/usr/share/acl2-8.0dfsg/books/system/untranslate-car-cdr.lisp is in acl2-books-source 8.0dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 | ; Copyright (C) 2014, Regents of the University of Texas
; Written by J Strother Moore, October, 2014
; License: A 3-clause BSD license. See the LICENSE file distributed with ACL2.
; To recertify:
; (certify-book "untranslate-car-cdr")
; Proof of the Correctness of CADR Centric Untranslation
; J Strother Moore
; Georgetown, TX, October, 2014
; Abstract
; When ACL2 displays a formula to the user, it ``untranslates'' formal
; (internal-form) terms into terms involving macros. For example, (CAR (CDR
; X)) is displayed as (CADR X). Common Lisp provides 28 macros for the
; combinations of CARs and CDRs up to four deep. Given all these available
; abbreviations how should (CAR (CDR (CDR (CAR (CDR X))))) be displayed?
; For the first 25 years of ACL2's history, the term above was displayed as
; (CADDAR (CDR X)).
; The code verified here displays it as (CADDR (CADR X)).
; The old method availed itself of all 28 of the car-cdr macros. The new
; method only introduces 6 of them: CADR, CADDR, CADDDR, CDDR, CDDDR, CDDDDR.
; This code never introduces such macros as CAAR or CDDAAR, preferring CARs and
; CDRs when necessary. Lisp programmers tend to recognize CADR, CADDR, and
; CADDDR as the accessors for the 1st, 2nd, and 3rd (0-based) elements of a
; list.
; We call this style of untranslation ``CADR Centric'' because it emphasizes
; the most common use of the car-cdr macros: accessing particular elements of
; linear lists.
; Perhaps the most important advantage of CADR Centric untranslation is that it
; operates from the inside out, where the old method operated from the outside
; in. The inside out approach is more likely to give related elements related
; names. For example, consider the formula
; (p (car (cdr (car (cdr x))))
; (car (cdr (cdr (car (cdr x))))))
; In the old style this would be displayed as
; (p (cadadr x)
; (caddar (cdr x)))
; whereas in the new style it is displayed as
; (p (cadr (cadr x))
; (caddr (cadr x)))
; which makes it clear that p is being applied to the 1st and 2nd elements of
; the 1st element of x.
; Because I found the code confusing, I decided to prove that the untranslation
; preserved the meaning of the original term. The main theorem proved at the
; bottom of this book is:
; (DEFTHM UNTRANSLATE-CAR-CDR-NEST-CORRECT
; (EQUAL (EVAD TERM ALIST)
; (EVAD (UNTRANSLATE-CAR-CDR-NEST TERM) ALIST))
; :RULE-CLASSES NIL)
; where evad is an ACL2 evaluator that can handle CAR, CDR, and the six macros
; possibly introduced by CADR Centric untranslation. Note that evad cannot be
; introduced by defevaluator because that event only allows function symbols to
; be interpreted, whereas CADR, CDDR, etc., are macro symbols. But the
; constraints on evad are exactly analogous to what defevaluator generates.
; For example,
; (DEFTHM EVAD-CONSTRAINT-10
; (IMPLIES (AND (CONSP X) (EQUAL (CAR X) 'CADDR))
; (EQUAL (EVAD X A)
; (CADDR (EVAD (CADR X) A)))))
; Note also that UNTRANSLATE-CAR-CDR-NEST-CORRECT does not establish that
; untranslate-car-cdr-nest returns a well-formed term.
; The problem with well-formedness in this context is that there are two senses
; of that word: well-formed before untranslation and well-formed after
; untranslation. In practice in the ACL2 system, the input to untranslation is
; a formal (``translated'') ACL2 term: no macros are used. The output is
; ``well-formed'' in a different sense, meaning that the macros introduced
; expand without error. For example, ACL2's untranslator may see
; (IF a b (IF c d e)) as input and return (COND (a b) (c d) (T e)) as
; input and they are well-formed in different senses.
; The function untranslate-car-cdr-nest verified here operates in two phases.
