This file is indexed.

/usr/share/acl2-8.0dfsg/books/system/untranslate-car-cdr.lisp is in acl2-books-source 8.0dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
; Copyright (C) 2014, Regents of the University of Texas
; Written by J Strother Moore, October, 2014
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.

; To recertify:
; (certify-book "untranslate-car-cdr")

; Proof of the Correctness of CADR Centric Untranslation
; J Strother Moore
; Georgetown, TX, October, 2014

; Abstract

; When ACL2 displays a formula to the user, it ``untranslates'' formal
; (internal-form) terms into terms involving macros.  For example, (CAR (CDR
; X)) is displayed as (CADR X).  Common Lisp provides 28 macros for the
; combinations of CARs and CDRs up to four deep.  Given all these available
; abbreviations how should (CAR (CDR (CDR (CAR (CDR X))))) be displayed?

; For the first 25 years of ACL2's history, the term above was displayed as
; (CADDAR (CDR X)).

; The code verified here displays it as (CADDR (CADR X)).

; The old method availed itself of all 28 of the car-cdr macros.  The new
; method only introduces 6 of them: CADR, CADDR, CADDDR, CDDR, CDDDR, CDDDDR.
; This code never introduces such macros as CAAR or CDDAAR, preferring CARs and
; CDRs when necessary.  Lisp programmers tend to recognize CADR, CADDR, and
; CADDDR as the accessors for the 1st, 2nd, and 3rd (0-based) elements of a
; list.

; We call this style of untranslation ``CADR Centric'' because it emphasizes
; the most common use of the car-cdr macros: accessing particular elements of
; linear lists.

; Perhaps the most important advantage of CADR Centric untranslation is that it
; operates from the inside out, where the old method operated from the outside
; in.  The inside out approach is more likely to give related elements related
; names.  For example, consider the formula

; (p (car (cdr (car (cdr x))))
;    (car (cdr (cdr (car (cdr x))))))

; In the old style this would be displayed as

; (p (cadadr x)
;    (caddar (cdr x)))

; whereas in the new style it is displayed as

; (p (cadr (cadr x))
;    (caddr (cadr x)))

; which makes it clear that p is being applied to the 1st and 2nd elements of
; the 1st element of x.

; Because I found the code confusing, I decided to prove that the untranslation
; preserved the meaning of the original term.  The main theorem proved at the
; bottom of this book is:

; (DEFTHM UNTRANSLATE-CAR-CDR-NEST-CORRECT
;   (EQUAL (EVAD TERM ALIST)
;          (EVAD (UNTRANSLATE-CAR-CDR-NEST TERM) ALIST))
;   :RULE-CLASSES NIL)

; where evad is an ACL2 evaluator that can handle CAR, CDR, and the six macros
; possibly introduced by CADR Centric untranslation.  Note that evad cannot be
; introduced by defevaluator because that event only allows function symbols to
; be interpreted, whereas CADR, CDDR, etc., are macro symbols.  But the
; constraints on evad are exactly analogous to what defevaluator generates.
; For example,

; (DEFTHM EVAD-CONSTRAINT-10
;   (IMPLIES (AND (CONSP X) (EQUAL (CAR X) 'CADDR))
;            (EQUAL (EVAD X A)
;                   (CADDR (EVAD (CADR X) A)))))

; Note also that UNTRANSLATE-CAR-CDR-NEST-CORRECT does not establish that
; untranslate-car-cdr-nest returns a well-formed term.

; The problem with well-formedness in this context is that there are two senses
; of that word: well-formed before untranslation and well-formed after
; untranslation.  In practice in the ACL2 system, the input to untranslation is
; a formal (``translated'') ACL2 term: no macros are used.  The output is
; ``well-formed'' in a different sense, meaning that the macros introduced
; expand without error.  For example, ACL2's untranslator may see
; (IF a b (IF c d e)) as input and return (COND (a b) (c d) (T e)) as
; input and they are well-formed in different senses.

; The function untranslate-car-cdr-nest verified here operates in two phases.
; Phase 1 extracts a list of As and Ds corresponding to the cAr and cDr symbols
; surrounding some base.  Phase 1 returns the list and the base.  Phase 2 then
; wraps a nest of the CADR Centric functions and macros around the base.  But
; when this code is used by ACL2's full untranslate mechanism, a recursive call
; of ACL2's mechanism is interposed on the base between phases 1 and 2.  Thus,
; the base identified by phase 1 is in translated form but the term supplied to
; phase 2 is in untranslated form.  Thus, the senses in which the inputs to
; phases 1 and 2 are well-formed are different.

