/usr/share/acl2-8.0dfsg/books/tools/match-tree.lisp is in acl2-books-source 8.0dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 | ; Match-tree.lisp: Term pattern matching and substitution for meta reasoning.
; Copyright (C) 2013 Centaur Technology
;
; Contact:
; Centaur Technology Formal Verification Group
; 7600-C N. Capital of Texas Highway, Suite 300, Austin, TX 78731, USA.
; http://www.centtech.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Sol Swords <sswords@centtech.com>
(in-package "ACL2")
(include-book "std/util/bstar" :dir :system)
;; Notes. This book defines a B* binder UNLESS-MATCH which uses a function
;; MATCH-TREE to check that a term matches a particular pattern and return an
;; alist of values of particular subterms.
;; It can be used for matching various sorts of cons trees, but is particularly
;; focused on terms and term lists, for purposes of meta-reasoning.
;; A pattern P matches a tree X and produces bindings as follows:
;; Match conditions Bindings produced
;; P is an atom and P = X
;; P is (:? <symb>) (<symb> . X)
;; P is (:! <symb>) (<symb> . X)
;; P is (:?S <symb>) and X is a symbol (<symb> . X)
;; P is (:?V <symb>) and X is a nonnil symbol (<symb> . X)
;; P is (:?F <symb>) and X is a non-quote symbol (<symb> . X)
;; P is (:?L <symb>) and X is not quote (<symb> . X)
;; P is none of the above,
;; (car P) matches (car X),
;; (cdr P) matches (cdr X), car bindings
;; and the car and cdrs' bindings UNION
;; agree on all symbols bound in both. cdr bindings.
;; MATCH-TREE takes three arguments, P (pattern), X (target), and A
;; (alist/accumulator). The above rules pertain to when A is empty. If A is
;; not empty, then the match is OK iff the bindings to be produced agree with
;; the bindings in A on any symbols bound in both.
;; The various :?x pattern types are intended to support various parts of ACL2
;; terms:
;; :?S matches any symbol
;; :?V matches a variable symbol, by which we mean any other than NIL, which
;; is treated differently from other symbols by evaluators
;; :?F matches a function symbol, by which we mean any symbol other than
;; QUOTE, which is not a function according to evalautors
;; :?L matches anything but the symbol QUOTE, making it appropriate for
;; cases where we might not care whether the result is a function or
;; a lambda.
;; UNLESS-MATCH is a B* binder that applies match-tree to a certain value
;; and (explicit, not evaluated) pattern. If it matches, the remainder of the
;; B* form is run with any symbols inside :? binders bound as variables; if it
;; doesn't match, an early-exit is taken. For example:
;; (b* (((unless-match x (if (:? a) (:? a) ((:?f g) (:?v q))))
;; (er hard? 'my-match-fn "X didn't match the IF term"))
;; (g-call (list g q)))
;; (cw "x matched: ~x0~%" `(or ,a ,g-call)))
;; expands to, more or less,
;; (mv-let (ok alist)
;; (match-tree x '(if (:? a) (:? a) ((:?f g) (:?v q))) nil)
;; (if ok
;; ;; bind the variables of the pattern
;; (let* ((a (cdr (assoc 'a alist)))
;; (g (cdr (assoc 'g alist)))
;; (q (cdr (assoc 'q alist))))
;; ;; rest of the B* form:
;; (b* ((g-call (list g q)))
;; (cw "x matched: ~x0~%" `(or ,a ,g-call))))
;; (er hard? 'my-match-fn "X didn't match the IF term")))
;; The difference between the :? and :! binders is in how UNLESS-MATCH treats
;; them -- MATCH-TREE treats them both the same. The symbol inside a :! binder
;; should be already bound, and UNLESS-MATCH will put its binding in the
;; initial alist so that the corresponding subtree of the target must be equal
;; to that value. For example,
;; (b* (((unless-match x (f (:? var1) (:! var2)))
;; (er hard? 'sfdf "X didn't match")))
;; var1)
;; expands to, approximately:
;; (mv-let (ok alist)
;; (match-free x '(f (:? var1) (:! var2))
;; ;; initial alist:
;; (list (cons 'var2 var2)))
;; (if ok
;; (let* ((var1 (cdr (assoc 'var1 alist)))
;; (var2 (cdr (assoc 'var2 alist))))
;; var1)
;; (er hard? 'sfdf "X didn't match")))
;; Using match-tree in meta-reasoning.