; Phase 1 extracts a list of As and Ds corresponding to the cAr and cDr symbols
; surrounding some base. Phase 1 returns the list and the base. Phase 2 then
; wraps a nest of the CADR Centric functions and macros around the base. But
; when this code is used by ACL2's full untranslate mechanism, a recursive call
; of ACL2's mechanism is interposed on the base between phases 1 and 2. Thus,
; the base identified by phase 1 is in translated form but the term supplied to
; phase 2 is in untranslated form. Thus, the senses in which the inputs to
; phases 1 and 2 are well-formed are different.
; But in this book, we ignore ACL2's full untranslation mechanism. We just
; compose phases 1 and 2, make no assumptions about the shapes of the terms
; being manipulated, and just prove that the input and output have the same
; meaning in the EVAD sense.
; -----------------------------------------------------------------
; Implementation: This single page contains the implementation (and its
; termination proof). The rest of this ridiculously long file is the
; specification and proof of correctness!
(in-package "ACL2")
(program)
(defun make-reversed-ad-list (term ans)
; We treat term as a CAR/CDR nest around some ``base'' and return (mv ad-lst
; base), where ad-lst is the reversed list of #\A and #\D characters and base
; is the base of the CAR/CDR nest. Thus, (CADDR B) into (mv '(#\D #\D #\A) B).
; If term is not a CAR/CDR nest, adr-lst is nil.
(cond ((variablep term)
(mv ans term))
((fquotep term)
(mv ans term))
((eq (ffn-symb term) 'CAR)
(make-reversed-ad-list (fargn term 1) (cons '#\A ans)))
((eq (ffn-symb term) 'CDR)
(make-reversed-ad-list (fargn term 1) (cons '#\D ans)))
(t (mv ans term))))
(defun car-cdr-abbrev-name (adr-lst)
; Given an adr-lst we turn it into one of the CAR/CDR abbreviation names. We
; assume the adr-lst corresponds to a legal name, e.g., its length is no
; greater than five (counting the #\R).
(intern (coerce (cons #\C adr-lst) 'string) "ACL2"))
(defun pretty-parse-ad-list (ad-list dr-list n base)
(cond
((eql n 5)
(pretty-parse-ad-list ad-list '(#\R) 1
(list (car-cdr-abbrev-name dr-list) base)))
((endp ad-list)
(cond ((eql n 1) base)
(t (list (car-cdr-abbrev-name dr-list) base))))
((eql (car ad-list) #\A)
(pretty-parse-ad-list (cdr ad-list) '(#\R) 1
(list (car-cdr-abbrev-name (cons #\A dr-list)) base)))
(t ; (eql (car ad-list) '#\D)
(pretty-parse-ad-list (cdr ad-list) (cons #\D dr-list) (+ 1 n) base))))
(defun untranslate-car-cdr-nest (term)
; Examples:
; (untranslate-car-cdr-nest '(car (cdr (car b))))
; ==> (CADR (CAR B))
; (untranslate-car-cdr-nest '(car (cdr (cdr b))))
; ==> (CADDR B)
; (untranslate-car-cdr-nest '(car (car (cdr (cdr b)))))
; ==> (CAR (CADDR B))
(mv-let (ad-list base)
(make-reversed-ad-list term nil)
(cond
((null ad-list) base)
(t (pretty-parse-ad-list ad-list '(#\R) 1 base)))))
; -----------------------------------------------------------------
; Conversion to Logic Mode
(logic)
(include-book "ordinals/lexicographic-ordering" :dir :system)
(verify-termination make-reversed-ad-list)
(verify-termination car-cdr-abbrev-name)
(verify-termination pretty-parse-ad-list
(declare (xargs :measure (llist (acl2-count ad-list) (nfix n))
:well-founded-relation l<)))
(verify-termination untranslate-car-cdr-nest)
; -----------------------------------------------------------------
; Specification Related Functions and Simple Theorems about Them
; There are three types of lists of interest here: lists of #\As and #\Ds,
; lists of #\Ds with last element #\R, and list of that second type optionally
; extended with a single #\A. We call these ``AD'', ``DR'', and ``ADR'' lists,
; respectively.
