This file is indexed.

/usr/share/acl2-8.0dfsg/books/misc/untranslate-patterns.lisp is in acl2-books-source 8.0dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
; Simple, Pattern-Based Untranslation for ACL2
; Copyright (C) 2005-2008 Kookamara LLC
;
; Contact:
;
;   Kookamara LLC
;   11410 Windermere Meadows
;   Austin, TX 78759, USA
;   http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
;   Permission is hereby granted, free of charge, to any person obtaining a
;   copy of this software and associated documentation files (the "Software"),
;   to deal in the Software without restriction, including without limitation
;   the rights to use, copy, modify, merge, publish, distribute, sublicense,
;   and/or sell copies of the Software, and to permit persons to whom the
;   Software is furnished to do so, subject to the following conditions:
;
;   The above copyright notice and this permission notice shall be included in
;   all copies or substantial portions of the Software.
;
;   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
;   IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
;   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
;   AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
;   LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
;   FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
;   DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
; Slightly modified by Shilpi Goel <shigoel@cs.utexas.edu> to add
; define's untranslator

(in-package "ACL2")
(include-book "symbol-btree")
(include-book "std/util/define" :dir :system)
(include-book "xdoc/top" :dir :system)


;; Simple, Pattern-Based Untranslation
;;
;; This file provides an untranslate preprocessor (see :doc user-defined-
;; functions-table in ACL2 2.9.2 or above) which allows you to add pattern-
;; driven rules for performing custom translation.
;;
;; Patterns and replacements are stored as rules in a database, which can
;; be easily extended using the add-untranslate-pattern macro.  The database
;; uses an alist and a symbol-btree to store the patterns, so you may
;; occasionally wish to rebalance the tree and clean up the alist, using
;; the macro (optimize-untranslate-patterns).
;;
;; See :doc untranslate-patterns-table or :doc add-untranslate-pattern after
;; loading this file for usage examples.

(defxdoc untranslate-patterns
  :parents (macros user-defined-functions-table)
  :short "A database used to extend @('untranslate'), ACL2's function for
displaying terms during proofs, with pattern-based rules."

  :long "<p>The @('untranslate-patterns-table') is an ACL2 @(see table) that
stores patterns and replacements for use at untranslate time.  That is, during
proof output, this table is consulted before printing terms, allowing for
custom printing of particular terms.</p>

<p>Although this table has nothing to do with soundness, the rules it lists are
intended to obey the untranslate contract&mdash;that is, the replacements
listed for each pattern should macro-expand to their targets.  If this property
is violated, proof output might become very confusing!  For example, a rule
that displays calls to @(see member) as if they were calls to @(see subsetp)
would make proof output very difficult to understand.</p>

<p>We do nothing to enforce this contract.  Hence, a sensible user must ensure
that their use of this table is disciplined.</p>


<h3>Example 1: Mutually Recursive even/odd-p</h3>

<p>This function is just an inefficient check for if a natural number is even
or odd, using a flag-based mutual recursion scheme.</p>

@({
    (defun even/odd-p (flg x)
      (declare (xargs :guard (and (or (eq flg 'even)
                                      (eq flg 'odd))
                                  (natp x))))
      (if (eq flg 'even)
          (if (zp x)
              t
            (even/odd-p 'odd (1- x)))
        (if (zp x)
            nil
          (even/odd-p 'even (1- x)))))
})

<p>Something simple you might want to do with this is 'hide' the flag function
with macros such as the following:</p>

@({
    (defmacro even-p (x)
      `(even/odd-p 'even ,x))

    (defmacro odd-p (x)
      `(even/odd-p 'odd ,x))
})

<p>But of course in proofs you will still see the flag functions.  To hide
these flags, you can call the macro @('add-untranslate-pattern') as
follows:</p>

@({
    (add-untranslate-pattern (even/odd-p 'even ?x) (even-p ?x))
    (add-untranslate-pattern (even/odd-p 'odd ?x)  (odd-p ?x))
})

<p>The effect of these patterns can be seen by submitting the following
commands.  We first disable the type prescription of @('even/odd-p') and its
definition, so that ACL2 will generate terms involving @('even/odd-p').</p>

@({
    (in-theory (disable (:definition even/odd-p)
                        (:type-prescription even/odd-p)))