;; The crucial theorem here is MATCH-TREE-IS-SUBST-TREE:
;; (defthmd match-tree-is-subst-tree
;; (b* (((mv ok alist) (match-tree pat x alist)))
;; (implies ok
;; (equal (subst-tree pat alist) x)))
;; :hints (("goal" :induct (match-tree pat x alist))))
;; However, generally, you won't see a term of the form on the LHS of this
;; theorem, so it won't be used much. Instead, use this to prove a similar
;; theorem that rewrites X to the SUBST-TREE term, but in certain desirable
;; contexts. E.g., if you have an evaluator, MY-EV, you may want to prove:
;; (defthm match-tree-is-subst-tree-for-my-ev
;; (b* (((mv ok alist) (match-tree pat x alist)))
;; (implies ok
;; (equal (my-ev x a)
;; (my-ev (subst-tree pat alist) a))))
;; :hints (("goal" :induct (match-tree pat x alist))))
;; This could be expensive, since ACL2 will try to apply this rule for every
;; MY-EV term it encounters. However, generally these applications will be
;; pretty cheap, because the first thing ACL2 will do is look in the type-alist
;; for a known-true term (mv-nth 0 (match-tree pat x alist)); if it doesn't
;; find one, then it'll give up. For the case where it does find one, we
;; generally leave subst-tree enabled so that the subst-tree term will be
;; rewritten into a semi-explicit term, which is often what you want.
;; The following theorems are also important:
;; - match-tree-binders-bound: the bound variables of pattern are bound in
;; the alist
;; - symbolp-by-match-tree-restrictions: elements bound by :?s, :?v, :?f are
;; symbols
;; - not-quote-by-match-tree-restrictions: elements bound by :?f, :?l are not
;; quote
;; - not-nil-by-match-tree-restrictions: elements bound by :?v are not nil
;; Finally, you may notice that your theorems get huge and difficult to read if
;; you make extensive use of unless-match. To solve this problem, we offer a
;; utility DEF-MATCH-TREE-REWRITES. This is an event-creating macro that makes
;; several functions named after the :?-bound symbols in a match-tree
;; pattern. Each function's value is the binding of that symbol in the result,
;; and we introduce a rewrite rule to rewrite that lookup into the
;; function. So:
;; (def-match-tree-rewrites (fa (fip (:? my-fa-fip-arg))))
;; produces:
;; (defund my-fa-fip-arg (x)
;; (declare (xargs :guard t))
;; (mv-let (ok alist)
;; (match-tree '(fa (fip (:? my-fa-fip-arg))) x nil)
;; (and ok (cdr (assoc 'my-fa-fip-arg alist)))))
;; (defthm my-fa-fip-arg-rw
;; (mv-let (ok alist)
;; (match-tree '(fa (fip (:? my-fa-fip-arg))) x nil)
;; (implies ok
;; (equal (cdr (assoc 'my-fa-fip-arg alist))
;; (my-fa-fip-arg x))))).
;; Additional theorems about the types of these functions are produced when :?x
;; forms are used. The functions take additional arguments when :! forms are
;; used.
;; Rager notes in May 2013 that it can be helpful to use variable names that
;; are the same. For example, when submitting the following two forms, the use
;; of "id" in the first but "id-name" in the second is enough to keep the
;; prover from verifying the guards for the second define (Rager did not try
;; any hints). This example had two accompanying uses of
;; def-match-tree-rewrites (not shown here).