; But in this book, we ignore ACL2's full untranslation mechanism.  We just
; compose phases 1 and 2, make no assumptions about the shapes of the terms
; being manipulated, and just prove that the input and output have the same
; meaning in the EVAD sense.

; -----------------------------------------------------------------
; Implementation: This single page contains the implementation (and its
; termination proof).  The rest of this ridiculously long file is the
; specification and proof of correctness!

(in-package "ACL2")

(program)

(defun make-reversed-ad-list (term ans)

; We treat term as a CAR/CDR nest around some ``base'' and return (mv ad-lst
; base), where ad-lst is the reversed list of #\A and #\D characters and base
; is the base of the CAR/CDR nest.  Thus, (CADDR B) into (mv '(#\D #\D #\A) B).
; If term is not a CAR/CDR nest, adr-lst is nil.

  (cond ((variablep term)
         (mv ans term))
        ((fquotep term)
         (mv ans term))
        ((eq (ffn-symb term) 'CAR)
         (make-reversed-ad-list (fargn term 1) (cons '#\A ans)))
        ((eq (ffn-symb term) 'CDR)
         (make-reversed-ad-list (fargn term 1) (cons '#\D ans)))
        (t (mv ans term))))

(defun car-cdr-abbrev-name (adr-lst)
; Given an adr-lst we turn it into one of the CAR/CDR abbreviation names.  We
; assume the adr-lst corresponds to a legal name, e.g., its length is no
; greater than five (counting the #\R).
  (intern (coerce (cons #\C adr-lst) 'string) "ACL2"))

(defun pretty-parse-ad-list (ad-list dr-list n base)
  (cond
   ((eql n 5)
    (pretty-parse-ad-list ad-list '(#\R) 1
                          (list (car-cdr-abbrev-name dr-list) base)))
   ((endp ad-list)
    (cond ((eql n 1) base)
          (t (list (car-cdr-abbrev-name dr-list) base))))
   ((eql (car ad-list) #\A)
    (pretty-parse-ad-list (cdr ad-list) '(#\R) 1
                          (list (car-cdr-abbrev-name (cons #\A dr-list)) base)))
   (t ; (eql (car ad-list) '#\D)
    (pretty-parse-ad-list (cdr ad-list) (cons #\D dr-list) (+ 1 n) base))))

(defun untranslate-car-cdr-nest (term)

; Examples:
; (untranslate-car-cdr-nest '(car (cdr (car b))))
; ==> (CADR (CAR B))
; (untranslate-car-cdr-nest '(car (cdr (cdr b))))
; ==> (CADDR B)
; (untranslate-car-cdr-nest '(car (car (cdr (cdr b)))))
; ==> (CAR (CADDR B))

  (mv-let (ad-list base)
          (make-reversed-ad-list term nil)
          (cond
           ((null ad-list) base)
           (t (pretty-parse-ad-list ad-list '(#\R) 1 base)))))

; -----------------------------------------------------------------
; Conversion to Logic Mode

(logic)
(include-book "ordinals/lexicographic-ordering" :dir :system)

(verify-termination make-reversed-ad-list)
(verify-termination car-cdr-abbrev-name)
(verify-termination pretty-parse-ad-list
 (declare (xargs :measure (llist (acl2-count ad-list) (nfix n))
                 :well-founded-relation l<)))
(verify-termination untranslate-car-cdr-nest)

; -----------------------------------------------------------------
; Specification Related Functions and Simple Theorems about Them

; There are three types of lists of interest here: lists of #\As and #\Ds,
; lists of #\Ds with last element #\R, and list of that second type optionally
; extended with a single #\A.  We call these ``AD'', ``DR'', and ``ADR'' lists,
; respectively.