(defun ad-listp (x)
(cond ((endp x) (eq x nil))
((eql (car x) #\A) (ad-listp (cdr x)))
((eql (car x) #\D) (ad-listp (cdr x)))
(t nil)))
(defun dr-listp (x)
(cond ((endp x) nil)
((eql (car x) #\R) (equal (cdr x) nil))
((eql (car x) #\D) (dr-listp (cdr x)))
(t nil)))
(defun adr-listp (x)
(cond ((endp x) nil)
((eql (car x) #\A)
(dr-listp (cdr x)))
(t (dr-listp x))))
(defun compose-ad (ad-list term)
; We treat ad-list as a list of #\A and #\D, ignoring all other elements. This
; allows us to call it on lists of #\D terminated by #\R, which is another
; ``data type'' in this system.
(cond ((endp ad-list) term)
((eql (car ad-list) #\A)
(compose-ad (cdr ad-list) (list 'CAR term)))
((eql (car ad-list) #\D)
(compose-ad (cdr ad-list) (list 'CDR term)))
(t (compose-ad (cdr ad-list) term))))
; Imagine we allowed macros to be ``function symbols'' in defevaluator.
; Then this form:
; (defevaluator evad evad-lst
; ((CAR x)
; (CDR x)
; (CADR x)
; (CDDR x)
; (CADDR x)
; (CDDDR x)
; (CADDDR x)
; (CDDDDR x)))
; would expand to:
(ENCAPSULATE
(((EVAD * *) => *)
((EVAD-LST * *) => *))
(SET-INHIBIT-WARNINGS "theory")
(LOCAL (IN-THEORY *DEFEVALUATOR-FORM-BASE-THEORY*))
(LOCAL (DEFUN-NX APPLY-FOR-DEFEVALUATOR (FN ARGS)
(DECLARE (XARGS :VERIFY-GUARDS NIL
:NORMALIZE NIL))
(COND ((EQUAL FN 'CAR) (CAR (CAR ARGS)))
((EQUAL FN 'CDR) (CDR (CAR ARGS)))
((EQUAL FN 'CADR) (CADR (CAR ARGS)))
((EQUAL FN 'CDDR) (CDDR (CAR ARGS)))
((EQUAL FN 'CADDR) (CADDR (CAR ARGS)))
((EQUAL FN 'CDDDR) (CDDDR (CAR ARGS)))
((EQUAL FN 'CADDDR)
(CADDDR (CAR ARGS)))
((EQUAL FN 'CDDDDR)
(CDDDDR (CAR ARGS)))
(T NIL))))
(LOCAL
(MUTUAL-RECURSION
(DEFUN-NX
EVAD (X A)
(DECLARE
(XARGS
:VERIFY-GUARDS NIL
:MEASURE (ACL2-COUNT X)
:WELL-FOUNDED-RELATION O<
:NORMALIZE NIL
:HINTS (("goal" :IN-THEORY (ENABLE (:TYPE-PRESCRIPTION ACL2-COUNT))))
:MODE :LOGIC))
(COND ((SYMBOLP X)
(AND X (CDR (ASSOC-EQ X A))))
((ATOM X) NIL)
((EQ (CAR X) 'QUOTE) (CAR (CDR X)))
(T (LET ((ARGS (EVAD-LST (CDR X) A)))
(COND ((CONSP (CAR X))
(EVAD (CAR (CDR (CDR (CAR X))))
(PAIRLIS$ (CAR (CDR (CAR X))) ARGS)))
(T (APPLY-FOR-DEFEVALUATOR (CAR X)
ARGS)))))))
(DEFUN-NX EVAD-LST (X-LST A)
(DECLARE (XARGS :MEASURE (ACL2-COUNT X-LST)
:WELL-FOUNDED-RELATION O<))
(COND ((ENDP X-LST) NIL)
(T (CONS (EVAD (CAR X-LST) A)
(EVAD-LST (CDR X-LST) A)))))))
(LOCAL (IN-THEORY (DISABLE EVAD EVAD-LST APPLY-FOR-DEFEVALUATOR)))