;;; (define identifier-tree-p
;;; ((tree t "Tree to check"))
;;; :returns (ans booleanp)
;;; (b* (((when-match tree
;;; ("IdentifierRag"
;;; ("Identifier" ("IDENTIFIER" (:? id)))))
;;; (stringp id))
;;; ((when-match tree
;;; ("IdentifierRag"
;;; ("Identifier" ("IDENTIFIER" (:? id)))
;;; ("PERIOD" ".")
;;; (:? nextrag)))
;;; (and (stringp id)
;;; (identifier-tree-p nextrag))))
;;; nil))
;;; (define gather-identifiers
;;; ((tree identifier-tree-p "parse tree"))
;;; (b* (((when-match tree
;;; ("IdentifierRag"
;;; ("Identifier" ("IDENTIFIER" (:? id-name)))))
;;; (list id-name))
;;; ((when-match tree
;;; ("IdentifierRag"
;;; ("Identifier" ("IDENTIFIER" (:? id)))
;;; ("PERIOD" ".")
;;; (:? nextrag)))
;;; (cons id
;;; (gather-identifiers nextrag))))
;;; (er hard? 'gather-identifiers
;;; "Gather-identifiers given input that it doesn't know how to parse: ~x0"
;;; tree))
;;; :guard-hints (("Goal" :in-theory (enable identifier-tree-p))))
(defun match-tree-binder-p (pat)
(declare (xargs :guard (consp pat)))
(and (symbolp (car pat))
(keywordp (car pat))
(< 0 (length (symbol-name (car pat))))
(member (char (symbol-name (car pat)) 0) '(#\? #\!))
(consp (cdr pat))
(symbolp (cadr pat))
(eq (cddr pat) nil)))
(defthm symbolp-cadr-when-match-tree-binder-p
(implies (match-tree-binder-p pat)
(symbolp (cadr pat)))
:rule-classes :forward-chaining)
(defun match-tree-check-binding (kw x)
(declare (xargs :guard (keywordp kw)))
(not (or (and (member kw '(:?s :?f :?v))
(not (symbolp x)))
(and (member kw '(:?f :?l))
(eq x 'quote))
(and (eq kw :?v)
(eq x nil)))))
(defun match-tree (pat x alist)
(declare (xargs :guard (symbol-alistp alist)
:verify-guards nil))
(b* (((when (atom pat))
(mv (equal pat x) alist))
((unless (match-tree-binder-p pat))
(if (atom x)
(mv nil alist)
(b* (((mv ok alist) (match-tree (cdr pat) (cdr x) alist))
((unless ok) (mv nil alist)))
(match-tree (car pat) (car x) alist))))
(kw (car pat))
((unless (match-tree-check-binding kw x))
(mv nil alist))
(var (cadr pat))
(look (assoc var alist))
((when look)
(mv (equal (cdr look) x) alist)))
(mv t (cons (cons var x) alist))))
(in-theory (disable match-tree-check-binding
match-tree-binder-p))
(defthm symbol-alistp-match-tree
(implies (symbol-alistp alist)
(and (symbol-alistp (mv-nth 1 (match-tree pat x alist)))
(alistp (mv-nth 1 (match-tree pat x alist))))))
(verify-guards match-tree
:hints(("Goal" :in-theory (enable match-tree-binder-p))))
(defthm assoc-in-match-tree
(implies (assoc k alist)
(equal (assoc k (mv-nth 1 (match-tree pat x alist)))
(assoc k alist))))
(defun subst-tree (pat alist)
(declare (xargs :guard (symbol-alistp alist)
:guard-hints (("goal" :in-theory (enable match-tree-binder-p)))))
(b* (((when (atom pat)) pat)
((unless (match-tree-binder-p pat))
(cons (subst-tree (car pat) alist)
(subst-tree (cdr pat) alist))))
(cdr (assoc (cadr pat) alist))))