(defun ad-listp (x)
  (cond ((endp x) (eq x nil))
        ((eql (car x) #\A) (ad-listp (cdr x)))
        ((eql (car x) #\D) (ad-listp (cdr x)))
        (t nil)))

(defun dr-listp (x)
  (cond ((endp x) nil)
        ((eql (car x) #\R) (equal (cdr x) nil))
        ((eql (car x) #\D) (dr-listp (cdr x)))
        (t nil)))

(defun adr-listp (x)
  (cond ((endp x) nil)
        ((eql (car x) #\A)
         (dr-listp (cdr x)))
        (t (dr-listp x))))

(defun compose-ad (ad-list term)

; We treat ad-list as a list of #\A and #\D, ignoring all other elements.  This
; allows us to call it on lists of #\D terminated by #\R, which is another
; ``data type'' in this system.

  (cond ((endp ad-list) term)
        ((eql (car ad-list) #\A)
         (compose-ad (cdr ad-list) (list 'CAR term)))
        ((eql (car ad-list) #\D)
         (compose-ad (cdr ad-list) (list 'CDR term)))
        (t (compose-ad (cdr ad-list) term))))

; Imagine we allowed macros to be ``function symbols'' in defevaluator.
; Then this form:

; (defevaluator evad evad-lst
;   ((CAR x)
;    (CDR x)
;    (CADR x)
;    (CDDR x)
;    (CADDR x)
;    (CDDDR x)
;    (CADDDR x)
;    (CDDDDR x)))

; would expand to:

(ENCAPSULATE
 (((EVAD * *) => *)
  ((EVAD-LST * *) => *))
 (SET-INHIBIT-WARNINGS "theory")
 (LOCAL (IN-THEORY *DEFEVALUATOR-FORM-BASE-THEORY*))
 (LOCAL (DEFUN-NX APPLY-FOR-DEFEVALUATOR (FN ARGS)
          (DECLARE (XARGS :VERIFY-GUARDS NIL
                          :NORMALIZE NIL))
          (COND ((EQUAL FN 'CAR) (CAR (CAR ARGS)))
                ((EQUAL FN 'CDR) (CDR (CAR ARGS)))
                ((EQUAL FN 'CADR) (CADR (CAR ARGS)))
                ((EQUAL FN 'CDDR) (CDDR (CAR ARGS)))
                ((EQUAL FN 'CADDR) (CADDR (CAR ARGS)))
                ((EQUAL FN 'CDDDR) (CDDDR (CAR ARGS)))
                ((EQUAL FN 'CADDDR)
                 (CADDDR (CAR ARGS)))
                ((EQUAL FN 'CDDDDR)
                 (CDDDDR (CAR ARGS)))
                (T NIL))))
 (LOCAL
  (MUTUAL-RECURSION
   (DEFUN-NX
     EVAD (X A)
     (DECLARE
      (XARGS
       :VERIFY-GUARDS NIL
       :MEASURE (ACL2-COUNT X)
       :WELL-FOUNDED-RELATION O<
       :NORMALIZE NIL
       :HINTS (("goal" :IN-THEORY (ENABLE (:TYPE-PRESCRIPTION ACL2-COUNT))))
       :MODE :LOGIC))
     (COND ((SYMBOLP X)
            (AND X (CDR (ASSOC-EQ X A))))
           ((ATOM X) NIL)
           ((EQ (CAR X) 'QUOTE) (CAR (CDR X)))
           (T (LET ((ARGS (EVAD-LST (CDR X) A)))
                (COND ((CONSP (CAR X))
                       (EVAD (CAR (CDR (CDR (CAR X))))
                             (PAIRLIS$ (CAR (CDR (CAR X))) ARGS)))
                      (T (APPLY-FOR-DEFEVALUATOR (CAR X)
                                                 ARGS)))))))
   (DEFUN-NX EVAD-LST (X-LST A)
     (DECLARE (XARGS :MEASURE (ACL2-COUNT X-LST)
                     :WELL-FOUNDED-RELATION O<))
     (COND ((ENDP X-LST) NIL)
           (T (CONS (EVAD (CAR X-LST) A)
                    (EVAD-LST (CDR X-LST) A)))))))
 (LOCAL (IN-THEORY (DISABLE EVAD EVAD-LST APPLY-FOR-DEFEVALUATOR)))
 (LOCAL
  (DEFTHM EVAL-LIST-KWOTE-LST
    (EQUAL (EVAD-LST (KWOTE-LST ARGS) A)
           (FIX-TRUE-LIST ARGS))
    :HINTS (("goal" :EXPAND ((:FREE (X Y) (EVAD-LST (CONS X Y) A))
                             (EVAD-LST NIL A)
                             (:FREE (X) (EVAD (LIST 'QUOTE X) A)))
             :INDUCT (FIX-TRUE-LIST ARGS)))))
 (LOCAL
  (DEFTHM FIX-TRUE-LIST-EV-LST
    (EQUAL (FIX-TRUE-LIST (EVAD-LST X A))
           (EVAD-LST X A))
    :HINTS (("goal" :INDUCT (LEN X)
             :IN-THEORY (E/D ((:INDUCTION LEN)))
             :EXPAND ((EVAD-LST X A) (EVAD-LST NIL A))))))
 (LOCAL (DEFTHM EV-COMMUTES-CAR
          (EQUAL (CAR (EVAD-LST X A))
                 (EVAD (CAR X) A))
          :HINTS (("goal" :EXPAND ((EVAD-LST X A) (EVAD NIL A))
                   :IN-THEORY (ENABLE DEFAULT-CAR)))))
 (LOCAL (DEFTHM EV-LST-COMMUTES-CDR
          (EQUAL (CDR (EVAD-LST X A))
                 (EVAD-LST (CDR X) A))
          :HINTS (("Goal" :EXPAND ((EVAD-LST X A) (EVAD-LST NIL A))
                   :IN-THEORY (ENABLE DEFAULT-CDR)))))
 (DEFTHMD
   EVAD-CONSTRAINT-0
   (IMPLIES (AND (CONSP X)
                 (SYNTAXP (NOT (EQUAL A ''NIL)))
                 (NOT (EQUAL (CAR X) 'QUOTE)))
            (EQUAL (EVAD X A)
                   (EVAD (CONS (CAR X)
                               (KWOTE-LST (EVAD-LST (CDR X) A)))
                         NIL)))
   :HINTS (("Goal" :EXPAND ((:FREE (X) (HIDE X))
                            (EVAD X A)
                            (:FREE (ARGS)
                                   (EVAD (CONS (CAR X) ARGS) NIL)))
            :IN-THEORY '(EVAL-LIST-KWOTE-LST FIX-TRUE-LIST-EV-LST
                                             CAR-CONS CDR-CONS))))
 (LOCAL (IN-THEORY (DISABLE EVAD-CONSTRAINT-0)))
 (DEFTHM EVAD-CONSTRAINT-1
   (IMPLIES (SYMBOLP X)
            (EQUAL (EVAD X A)
                   (AND X (CDR (ASSOC-EQUAL X A)))))
   :HINTS (("Goal" :EXPAND ((EVAD X A)))))
 (LOCAL (IN-THEORY (DISABLE EVAD-CONSTRAINT-1)))
 (DEFTHM EVAD-CONSTRAINT-2
   (IMPLIES (AND (CONSP X) (EQUAL (CAR X) 'QUOTE))
            (EQUAL (EVAD X A) (CADR X)))
   :HINTS (("Goal" :EXPAND ((EVAD X A)))))
 (LOCAL (IN-THEORY (DISABLE EVAD-CONSTRAINT-2)))
 (DEFTHM EVAD-CONSTRAINT-3
