eq-extra ,thm-file-pairs state))