(defun match-tree-binders (pat)
(b* (((when (atom pat)) nil)
((when (match-tree-binder-p pat))
(list (cadr pat))))
(append (match-tree-binders (car pat))
(match-tree-binders (cdr pat)))))
(local (defthm member-append
(iff (member x (append a b))
(or (member x a)
(member x b)))))
(defthm match-tree-binders-bound
(b* (((mv ok alist) (match-tree pat x alist0)))
(implies (and (member k (match-tree-binders pat))
ok)
(and (assoc k alist)
(implies (symbol-alistp alist0)
(consp (assoc k alist)))))))
(defun keys-subset (keys alist)
(declare (xargs :guard (alistp alist)))
(if (atom keys)
t
(and (assoc-equal (car keys) alist)
(keys-subset (cdr keys) alist))))
(defthm match-tree-all-binders-bound
(b* (((mv ok alist) (match-tree pat x alist)))
(implies (and ok
(subsetp keys (match-tree-binders pat)))
(keys-subset keys alist)))
:hints(("Goal" :in-theory (enable subsetp keys-subset)
:induct (len keys))))
(defthm keys-subset-of-append
(equal (keys-subset (append x y) a)
(and (keys-subset x a)
(keys-subset y a))))
(defthm subst-tree-when-all-binders-bound
(b* (((mv ?ok alist) (match-tree pat1 x alist0)))
(implies (keys-subset (match-tree-binders pat) alist0)
(equal (subst-tree pat alist)
(subst-tree pat alist0))))
:hints (("goal" :induct (match-tree-binders pat))))
(local (defthm subsetp-when-subsetp-of-cdr
(implies (subsetp x (cdr y))
(subsetp x y))))
(local (defthm subsetp-refl
(subsetp x x)))
(defthmd match-tree-is-subst-tree
(b* (((mv ok alist) (match-tree pat x alist)))
(implies ok
(equal (subst-tree pat alist) x)))
:hints (("goal" :induct (match-tree pat x alist))))
(defun match-tree-!vars (pat acc)
(declare (xargs :guard t
:guard-hints
(("goal" :in-theory (enable match-tree-binder-p)))))
(b* (((when (atom pat)) acc)
((when (and (match-tree-binder-p pat)
(eql (char (symbol-name (car pat)) 0) #\!)))
(cons (cadr pat) acc)))
(match-tree-!vars
(car pat) (match-tree-!vars (cdr pat) acc))))
(defun match-tree-initial-alist-lst (vars)
(if (atom vars)
nil
(cons `(cons ',(car vars) ,(car vars))
(match-tree-initial-alist-lst (cdr vars)))))
(defun match-tree-initial-alist-term (vars)
`(list . ,(match-tree-initial-alist-lst vars)))
(defun prefix-?-vars (vars)
(declare (xargs :guard (symbol-listp vars)))
(if (atom vars)
nil
(cons (intern-in-package-of-symbol
(concatenate 'string "?" (symbol-name (car vars)))
(car vars))
(prefix-?-vars (cdr vars)))))
(defun treematch-fn (x pat nomatch-body match-body)
(let* ((allvars (remove-duplicates-eq (match-tree-binders pat)))
(vars! (remove-duplicates-eq (match-tree-!vars pat nil)))
(vars? (set-difference-eq allvars vars!)))
`(b* (((mv _treematch-ok ?_treematch-alist)
(match-tree ',pat ,x ,(match-tree-initial-alist-term vars!)))
((unless _treematch-ok)
(check-vars-not-free
(_treematch-ok _treematch-alist)
,nomatch-body))
((assocs . ,(prefix-?-vars vars?))