   (IMPLIES (AND (CONSP X) (CONSP (CAR X)))
            (EQUAL (EVAD X A)
                   (EVAD (CADDR (CAR X))
                         (PAIRLIS$ (CADR (CAR X))
                                   (EVAD-LST (CDR X) A)))))
   :HINTS (("Goal" :EXPAND ((EVAD X A)))))
 (LOCAL (IN-THEORY (DISABLE EVAD-CONSTRAINT-3)))
 (DEFTHM EVAD-CONSTRAINT-4
   (IMPLIES (NOT (CONSP X-LST))
            (EQUAL (EVAD-LST X-LST A) NIL))
   :HINTS (("Goal" :EXPAND ((EVAD-LST X-LST A)))))
 (LOCAL (IN-THEORY (DISABLE EVAD-CONSTRAINT-4)))
 (DEFTHM EVAD-CONSTRAINT-5
   (IMPLIES (CONSP X-LST)
            (EQUAL (EVAD-LST X-LST A)
                   (CONS (EVAD (CAR X-LST) A)
                         (EVAD-LST (CDR X-LST) A))))
   :HINTS (("Goal" :EXPAND ((EVAD-LST X-LST A)))))
 (LOCAL (IN-THEORY (DISABLE EVAD-CONSTRAINT-5)))
 (DEFTHM
   EVAD-CONSTRAINT-6
   (IMPLIES (AND (CONSP X) (EQUAL (CAR X) 'CAR))
            (EQUAL (EVAD X A)
                   (CAR (EVAD (CADR X) A))))
   :HINTS (("Goal" :EXPAND ((EVAD X A)
                            (:FREE (X) (HIDE X))
                            (:FREE (FN ARGS)
                                   (APPLY-FOR-DEFEVALUATOR FN ARGS))))))
 (LOCAL (IN-THEORY (DISABLE EVAD-CONSTRAINT-6)))
 (DEFTHM
   EVAD-CONSTRAINT-7
   (IMPLIES (AND (CONSP X) (EQUAL (CAR X) 'CDR))
            (EQUAL (EVAD X A)
                   (CDR (EVAD (CADR X) A))))
   :HINTS (("Goal" :EXPAND ((EVAD X A)
                            (:FREE (X) (HIDE X))
                            (:FREE (FN ARGS)
                                   (APPLY-FOR-DEFEVALUATOR FN ARGS))))))
 (LOCAL (IN-THEORY (DISABLE EVAD-CONSTRAINT-7)))
 (DEFTHM
   EVAD-CONSTRAINT-8
   (IMPLIES (AND (CONSP X) (EQUAL (CAR X) 'CADR))
            (EQUAL (EVAD X A)
                   (CADR (EVAD (CADR X) A))))
   :HINTS (("Goal" :EXPAND ((EVAD X A)
                            (:FREE (X) (HIDE X))
                            (:FREE (FN ARGS)
                                   (APPLY-FOR-DEFEVALUATOR FN ARGS))))))
 (LOCAL (IN-THEORY (DISABLE EVAD-CONSTRAINT-8)))
 (DEFTHM
   EVAD-CONSTRAINT-9
   (IMPLIES (AND (CONSP X) (EQUAL (CAR X) 'CDDR))
            (EQUAL (EVAD X A)
                   (CDDR (EVAD (CADR X) A))))
   :HINTS (("Goal" :EXPAND ((EVAD X A)
                            (:FREE (X) (HIDE X))
                            (:FREE (FN ARGS)
                                   (APPLY-FOR-DEFEVALUATOR FN ARGS))))))
 (LOCAL (IN-THEORY (DISABLE EVAD-CONSTRAINT-9)))
 (DEFTHM
   EVAD-CONSTRAINT-10
   (IMPLIES (AND (CONSP X) (EQUAL (CAR X) 'CADDR))
            (EQUAL (EVAD X A)
                   (CADDR (EVAD (CADR X) A))))
   :HINTS (("Goal" :EXPAND ((EVAD X A)
                            (:FREE (X) (HIDE X))
                            (:FREE (FN ARGS)
                                   (APPLY-FOR-DEFEVALUATOR FN ARGS))))))
 (LOCAL (IN-THEORY (DISABLE EVAD-CONSTRAINT-10)))
 (DEFTHM
   EVAD-CONSTRAINT-11
   (IMPLIES (AND (CONSP X) (EQUAL (CAR X) 'CDDDR))
            (EQUAL (EVAD X A)
                   (CDDDR (EVAD (CADR X) A))))
   :HINTS (("Goal" :EXPAND ((EVAD X A)
                            (:FREE (X) (HIDE X))
                            (:FREE (FN ARGS)
                                   (APPLY-FOR-DEFEVALUATOR FN ARGS))))))
 (LOCAL (IN-THEORY (DISABLE EVAD-CONSTRAINT-11)))
 (DEFTHM
   EVAD-CONSTRAINT-12
   (IMPLIES (AND (CONSP X) (EQUAL (CAR X) 'CADDDR))
            (EQUAL (EVAD X A)
                   (CADDDR (EVAD (CADR X) A))))
   :HINTS (("Goal" :EXPAND ((EVAD X A)
                            (:FREE (X) (HIDE X))
                            (:FREE (FN ARGS)
                                   (APPLY-FOR-DEFEVALUATOR FN ARGS))))))
 (LOCAL (IN-THEORY (DISABLE EVAD-CONSTRAINT-12)))
 (DEFTHM
   EVAD-CONSTRAINT-13
   (IMPLIES (AND (CONSP X) (EQUAL (CAR X) 'CDDDDR))
            (EQUAL (EVAD X A)
                   (CDDDDR (EVAD (CADR X) A))))
   :HINTS (("Goal" :EXPAND ((EVAD X A)
                            (:FREE (X) (HIDE X))
                            (:FREE (FN ARGS)
                                   (APPLY-FOR-DEFEVALUATOR FN ARGS))))))
 (LOCAL (IN-THEORY (DISABLE EVAD-CONSTRAINT-13))))