(LOCAL
(DEFTHM EVAL-LIST-KWOTE-LST
(EQUAL (EVAD-LST (KWOTE-LST ARGS) A)
(FIX-TRUE-LIST ARGS))
:HINTS (("goal" :EXPAND ((:FREE (X Y) (EVAD-LST (CONS X Y) A))
(EVAD-LST NIL A)
(:FREE (X) (EVAD (LIST 'QUOTE X) A)))
:INDUCT (FIX-TRUE-LIST ARGS)))))
(LOCAL
(DEFTHM FIX-TRUE-LIST-EV-LST
(EQUAL (FIX-TRUE-LIST (EVAD-LST X A))
(EVAD-LST X A))
:HINTS (("goal" :INDUCT (LEN X)
:IN-THEORY (E/D ((:INDUCTION LEN)))
:EXPAND ((EVAD-LST X A) (EVAD-LST NIL A))))))
(LOCAL (DEFTHM EV-COMMUTES-CAR
(EQUAL (CAR (EVAD-LST X A))
(EVAD (CAR X) A))
:HINTS (("goal" :EXPAND ((EVAD-LST X A) (EVAD NIL A))
:IN-THEORY (ENABLE DEFAULT-CAR)))))
(LOCAL (DEFTHM EV-LST-COMMUTES-CDR
(EQUAL (CDR (EVAD-LST X A))
(EVAD-LST (CDR X) A))
:HINTS (("Goal" :EXPAND ((EVAD-LST X A) (EVAD-LST NIL A))
:IN-THEORY (ENABLE DEFAULT-CDR)))))
(DEFTHMD
EVAD-CONSTRAINT-0
(IMPLIES (AND (CONSP X)
(SYNTAXP (NOT (EQUAL A ''NIL)))
(NOT (EQUAL (CAR X) 'QUOTE)))
(EQUAL (EVAD X A)
(EVAD (CONS (CAR X)
(KWOTE-LST (EVAD-LST (CDR X) A)))
NIL)))
:HINTS (("Goal" :EXPAND ((:FREE (X) (HIDE X))
(EVAD X A)
(:FREE (ARGS)
(EVAD (CONS (CAR X) ARGS) NIL)))
:IN-THEORY '(EVAL-LIST-KWOTE-LST FIX-TRUE-LIST-EV-LST
CAR-CONS CDR-CONS))))
(LOCAL (IN-THEORY (DISABLE EVAD-CONSTRAINT-0)))
(DEFTHM EVAD-CONSTRAINT-1
(IMPLIES (SYMBOLP X)
(EQUAL (EVAD X A)
(AND X (CDR (ASSOC-EQUAL X A)))))
:HINTS (("Goal" :EXPAND ((EVAD X A)))))
(LOCAL (IN-THEORY (DISABLE EVAD-CONSTRAINT-1)))
(DEFTHM EVAD-CONSTRAINT-2
(IMPLIES (AND (CONSP X) (EQUAL (CAR X) 'QUOTE))
(EQUAL (EVAD X A) (CADR X)))
:HINTS (("Goal" :EXPAND ((EVAD X A)))))
(LOCAL (IN-THEORY (DISABLE EVAD-CONSTRAINT-2)))
(DEFTHM EVAD-CONSTRAINT-3
(IMPLIES (AND (CONSP X) (CONSP (CAR X)))
(EQUAL (EVAD X A)
(EVAD (CADDR (CAR X))
(PAIRLIS$ (CADR (CAR X))
(EVAD-LST (CDR X) A)))))
:HINTS (("Goal" :EXPAND ((EVAD X A)))))
(LOCAL (IN-THEORY (DISABLE EVAD-CONSTRAINT-3)))
(DEFTHM EVAD-CONSTRAINT-4
(IMPLIES (NOT (CONSP X-LST))
(EQUAL (EVAD-LST X-LST A) NIL))
:HINTS (("Goal" :EXPAND ((EVAD-LST X-LST A)))))
(LOCAL (IN-THEORY (DISABLE EVAD-CONSTRAINT-4)))
(DEFTHM EVAD-CONSTRAINT-5
(IMPLIES (CONSP X-LST)
(EQUAL (EVAD-LST X-LST A)
(CONS (EVAD (CAR X-LST) A)
(EVAD-LST (CDR X-LST) A))))
:HINTS (("Goal" :EXPAND ((EVAD-LST X-LST A)))))
(LOCAL (IN-THEORY (DISABLE EVAD-CONSTRAINT-5)))
(DEFTHM
EVAD-CONSTRAINT-6
(IMPLIES (AND (CONSP X) (EQUAL (CAR X) 'CAR))
(EQUAL (EVAD X A)