_treematch-alist))
(check-vars-not-free
(_treematch-ok _treematch-alist)
,match-body))))
(def-b*-binder unless-match
:decls ((declare (xargs :guard (equal (len args) 2))))
:body
(treematch-fn (car args) (cadr args)
`(progn$ . ,forms)
rest-expr))
(def-b*-binder when-match
:decls ((declare (xargs :guard (equal (len args) 2))))
:body
(treematch-fn (car args) (cadr args)
rest-expr
`(progn$ . ,forms)))
(defun treematch*-fn (x pats)
(cond ((atom pats) nil)
((eq (caar pats) '&) `(progn$ (cdar pats)))
(t (treematch-fn x (caar pats)
(treematch*-fn x (cdr pats))
`(progn$ (cdar pats))))))
;; This emulates case-match...
(defmacro treematch (x pats)
(if (atom x)
(treematch*-fn x pats)
(let ((var (pack x)))
`(b* ((,var ,x))
,(treematch*-fn var pats)))))
(defun match-tree-restrictions (pat)
(declare (xargs :guard t))
(b* (((when (atom pat)) nil)
((unless (match-tree-binder-p pat))
(append (match-tree-restrictions (car pat))
(match-tree-restrictions (cdr pat)))))
(list pat)))
(defthm match-tree-restrictions-of-lookup-lemma
(b* (((mv ok alist) (match-tree pat x alist0)))
(implies (and ok
(assoc var alist0)
(member (list kw var) (match-tree-restrictions pat)))
(match-tree-check-binding kw (cdr (assoc var alist))))))
(defthmd lookup-when-member-match-tree-restrictions
(b* (((mv ok alist) (match-tree pat x alist)))
(implies (and ok
(member (list kw var) (match-tree-restrictions pat)))
(assoc var alist))))
(defthm match-tree-restrictions-of-lookup
(b* (((mv ok alist) (match-tree pat x alist)))
(implies (and ok
(member (list kw var) (match-tree-restrictions pat)))
(match-tree-check-binding kw (cdr (assoc var alist)))))
:hints(("Goal" :in-theory (enable
lookup-when-member-match-tree-restrictions))))
(defthm symbolp-by-match-tree-restrictions
(b* (((mv ok alist) (match-tree pat x alist)))
(implies (and ok
(intersectp-equal (list (list :?s var)
(list :?f var)
(list :?v var))
(match-tree-restrictions pat)))
(symbolp (cdr (assoc var alist)))))
:hints (("goal" :do-not-induct t)
(and stable-under-simplificationp
(let ((lit (cadr clause)))
(case-match lit
(('not ('member-equal ('cons ('quote kw) &) . &))
`(:use ((:instance match-tree-restrictions-of-lookup
(kw ,kw)))
:in-theory (e/d (match-tree-check-binding)
(match-tree-restrictions-of-lookup)))))))))
(defthm not-quote-by-match-tree-restrictions
(b* (((mv ok alist) (match-tree pat x alist)))
(implies (and ok
(intersectp-equal (list (list :?l var)
(list :?f var))
(match-tree-restrictions pat)))
(not (equal (cdr (assoc var alist)) 'quote))))
:hints (("goal" :do-not-induct t)
(and stable-under-simplificationp
(let ((lit (cadr clause)))
(case-match lit
(('not ('member-equal ('cons ('quote kw) &) . &))
`(:use ((:instance match-tree-restrictions-of-lookup
(kw ,kw)))
:in-theory (e/d (match-tree-check-binding)
(match-tree-restrictions-of-lookup)))))))))
(defthm not-nil-by-match-tree-restrictions
(b* (((mv ok alist) (match-tree pat x alist)))
(implies (and ok
(member-equal (list :?v var) (match-tree-restrictions pat)))
(cdr (assoc var alist))))
:hints (("goal" :do-not-induct t)
(and stable-under-simplificationp
(let ((lit (cadr clause)))
(case-match lit
(('not ('member-equal ('cons ('quote kw) &) . &))
`(:use ((:instance match-tree-restrictions-of-lookup
(kw ,kw)))
:in-theory (e/d (match-tree-check-binding)