; We are actually only interested in ADR lists whose lengths lie between 2 and
; 5, and there are only a finite number of them.  Proofs are easier if we just
; enumerate the cases.

(defthm enumerate-dr-listps
  (implies (and (dr-listp dr-list)
;                (<= 2 (len dr-list)) ; !!!
                (<= (len dr-list) 5))
           (member dr-list
                   '((#\R)
                     (#\D #\R)
                     (#\D #\D #\R)
                     (#\D #\D #\D #\R)
                     (#\D #\D #\D #\D #\R))))
  :rule-classes nil)

(defthm enumerate-adr-listps
  (implies (and (adr-listp adr-list)
;                (<= 2 (len adr-list)) ; !!!
                (<= (len adr-list) 5))
           (member adr-list
                   '((#\R)
                     (#\A #\R)
                     (#\D #\R)
                     (#\A #\D #\R)
                     (#\D #\D #\R)
                     (#\A #\D #\D #\R)
                     (#\D #\D #\D #\R)
                     (#\A #\D #\D #\D #\R)
                     (#\D #\D #\D #\D #\R))))
  :rule-classes nil)

(in-theory (disable car-cdr-abbrev-name))

(defun rev (x)
  (if (endp x)
      nil
      (append (rev (cdr x)) (list (car x)))))

(defthm evad-list-car-cdr-abbrev-name
  (implies (and (adr-listp adr-list)
                (<= 2 (len adr-list))
                (<= (len adr-list) 5))
           (equal (evad (list (car-cdr-abbrev-name adr-list) base) alist)
                  (evad (compose-ad (rev adr-list) base) alist)))
  :hints (("Goal" :use enumerate-adr-listps)))

(defun equal-evad-compose-ad-hint (ad-list x y)
  (cond ((endp ad-list) (list x y))
        ((eql (car ad-list) #\A)
         (equal-evad-compose-ad-hint (cdr ad-list) (list 'CAR x) (list 'CAR y)))
        ((eql (car ad-list) #\D)
         (equal-evad-compose-ad-hint (cdr ad-list) (list 'CDR x) (list 'CDR y)))
        (t (equal-evad-compose-ad-hint (cdr ad-list) x y))))

(defthm equal-evad-compose-ad
  (implies (equal (evad x alist)
                  (evad y alist))
           (equal (equal (evad (compose-ad ad-list x) alist)
                         (evad (compose-ad ad-list y) alist))
                  t))
  :hints (("Goal" :induct (equal-evad-compose-ad-hint ad-list x y))))


; It would be nice if the above could be a congruence rule but unfortunately
; the equivalence relation is not dyadic.

(in-theory (disable mv-nth))

(defthm compose-ac-append
  (equal (compose-ad (append a b) base)
         (compose-ad b (compose-ad a base))))



;-----------------------------------------------------------------
; The Proof

(defthm make-reversed-ad-list-spec
  (implies (ad-listp ans)
           (and (implies ans (mv-nth 0 (make-reversed-ad-list term ans)))
                (implies (not (mv-nth 0 (make-reversed-ad-list term ans)))
                         (equal (mv-nth 1 (make-reversed-ad-list term ans)) term))
                (ad-listp (mv-nth 0 (make-reversed-ad-list term ans)))
                (equal (evad (compose-ad (mv-nth 0 (make-reversed-ad-list term ans))
                                         (mv-nth 1 (make-reversed-ad-list term ans)))
                             alist)
                       (evad (compose-ad ans term) alist)))))

; The inductive part of the proof that pretty-parse-ad-list is correct is for
; the case when adr-list is actually just a dr-listp.  The case where adr-list
; is an adr-listp is just a case split away.