    (thm (equal (+ (even-p x) (even-p y))
                (+ (odd-p y) (odd-p x))))
})

<p>Some of the proof output generated is now as follows:</p>

@({
    Subgoal *1/2
    (IMPLIES (AND (NOT (EQ 'ODD 'EVEN))
                  (NOT (ZP X))
                  (EQUAL (+ (EVEN-P (+ -1 X)) (EVEN-P Y))
                         (+ (ODD-P (+ -1 X)) (ODD-P Y))))
             (EQUAL (+ (EVEN-P X) (EVEN-P Y))
                    (+ (ODD-P X) (ODD-P Y)))).

    Subgoal *1/2'
    (IMPLIES (AND (NOT (ZP X))
                  (EQUAL (+ (EVEN-P (+ -1 X)) (EVEN-P Y))
                         (+ (ODD-P (+ -1 X)) (ODD-P Y))))
             (EQUAL (+ (EVEN-P X) (EVEN-P Y))
                    (+ (ODD-P X) (ODD-P Y)))).
})

<p>As you can see, @('even/odd-p') is now nicely untranslated into these macro
calls, as we intended, and the flag argument is hidden.</p>


<h3>Example 2: Matt's Challenge</h3>

<p>Matt Kaufmann suggested the following challenge problem, inspired by the
hand-written untranslation routine for the RTL library.  We begin with the
following code:</p>

@({
    (defun foo$ (n $path)
      (cons n $path))

    (defmacro foo (x)
      `(foo$ ,x $path))

    (add-macro-alias foo foo$)
    (in-theory (disable foo))
})

<p>The theorem Matt proposed looking at was the following:</p>

@({
    (thm (equal (list (foo x) (foo$ x $path) (foo$ x other-path))
                (car (cons a b))))
})

<p>With no support for untranslate, this theorem ends up producing the
following goal:</p>

@({
    Goal'
    (EQUAL (LIST (FOO$ X $PATH)
                 (FOO$ X $PATH)
                 (FOO$ X OTHER-PATH))
           A).
})

<p>The RTL untranslator can handle this given the following command:</p>

@({
    (table rtl-tbl 'sigs-btree
           (symbol-alist-to-btree
            (dollar-alist '(foo) nil)))
})

<p>This yields the following, nice goal:</p>

@({
    Goal'
    (EQUAL (LIST (FOO X)
                 (FOO X)
                 (FOO$ X OTHER-PATH))
           A).
})

<p>Matt challenged me to come up with a system that would rewrite only $path.
Using the untranslate pattern table, here is the command:</p>

@({
    (add-untranslate-pattern (foo$ ?n $path) (foo ?n))
})

<p>As you can see, it produces exactly the same output:</p>

@({
    Goal'
    (EQUAL (LIST (FOO X)
                 (FOO X)
                 (FOO$ X OTHER-PATH))
           A).
})


<h3>The Pattern Matching Syntax</h3>

<p>The syntax for these patterns is as follows:</p>

<p>Any quoted constant matches with a quoted constant.  Note that numbers and
so forth must be MANUALLY quoted.</p>

<p>Unquoted symbols behave as follows:</p>

<ul>

<li>If the symbol has no leading @('?') character, then the symbol matches only
with variables of exactly the same name.  For example, if you were using a
stobj named $path, you could use the symbol $path in your pattern and it would
match only with $path.</li>

<li>Symbols beginning with a leading @('?') character are treated as match
variables.  For example, @('?x') in the above patterns behaves as a wildcard
and will match with any term.</li>

</ul>

<p>So, for example, the pattern @('(even/odd-p 'even ?x)') above matches
exactly those terms whose function symbol is @('even/odd-p'), whose first
argument is the quoted constant symbol even, and whose second argument is any
term.</p>

<p>Similarly, the pattern @('(foo$ ?n $path)') matches exactly those terms
whose function symbol is @('foo$'), whose first argument is any term, and
whose second argument is exactly the variable $path.</p>")

(table untranslate-patterns-table 'functions-database nil)
(table untranslate-patterns-table 'constants-database nil)