(CAR (EVAD (CADR X) A))))
:HINTS (("Goal" :EXPAND ((EVAD X A)
(:FREE (X) (HIDE X))
(:FREE (FN ARGS)
(APPLY-FOR-DEFEVALUATOR FN ARGS))))))
(LOCAL (IN-THEORY (DISABLE EVAD-CONSTRAINT-6)))
(DEFTHM
EVAD-CONSTRAINT-7
(IMPLIES (AND (CONSP X) (EQUAL (CAR X) 'CDR))
(EQUAL (EVAD X A)
(CDR (EVAD (CADR X) A))))
:HINTS (("Goal" :EXPAND ((EVAD X A)
(:FREE (X) (HIDE X))
(:FREE (FN ARGS)
(APPLY-FOR-DEFEVALUATOR FN ARGS))))))
(LOCAL (IN-THEORY (DISABLE EVAD-CONSTRAINT-7)))
(DEFTHM
EVAD-CONSTRAINT-8
(IMPLIES (AND (CONSP X) (EQUAL (CAR X) 'CADR))
(EQUAL (EVAD X A)
(CADR (EVAD (CADR X) A))))
:HINTS (("Goal" :EXPAND ((EVAD X A)
(:FREE (X) (HIDE X))
(:FREE (FN ARGS)
(APPLY-FOR-DEFEVALUATOR FN ARGS))))))
(LOCAL (IN-THEORY (DISABLE EVAD-CONSTRAINT-8)))
(DEFTHM
EVAD-CONSTRAINT-9
(IMPLIES (AND (CONSP X) (EQUAL (CAR X) 'CDDR))
(EQUAL (EVAD X A)
(CDDR (EVAD (CADR X) A))))
:HINTS (("Goal" :EXPAND ((EVAD X A)
(:FREE (X) (HIDE X))
(:FREE (FN ARGS)
(APPLY-FOR-DEFEVALUATOR FN ARGS))))))
(LOCAL (IN-THEORY (DISABLE EVAD-CONSTRAINT-9)))
(DEFTHM
EVAD-CONSTRAINT-10
(IMPLIES (AND (CONSP X) (EQUAL (CAR X) 'CADDR))
(EQUAL (EVAD X A)
(CADDR (EVAD (CADR X) A))))
:HINTS (("Goal" :EXPAND ((EVAD X A)
(:FREE (X) (HIDE X))
(:FREE (FN ARGS)
(APPLY-FOR-DEFEVALUATOR FN ARGS))))))
(LOCAL (IN-THEORY (DISABLE EVAD-CONSTRAINT-10)))
(DEFTHM
EVAD-CONSTRAINT-11
(IMPLIES (AND (CONSP X) (EQUAL (CAR X) 'CDDDR))
(EQUAL (EVAD X A)
(CDDDR (EVAD (CADR X) A))))
:HINTS (("Goal" :EXPAND ((EVAD X A)
(:FREE (X) (HIDE X))
(:FREE (FN ARGS)
(APPLY-FOR-DEFEVALUATOR FN ARGS))))))
(LOCAL (IN-THEORY (DISABLE EVAD-CONSTRAINT-11)))
(DEFTHM
EVAD-CONSTRAINT-12
(IMPLIES (AND (CONSP X) (EQUAL (CAR X) 'CADDDR))
(EQUAL (EVAD X A)
(CADDDR (EVAD (CADR X) A))))
:HINTS (("Goal" :EXPAND ((EVAD X A)
(:FREE (X) (HIDE X))
(:FREE (FN ARGS)
(APPLY-FOR-DEFEVALUATOR FN ARGS))))))
(LOCAL (IN-THEORY (DISABLE EVAD-CONSTRAINT-12)))
(DEFTHM
EVAD-CONSTRAINT-13
(IMPLIES (AND (CONSP X) (EQUAL (CAR X) 'CDDDDR))
(EQUAL (EVAD X A)
(CDDDDR (EVAD (CADR X) A))))
:HINTS (("Goal" :EXPAND ((EVAD X A)
(:FREE (X) (HIDE X))
(:FREE (FN ARGS)
(APPLY-FOR-DEFEVALUATOR FN ARGS))))))
(LOCAL (IN-THEORY (DISABLE EVAD-CONSTRAINT-13))))
; We are actually only interested in ADR lists whose lengths lie between 2 and
; 5, and there are only a finite number of them. Proofs are easier if we just
; enumerate the cases.