(defthm dr-listp-len-1-rev
  (implies (and (dr-listp dr-list)
                (equal (len dr-list) 1))
           (equal (rev dr-list) '(#\R))))

(defthm car-cdr-abbrev-name-adr-list-not-quote
   (implies (and (adr-listp adr-list)
;                 (<= 2 (len adr-list)) ; !!!
                 (<= (len adr-list) 5))
            (not (equal (car-cdr-abbrev-name adr-list) 'quote)))
   :hints (("Goal" :use enumerate-adr-listps)))

(defthm car-cdr-abbrev-name-dr-list-not-quote
   (implies (and (dr-listp adr-list)
;                 (<= 2 (len adr-list)) ; !!!
                 (<= (len adr-list) 5))
            (not (equal (car-cdr-abbrev-name adr-list) 'quote)))
   :hints (("Goal" :use enumerate-dr-listps)))

(defun evad-pretty-parse-ad-list-hint (ad-list dr-list n x y)
  (declare (xargs :measure (llist (acl2-count ad-list) (nfix n))
                  :well-founded-relation l<))
  (cond
   ((eql n 5)
    (evad-pretty-parse-ad-list-hint
     ad-list '(#\R)
     1
     (list (car-cdr-abbrev-name dr-list)
           x)
     (list (car-cdr-abbrev-name dr-list)
           y)))
   ((endp ad-list)
    (list x y))
   ((eql (car ad-list) #\A)
    (evad-pretty-parse-ad-list-hint
     (cdr ad-list)
     '(#\R)
     1
     (list (car-cdr-abbrev-name (cons #\A dr-list))
           x)
     (list (car-cdr-abbrev-name (cons #\A dr-list))
           y)))
   (t (evad-pretty-parse-ad-list-hint
       (cdr ad-list)
       (cons #\D dr-list)
       (+ 1 n)
       x
       y))))

(defthm evad-pretty-parse-ad-list
  (implies (and (equal (evad x alist)
                       (evad y alist))
                (ad-listp ad-list)
                (dr-listp dr-list)
                (equal (len dr-list) n)
                (<= 1 n)
                (<= n 5))
           (equal (equal (evad (pretty-parse-ad-list ad-list dr-list n x) alist)
                         (evad (pretty-parse-ad-list ad-list dr-list n y) alist))
                  t))
  :hints (("Goal" :induct (evad-pretty-parse-ad-list-hint ad-list dr-list n x y))
          ("Subgoal *1/2'''" :in-theory (enable evad-constraint-0))
          ("Subgoal *1/1''"  :in-theory (enable evad-constraint-0))))

; By the way, evad-constraint-0, enabled above, allows us to evad (fn x ...)
; for any fn other than QUOTE, expressing the answer in terms of the evads of
; the x....

(encapsulate
 nil
 (local (defun compose-d (lst base)
          (cond ((endp lst) base)
                ((eql (car lst) #\R) (compose-d (cdr lst) base))
                (t (list 'cdr (compose-d (cdr lst) base))))))

 (local
  (defthm compose-d-lemma1
    (implies (dr-listp dr-list)
             (equal (compose-ad dr-list base)
                    (compose-d dr-list base)))
    :hints (("Goal" :induct (compose-ad dr-list base)))))

 (local
  (defthm compose-d-lemma2
    (implies (dr-listp dr-list)
             (equal (compose-ad (rev dr-list) base)
                    (compose-d dr-list base)))))

 (defthm rev-dr-list-is-no-op
   (implies (dr-listp dr-list)
            (equal (compose-ad (rev dr-list) base)
                   (compose-ad dr-list base)))))

(defthm pretty-parse-ad-list-spec
  (implies (and (ad-listp ad-list)
                (dr-listp dr-list)
                (equal (len dr-list) n)
                (<= 1 n)
                (<= n 5))
           (equal (evad (pretty-parse-ad-list ad-list dr-list n base) alist)
                  (evad (compose-ad ad-list (compose-ad (rev dr-list) base)) alist)))
  :hints (("Goal" :induct (pretty-parse-ad-list ad-list dr-list n base))
          ("Subgoal *1/3'''" :use enumerate-dr-listps)
          ("Subgoal *1/1" :use enumerate-dr-listps)))

(defthm untranslate-car-cdr-nest-correct
  (equal (evad term alist)
         (evad (untranslate-car-cdr-nest term) alist))
  :rule-classes nil)