(defun untranslate-patterns-functions-btree (wrld)
  "Retrieve the untranslate patterns functions btree."
  (declare (xargs :guard (and (plist-worldp wrld)
                              (alistp (table-alist 'untranslate-patterns-table
                                                   wrld)))))
  (cdr (assoc-eq 'functions-database
                 (table-alist 'untranslate-patterns-table wrld))))

(defun untranslate-patterns-constants-alist (wrld)
  "Retrieve the untranslate patterns constants alist."
  (declare (xargs :guard (and (plist-worldp wrld)
                              (alistp (table-alist 'untranslate-patterns-table
                                                   wrld)))))
  (cdr (assoc-eq 'constants-database
                 (table-alist 'untranslate-patterns-table wrld))))

(defmacro add-untranslate-pattern-function (target replacement)
  "Add a new entry to the untranslate patterns functions btree."
  `(table untranslate-patterns-table 'functions-database
          (let* ((function     ',(ffn-symb target))
                 (pat-database (untranslate-patterns-functions-btree world))
                 (curr-subs    (symbol-btree-lookup function pat-database))
                 (new-subs     (acons ',target ',replacement curr-subs)))
            (symbol-btree-update function new-subs pat-database))))

(defmacro add-untranslate-pattern-constant (target replacement)
  "Add a new entry to the untranslate patterns constants alist."
  `(table untranslate-patterns-table 'constants-database
          (let* ((pat-database (untranslate-patterns-constants-alist world)))
            (acons ',target ',replacement pat-database))))

(defsection add-untranslate-pattern
  :parents (untranslate-patterns)
  :short "Add a new pattern to the untranslate patterns table."

  :long "<p>General Form:</p>

@({
    (add-untranslate-pattern target replacement)
})

<p>Examples:</p>

@({
    (add-untranslate-pattern-function '(1 2 3) *myconst*)
    (add-untranslate-pattern-function (f$ ?a ?b mystobj) (f a b))
})

<p>We add a new pattern to the untranslate patterns table.  The target should
be either a quoted constant (which must be fully expanded, it does not get
evaluated), or an unquoted function call.</p>

<p>The first example above changed proof output so that the constant '(1 2 3)
is instead printed as *myconst*.  The second example changes proof output so
that for all @('x,y'), @('(f$ x y mystobj)') is printed as @('(f x y)').  Note
that the printing of @('(f$ x y yourstobj)') will not be altered.</p>"

  (defmacro add-untranslate-pattern (target replacement)
    (if (and (consp target)
             (eq (car target) 'quote))
        `(add-untranslate-pattern-constant ,(cadr target) ,replacement)
      `(add-untranslate-pattern-function ,target ,replacement))))


(defsection optimize-untranslate-patterns
  :parents (untranslate-patterns)
  :short "Optimize the untranslate patterns table."
  :long "<p>Usage:</p>
@({
    (optimize-untranslate-patterns)
})

<p>This macro improves the efficiency of the untranslate-patterns-table by
rebalancing the btree used to internally store patterns for functions and by
cleaning up the alist used to store patterns for constants.  You only need to
call it after adding lots of untranslate patterns, and only if you want to
ensure that untranslation is being done as efficiently as possible.</p>"

  (defmacro optimize-untranslate-patterns ()
    `(progn
       (table untranslate-patterns-table 'functions-database
              (rebalance-symbol-btree
               (untranslate-patterns-functions-btree world)))
       (table untranslate-patterns-table 'constants-database
              (clean-up-alist
               (untranslate-patterns-constants-alist world)
               nil)))))


; UNTRANSLATE EXTENSION -------------------------------------------------------

; We begin by introducing a really simple rewriter.  We define our variables as
; symbols which begin with question marks, e.g., ?x, ?y, etc.

(defun jared-variablep (x)
  (declare (xargs :mode :program))
  (and (symbolp x)
       (let ((name (symbol-name x)))
         (and (not (equal name ""))
              (equal (char name 0) #\?)))))