(defthm enumerate-dr-listps
(implies (and (dr-listp dr-list)
; (<= 2 (len dr-list)) ; !!!
(<= (len dr-list) 5))
(member dr-list
'((#\R)
(#\D #\R)
(#\D #\D #\R)
(#\D #\D #\D #\R)
(#\D #\D #\D #\D #\R))))
:rule-classes nil)
(defthm enumerate-adr-listps
(implies (and (adr-listp adr-list)
; (<= 2 (len adr-list)) ; !!!
(<= (len adr-list) 5))
(member adr-list
'((#\R)
(#\A #\R)
(#\D #\R)
(#\A #\D #\R)
(#\D #\D #\R)
(#\A #\D #\D #\R)
(#\D #\D #\D #\R)
(#\A #\D #\D #\D #\R)
(#\D #\D #\D #\D #\R))))
:rule-classes nil)
(in-theory (disable car-cdr-abbrev-name))
(defun rev (x)
(if (endp x)
nil
(append (rev (cdr x)) (list (car x)))))
(defthm evad-list-car-cdr-abbrev-name
(implies (and (adr-listp adr-list)
(<= 2 (len adr-list))
(<= (len adr-list) 5))
(equal (evad (list (car-cdr-abbrev-name adr-list) base) alist)
(evad (compose-ad (rev adr-list) base) alist)))
:hints (("Goal" :use enumerate-adr-listps)))
(defun equal-evad-compose-ad-hint (ad-list x y)
(cond ((endp ad-list) (list x y))
((eql (car ad-list) #\A)
(equal-evad-compose-ad-hint (cdr ad-list) (list 'CAR x) (list 'CAR y)))
((eql (car ad-list) #\D)
(equal-evad-compose-ad-hint (cdr ad-list) (list 'CDR x) (list 'CDR y)))
(t (equal-evad-compose-ad-hint (cdr ad-list) x y))))
(defthm equal-evad-compose-ad
(implies (equal (evad x alist)
(evad y alist))
(equal (equal (evad (compose-ad ad-list x) alist)
(evad (compose-ad ad-list y) alist))
t))
:hints (("Goal" :induct (equal-evad-compose-ad-hint ad-list x y))))
; It would be nice if the above could be a congruence rule but unfortunately
; the equivalence relation is not dyadic.
(in-theory (disable mv-nth))
(defthm compose-ac-append
(equal (compose-ad (append a b) base)
(compose-ad b (compose-ad a base))))
;-----------------------------------------------------------------
; The Proof
(defthm make-reversed-ad-list-spec
(implies (ad-listp ans)
(and (implies ans (mv-nth 0 (make-reversed-ad-list term ans)))
(implies (not (mv-nth 0 (make-reversed-ad-list term ans)))
(equal (mv-nth 1 (make-reversed-ad-list term ans)) term))
(ad-listp (mv-nth 0 (make-reversed-ad-list term ans)))
(equal (evad (compose-ad (mv-nth 0 (make-reversed-ad-list term ans))
(mv-nth 1 (make-reversed-ad-list term ans)))
alist)
(evad (compose-ad ans term) alist)))))
; The inductive part of the proof that pretty-parse-ad-list is correct is for
; the case when adr-list is actually just a dr-listp. The case where adr-list
; is an adr-listp is just a case split away.