(match-tree-restrictions-of-lookup)))))))))
(in-theory (disable match-tree))
(local (in-theory (disable mv-nth)))
(defthm match-tree-measure-weak
(implies (not (assoc k alist0))
(<= (acl2-count (cdr (assoc k (mv-nth 1 (match-tree pat x alist0)))))
(acl2-count x)))
:hints(("Goal" :in-theory (e/d (match-tree) (acl2-count))
:induct t)
(and stable-under-simplificationp
'(:in-theory (enable acl2-count))))
:rule-classes :linear)
(defthm match-tree-measure-strong
(mv-let (ok alist)
(match-tree pat x alist0)
(implies (and (not (assoc k alist0))
(not (match-tree-binder-p pat))
(consp pat)
ok)
(< (acl2-count (cdr (assoc k alist)))
(acl2-count x))))
:hints(("Goal" :in-theory (e/d (match-tree))
:induct t))
:rule-classes :linear)
(defun replace-equalities-thm-fnsym (thmname w)
(declare (xargs :guard (and (symbolp thmname)
(plist-worldp w))))
(b* (((unless-match (getprop thmname 'theorem nil 'current-acl2-world w)
(implies ((:?f hyp-sym) . (:? hyp-args))
(equal (:? lhs)
(:? rhs))))
(er hard? 'add-replace-equalities-rule
"Theorem ~x0 not of the right form") thmname))
hyp-sym))
(defmacro add-replace-equalities-rule (thmname)
`(table replace-equalities-rules
(replace-equalities-thm-fnsym ',thmname world)
(cons ',thmname
(cdr (assoc (replace-equalities-thm-fnsym ',thmname world)
(table-alist 'replace-equalities-rules world))))))
(defun match-tree-rw-fname (prefix var)
(declare (xargs :guard (and (symbolp prefix) (symbolp var))))
(if prefix
(intern-in-package-of-symbol (concatenate 'string (symbol-name prefix)
(symbol-name var))
prefix)
var))
(defun match-tree-rewrites-var-fn (var vars! pat prefix)
`(defund ,(match-tree-rw-fname prefix var) (x . ,vars!)
(declare (xargs :guard t))
(mv-let (ok alist)
(match-tree ',pat x ,(match-tree-initial-alist-term vars!))
(and ok (cdr (assoc ',var alist))))))
(defun match-tree-rewrites-fns (vars vars! pat prefix)
(if (atom vars)
nil
(cons (match-tree-rewrites-var-fn (car vars) vars! pat prefix)
(match-tree-rewrites-fns (cdr vars) vars! pat prefix))))
(defun match-tree-rw-measure-thm (var vars! pat prefix)
(b* ((fnname (match-tree-rw-fname prefix var))
(thmname-weak (intern-in-package-of-symbol
(concatenate 'string (symbol-name fnname) "-ACL2-COUNT-WEAK")
fnname))
(thmname-strong (intern-in-package-of-symbol
(concatenate 'string (symbol-name fnname) "-ACL2-COUNT-STRONG")
fnname)))
`((defthm ,thmname-weak
(<= (acl2-count (,fnname x . ,vars!))
(acl2-count x))
:hints(("Goal" :in-theory (enable ,fnname)))
:rule-classes :linear)
. ,(and (not (atom pat))
(not (match-tree-binder-p pat))
`((defthm ,thmname-strong
(implies (mv-nth 0 (match-tree ',pat x ,(match-tree-initial-alist-term vars!)))
(< (acl2-count (,fnname x . ,vars!))
(acl2-count x)))
:hints(("Goal" :in-theory (enable ,fnname)))
:rule-classes :linear))))))
(defun match-tree-rw-measure-thms (vars vars! pat prefix)
(if (atom vars)
nil
(append (match-tree-rw-measure-thm (car vars) vars! pat prefix)
(match-tree-rw-measure-thms (cdr vars) vars! pat prefix))))
(defun match-tree-block-substs-var-fn (var vars! pat prefix)
(let* ((fnname (match-tree-rw-fname prefix var))
(thmname (intern-in-package-of-symbol
(concatenate 'string
(symbol-name fnname) "-BLOCK-EQUALITY-SUBST")
fnname)))
`((defthm ,thmname
(implies (mv-nth 0 (match-tree ',pat x ,(match-tree-initial-alist-term vars!)))