; We now introduce a simple one-way unification / matching function.  We return
; two values: a boolean flag which indicates if we are successful in finding a
; match, and a list of substitutions of the form (variable . value).
;
; For example:
;
;    (jared-unify-term '(predicate ?x) '(predicate (car a)) nil)
;    ==>
;    (t ((?x . (car a))))

(mutual-recursion

 (defun jared-unify-term (pattern term sublist)
   (declare (xargs :mode :program))
   (if (atom pattern)
       (if (jared-variablep pattern)
           (let ((value (assoc-eq pattern sublist)))
             (if (consp value)
                 (if (equal term (cdr value))
                     (mv t sublist)
                   (mv nil nil))
               (mv t (acons pattern term sublist))))
         (if (equal term pattern)
             (mv t sublist)
           (mv nil nil)))
     (if (or (atom term)
             (not (eq (car term) (car pattern))))
         (mv nil nil)
       (if (eq (car term) 'quote) ; hence also (eq (car pattern) 'quote)
           (if (equal term pattern)
               (mv t sublist)
             (mv nil nil))
         (jared-unify-list (cdr pattern) (cdr term) sublist)))))

 (defun jared-unify-list (pattern-list term-list sublist)
   (declare (xargs :mode :program))
   (if (or (atom term-list)
           (atom pattern-list))
       (if (equal term-list pattern-list) ; same atom
           (mv t sublist)
         (mv nil nil))
     (mv-let (successp new-sublist)
       (jared-unify-term (car pattern-list)
                         (car term-list)
                         sublist)
       (if successp
           (jared-unify-list (cdr pattern-list)
                             (cdr term-list)
                             new-sublist)
         (mv nil nil)))))
 )


; After a list of substitutions has been generated, we typically want to apply
; them to a term.  We recur over the list of substitutions, simply calling
; subst to do our work throughout a term.
;
; For example:
;
;   (jared-substitute '((?x . (car a))) '(not (predicate ?x)))
;   ==>
;   (not (predicate (car a)))

(defun jared-substitute (sublist term)
  (declare (xargs :mode :program))
  (if (endp sublist)
      term
    (let* ((old (car (car sublist)))
           (new (cdr (car sublist)))
           (result (subst new old term)))
      (jared-substitute (cdr sublist) result))))



; We now introduce our actual rewriter.  We take three arguments: pat is the
; pattern to look for throughout the term, e.g., (predicate ?x), repl is the
; replacement to use, e.g., (not (predicate ?x)), and term is the term to match
; the pattern against in order to get the substitutions.
;
; For Example:
;
;   (jared-rewrite1 '(predicate ?x)
;                   '(not (predicate ?x))
;                   '(if (predicate (car x)) t nil))
;   =>
;   (if (not (predicate (car x))) t nil)

(mutual-recursion

 (defun jared-rewrite1 (pat repl term)
   (declare (xargs :mode :program))
   (mv-let (successful sublist)
     (jared-unify-term pat term nil)
     (if successful
         (jared-substitute sublist repl)
       (cond
        ((atom term) term)
        ((eq (car term) 'quote) term)
        ((eq (car term) 'cond)
         (let* ((cond-pairs   (cdr term))
                (tests        (strip-cars cond-pairs))
                (bodies       (strip-cadrs cond-pairs))
                (tests-prime  (jared-rewrite-lst1 pat repl tests))
                (bodies-prime (jared-rewrite-lst1 pat repl bodies)))
           (cons 'cond (pairlis$ tests-prime (pairlis$ bodies-prime nil)))))
        ((member (car term) '(let let*))
         (let* ((names         (strip-cars (second term)))
                (actuals       (strip-cadrs (second term)))
                (actuals-prime (jared-rewrite-lst1 pat repl actuals))
                (length        (length term))
                (nils          (make-list length))
                (ignore        (if (= length 3) nil (third term)))
                (body          (if (= length 3) (third term) (fourth term)))
                (body-prime    (jared-rewrite1 pat repl body))
                (result        (cons (car term)
                                     (cons (pairlis$ names (pairlis$ actuals-prime nils))
                                           (if ignore
                                               (cons ignore (cons body-prime nil))
                                             (cons body-prime nil))))))
           result))
        (t (cons (car term)
                 (jared-rewrite-lst1 pat repl (cdr term))))))))

 (defun jared-rewrite-lst1 (pat repl lst)
   (declare (xargs :mode :program))
   (if (endp lst)
       nil
     (cons (jared-rewrite1 pat repl (car lst))
           (jared-rewrite-lst1 pat repl (cdr lst)))))

 )




; Finally, given that we can apply a rewrite a term with a single replacement,
; we go ahead and extend this notion to multiple replacements.  In other words,
; we walk through a list of substitutions, sequentially rewriting the term
; using each substitution.

