This file is indexed.

/usr/share/acl2-8.0dfsg/books/system/hl-nat-combine-onto.lisp is in acl2-books-source 8.0dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
;; Proof that hl-nat-combine is onto the naturals
;;
;; Public Domain 2015 David Greve
;;
;; The creative work contained within this file is free and
;; unencumbered and has been released into the public domain by its
;; creator, David Greve.  Anyone is free to copy, modify, publish,
;; use, compile, sell or distribute this work or any derivative of
;; this work for any purpose, commercial or non-commercial, and by any
;; means.  See: http://unlicense.org/
;;
;; Author: David Greve <TheBeaNerd@gmail.com>
;;
;; On 12/26/2014 Matt Kaufmann posted to the ACL2 list a challenge
;; from Bob Boyer regarding Jared Davis' work on the function
;; hl-nat-combine.  Bob is quoted as saying:
;;
;;     I hope someone some day follows up on Jared's work on this and
;;     checks that hl-addr-combine[sic] is also onto the naturals.  Just a
;;     nice little fact that tidies things up in my mind.  I love that
;;     function.
;;
;; Note that the helper function hl-nat-combine is, in fact, onto the
;; naturals whereas the top level hl-addr-combine function may produce
;; negative integer results by design.
;;
;; The proof below demonstrates that hl-nat-combine is onto the
;; naturals

(in-package "ACL2")

(include-book "system/hl-addr-combine" :dir :system)

(local
(encapsulate
    ()

  (local (include-book "arithmetic-5/top" :dir :system))

  (set-default-hints '((nonlinearp-default-hint++
                        id stable-under-simplificationp
                        hist nil)))

  (defun even-product (odd even)
    (or (and (integerp odd) (evenp even))
        (and (integerp even) (evenp odd))))

  (defthm even-product-plus-1
    (implies (and (natp x)
                  (natp y)
                  (or (equal x (+ y 1))
                      (equal y (+ x 1))))
             (even-product x y)))

  (defthm integerp-/-2
    (implies (even-product odd even)
             (integerp (/ (* odd even) 2))))

  (defthm natp-*
    (implies (and (natp x) (natp y))
             (natp (* x y))))

  (defthm natp-/
    (implies (and (integerp (/ (* x y) 2))
                  (natp x)
                  (natp y))
             (natp (/ (* x y) 2))))

  (defthm natp-plus
    (implies (and (natp a) (natp b))
             (natp (+ a b))))

  (in-theory (enable hl-nat-combine))

  (defthm natp-hl-nat-combine
    (implies
     (and (natp a) (natp b))
     (natp (hl-nat-combine a b)))
    :INSTRUCTIONS (:PRO (:DV 1)
                        :EXPAND :UP (:REWRITE NATP-PLUS)
                        (:REWRITE NATP-/)
                        (:REWRITE INTEGERP-/-2)
                        (:REWRITE EVEN-PRODUCT-PLUS-1)
                        :S))

  (defthm hl-nat-combine-zp-b
    (equal (hl-nat-combine n 0) (1+ (hl-nat-combine 0 (1- n)))))

  (defthm hl-nat-combine-delta
    (implies
     (and (integerp x) (integerp y) (integerp a))
     (equal (hl-nat-combine (+ (- a) x) (+ a y))
            (+ (hl-nat-combine x y) a))))

  (defthm hl-nat-combine-delta-instance
    (implies
     (integerp a)
     (equal (hl-nat-combine (+ -1 a) 1)
            (+ (hl-nat-combine a 0) 1)))
    :hints (("Goal" :in-theory (disable hl-nat-combine-delta)
             :use (:instance hl-nat-combine-delta (x a) (y 0) (a 1)))))

  (in-theory (disable hl-nat-combine))

  (defthm natp-a-minus-1
    (implies
     (not (zp a))
     (natp (+ -1 a))))

  (defthm natp-linear-fact
    (implies
     (natp n)
     (not (< n -1))))

  (defthm natp-implies-intergerp
    (implies
     (natp x)
     (integerp x)))

  (defun fnd (a b n)
    (declare (xargs :measure (nfix (- (nfix n)
                                      (hl-nat-combine (nfix a) (nfix b))))))
    (let ((n (nfix n))
          (a (nfix a))
          (b (nfix b)))
      (if (<= n (hl-nat-combine a b)) (cons a b)
        (if (zp a) (fnd (+ b 1) 0 n)
          (fnd (1- a) (1+ b) n)))))

  (defthm open-fnd-0
    (equal (fnd 0 b n)
           (let ((n (nfix n))
                 (a 0)
                 (b (nfix b)))
             (if (<= n (hl-nat-combine a b)) (cons a b)
               (fnd (+ b 1) 0 n))))
    :INSTRUCTIONS ((:DV 1) :X :TOP :S))

  (defthm yeah-1
    (implies
     (and
      (< (+ 1 x) n)
      (integerp n)
      (integerp x))
     (not (< n (+ 2 x))))
    :rule-classes (:rewrite :forward-chaining))

  (defthm yeah-2
    (implies
     (and
      (< x n)
      (integerp n)
      (integerp x))
     (not (< n (+ 1 x))))
    :rule-classes (:rewrite :forward-chaining))

  (defthmd fnd-works
    (implies
     (<= (hl-nat-combine (nfix a) (nfix b)) (nfix n))
     (equal (hl-nat-combine (car (fnd a b n))
                            (cdr (fnd a b n)))
            (nfix n))))

  (defthm fnd-finds-natps
    (and
     (natp (car (fnd a b n)))
     (natp (cdr (fnd a b n))))
    :hints (("Goal" :in-theory (disable nfix))))

  ))

(defthm natp-hl-nat-combine
  (implies
   (and (natp a) (natp b))
   (natp (hl-nat-combine a b))))

(defun fnd (a b n)
  (declare (xargs :measure (nfix (- (nfix n)
                                    (hl-nat-combine (nfix a) (nfix b))))))
  (let ((n (nfix n))
        (a (nfix a))
        (b (nfix b)))
    (if (<= n (hl-nat-combine a b)) (cons a b)
      (if (zp a) (fnd (+ b 1) 0 n)
        (fnd (1- a) (1+ b) n)))))

(defthm onto-property
  (implies
   (natp n)
   (let ((a (car (fnd 0 0 n)))
         (b (cdr (fnd 0 0 n))))
     (and (equal n (hl-nat-combine a b))
          (natp a)
          (natp b))))
  :rule-classes nil
  :hints (("Goal" :use (:instance fnd-works
                                  (a 0) (b 0) (n n)))))