(equal (,fnname x . ,vars!)
(,fnname x . ,vars!)))
:rule-classes nil)
(add-replace-equalities-rule ,thmname))))
(defun match-tree-block-substs-fns (vars vars! pat prefix)
(if (atom vars)
nil
(append (match-tree-block-substs-var-fn (car vars) vars! pat prefix)
(match-tree-block-substs-fns (cdr vars) vars! pat prefix))))
(defun match-tree-rewrites-var-rw (var vars! pat prefix)
(let* ((fnname (match-tree-rw-fname prefix var)))
`(defthm ,(intern-in-package-of-symbol
(concatenate 'string (symbol-name fnname) "-RW")
var)
(mv-let (ok alist)
(match-tree ',pat x ,(match-tree-initial-alist-term vars!))
(implies ok
(equal (cdr (assoc ',var alist))
(,fnname x . ,vars!))))
:hints(("Goal" :in-theory (enable ,fnname))))))
(defun match-tree-rewrites-rws (vars vars! pat prefix)
(if (atom vars)
nil
(cons (match-tree-rewrites-var-rw (car vars) vars! pat prefix)
(match-tree-rewrites-rws (cdr vars) vars! pat prefix))))
(defun match-tree-restr-events (restr vars! pat prefix)
(b* (((list kw var) restr)
(fnname (match-tree-rw-fname prefix var)))
(and (member kw '(:?s :?v :?f :?l))
`((defthm ,(intern-in-package-of-symbol
(concatenate 'string (symbol-name fnname) "-TYPE")
fnname)
(implies (mv-nth 0 (match-tree
',pat x
,(match-tree-initial-alist-term vars!)))
,(case kw
(:?s `(symbolp (,fnname x . ,vars!)))
(:?v `(and (symbolp (,fnname x . ,vars!))
(,fnname x . ,vars!)))
(:?f `(and (symbolp (,fnname x . ,vars!))
(not (equal (,fnname x . ,vars!) 'quote))))
(:?l `(not (equal (,fnname x . ,vars!) 'quote)))))
:hints(("Goal" :in-theory (enable ,fnname))))))))
(defun match-tree-restrs-events (restrs vars! pat prefix)
(if (atom restrs)
nil
(append (match-tree-restr-events (car restrs) vars! pat prefix)
(match-tree-restrs-events (cdr restrs) vars! pat prefix))))
(defun def-match-tree-rewrites-fn (pat prefix)
(b* ((allvars (remove-duplicates-eq (match-tree-binders pat)))
(vars! (remove-duplicates-eq (match-tree-!vars pat nil)))
(vars? (set-difference-eq allvars vars!))
(fn-events (match-tree-rewrites-fns vars? vars! pat prefix))
(meas-events (match-tree-rw-measure-thms vars? vars! pat prefix))
(rw-events (match-tree-rewrites-rws vars? vars! pat prefix))
(bs-events (match-tree-block-substs-fns vars? vars! pat prefix))
(restrs (match-tree-restrictions pat))
(type-events (match-tree-restrs-events restrs vars! pat prefix)))
`(progn ,@fn-events ,@meas-events ,@bs-events ,@type-events . ,rw-events)))
(defmacro def-match-tree-rewrites (pat &key prefix)
(def-match-tree-rewrites-fn pat prefix))
(local (def-match-tree-rewrites (if (:! foo) (:? bar) (:?s baz))))
(local (def-match-tree-rewrites (if (:! foo) (:? bar) (:?s baz))
:prefix fooif->))
|