(defthm dr-listp-len-1-rev
(implies (and (dr-listp dr-list)
(equal (len dr-list) 1))
(equal (rev dr-list) '(#\R))))
(defthm car-cdr-abbrev-name-adr-list-not-quote
(implies (and (adr-listp adr-list)
; (<= 2 (len adr-list)) ; !!!
(<= (len adr-list) 5))
(not (equal (car-cdr-abbrev-name adr-list) 'quote)))
:hints (("Goal" :use enumerate-adr-listps)))
(defthm car-cdr-abbrev-name-dr-list-not-quote
(implies (and (dr-listp adr-list)
; (<= 2 (len adr-list)) ; !!!
(<= (len adr-list) 5))
(not (equal (car-cdr-abbrev-name adr-list) 'quote)))
:hints (("Goal" :use enumerate-dr-listps)))
(defun evad-pretty-parse-ad-list-hint (ad-list dr-list n x y)
(declare (xargs :measure (llist (acl2-count ad-list) (nfix n))
:well-founded-relation l<))
(cond
((eql n 5)
(evad-pretty-parse-ad-list-hint
ad-list '(#\R)
1
(list (car-cdr-abbrev-name dr-list)
x)
(list (car-cdr-abbrev-name dr-list)
y)))
((endp ad-list)
(list x y))
((eql (car ad-list) #\A)
(evad-pretty-parse-ad-list-hint
(cdr ad-list)
'(#\R)
1
(list (car-cdr-abbrev-name (cons #\A dr-list))
x)
(list (car-cdr-abbrev-name (cons #\A dr-list))
y)))
(t (evad-pretty-parse-ad-list-hint
(cdr ad-list)
(cons #\D dr-list)
(+ 1 n)
x
y))))
(defthm evad-pretty-parse-ad-list
(implies (and (equal (evad x alist)
(evad y alist))
(ad-listp ad-list)
(dr-listp dr-list)
(equal (len dr-list) n)
(<= 1 n)
(<= n 5))
(equal (equal (evad (pretty-parse-ad-list ad-list dr-list n x) alist)
(evad (pretty-parse-ad-list ad-list dr-list n y) alist))
t))
:hints (("Goal" :induct (evad-pretty-parse-ad-list-hint ad-list dr-list n x y))
("Subgoal *1/2'''" :in-theory (enable evad-constraint-0))
("Subgoal *1/1''" :in-theory (enable evad-constraint-0))))
; By the way, evad-constraint-0, enabled above, allows us to evad (fn x ...)
; for any fn other than QUOTE, expressing the answer in terms of the evads of
; the x....
(encapsulate
nil
(local (defun compose-d (lst base)
(cond ((endp lst) base)
((eql (car lst) #\R) (compose-d (cdr lst) base))
(t (list 'cdr (compose-d (cdr lst) base))))))
(local
(defthm compose-d-lemma1
(implies (dr-listp dr-list)
(equal (compose-ad dr-list base)
(compose-d dr-list base)))
:hints (("Goal" :induct (compose-ad dr-list base)))))
(local
(defthm compose-d-lemma2
(implies (dr-listp dr-list)
(equal (compose-ad (rev dr-list) base)
(compose-d dr-list base)))))
(defthm rev-dr-list-is-no-op
(implies (dr-listp dr-list)
(equal (compose-ad (rev dr-list) base)
(compose-ad dr-list base)))))
(defthm pretty-parse-ad-list-spec
(implies (and (ad-listp ad-list)
(dr-listp dr-list)
(equal (len dr-list) n)
(<= 1 n)
(<= n 5))
(equal (evad (pretty-parse-ad-list ad-list dr-list n base) alist)
(evad (compose-ad ad-list (compose-ad (rev dr-list) base)) alist)))
:hints (("Goal" :induct (pretty-parse-ad-list ad-list dr-list n base))
("Subgoal *1/3'''" :use enumerate-dr-listps)
("Subgoal *1/1" :use enumerate-dr-listps)))
(defthm untranslate-car-cdr-nest-correct
(equal (evad term alist)
(evad (untranslate-car-cdr-nest term) alist))
:rule-classes nil)
|