(defun jared-rewrite-aux (term subs)
  (declare (xargs :mode :program))
  (if (endp subs)
      term
    (let* ((first-sub (car subs))
           (newterm (jared-rewrite1 (car first-sub)
                                    (cdr first-sub)
                                    term)))
      (jared-rewrite-aux newterm (cdr subs)))))

(defun jared-rewrite (term subs)
  (declare (xargs :mode :program))
  (let ((rw-pass (jared-rewrite-aux term subs)))
    (if (equal rw-pass term)
        term
      (jared-rewrite rw-pass subs))))



; Now we define a really simple untranslate preprocessor that simply returns
; variables, constants, and lambdas in tact, but looks up function applications
; in the database and rewrites them if there is a matching rule.

(defun untranslate-pattern-preprocessor (term world)
  (declare (xargs :mode :program))
  (cond ((or (variablep term)
             (flambda-applicationp term))
         term)
        ((fquotep term)
         (let* ((patterns    (untranslate-patterns-constants-alist world))
                (replacement (assoc-equal (cadr term) patterns)))
           (if replacement
               (cdr replacement)
             term)))
        (t

         (let* ((macro (cdr (assoc (car term) (table-alist 'std::define-macro-fns world)))))

           (if macro ;; Use define's untranslator (borrowed from std/util/define.lisp)

               (let ((macro-args
                      (getprop macro 'macro-args nil 'current-acl2-world world)))
                 (and macro-args
                      (mv-let (ok newargs)
                        (acl2::untrans-macro-args (cdr term) macro-args nil)
                        (and ok
                             (cons macro newargs)))))

             (let* ((patterns (untranslate-patterns-functions-btree world))
                    (subs     (symbol-btree-lookup (ffn-symb term) patterns)))
               (if subs
                   (jared-rewrite term subs)
                 term)))))))


; And all that's left to do is install the new preprocessor!

(table user-defined-functions-table
       'untranslate-preprocess
       'untranslate-pattern-preprocessor)



#|

Here is a little script you can try.

(include-book
 "misc/untranslate-patterns" :dir :system)

(defconst *const* '(a b c d))

(add-untranslate-pattern '(a b c d) *const*)


(defconst *const2* '(1 2 3 4))

(add-untranslate-pattern '(1 2 3 4) *const2*)



(defun even/odd-p (flg x)
  (declare (xargs :guard (and (or (eq flg 'even)
                                  (eq flg 'odd))
                              (natp x))))
  (if (eq flg 'even)
      (if (zp x)
          t
        (even/odd-p 'odd (1- x)))
    (if (zp x)
        nil
      (even/odd-p 'even (1- x)))))

(defmacro even-p (x)
  `(even/odd-p 'even ,x))

(defmacro odd-p (x)
  `(even/odd-p 'odd ,x))

(add-untranslate-pattern (even/odd-p 'even ?x) (even-p ?x))
(add-untranslate-pattern (even/odd-p 'odd ?x) (odd-p ?x))



(defun foo$ (n $path)
  (cons n $path))

(defmacro foo (x)
  `(foo$ ,x $path))

(add-macro-alias foo foo$)

(add-untranslate-pattern (foo$ ?n $path) (foo ?n))



(in-theory (disable (:definition even/odd-p)
                    (:type-prescription even/odd-p)
                    foo))



;; you don't have to do this, but you can if you want.

(optimize-untranslate-patterns)


;; Here's a nonsensical conjecture that will demo the untranslation

(thm
 (implies (and (foo *const*)
               (foo$ *const2* other-path))
          (equal (+ (even-p x) (even-p y))
                 (+ (odd-p y) (odd-p x)))))


;; here's an example of the goal it prints

Subgoal *1/2''
(IMPLIES (AND (NOT (ZP X))
              (EQUAL (+ (EVEN-P Y) (EVEN-P (+ -1 X)))
                     (+ (ODD-P Y) (ODD-P (+ -1 X))))
              (FOO *CONST*)
              (FOO$ *CONST2* OTHER-PATH))
         (EQUAL (+ (EVEN-P X) (EVEN-P Y))
                (+ (ODD-P X) (ODD-P Y))))


|#