This file is indexed.

/usr/share/acl2-8.0dfsg/books/tools/rulesets.lisp is in acl2-books-source 8.0dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
; Rulesets -- Extensible alternative to theories
; Copyright (C) 2008-2012 Centaur Technology
;
; Contact:
;   Centaur Technology Formal Verification Group
;   7600-C N. Capital of Texas Highway, Suite 300, Austin, TX 78731, USA.
;   http://www.centtech.com/
;
; License: (An MIT/X11-style license)
;
;   Permission is hereby granted, free of charge, to any person obtaining a
;   copy of this software and associated documentation files (the "Software"),
;   to deal in the Software without restriction, including without limitation
;   the rights to use, copy, modify, merge, publish, distribute, sublicense,
;   and/or sell copies of the Software, and to permit persons to whom the
;   Software is furnished to do so, subject to the following conditions:
;
;   The above copyright notice and this permission notice shall be included in
;   all copies or substantial portions of the Software.
;
;   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
;   IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
;   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
;   AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
;   LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
;   FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
;   DEALINGS IN THE SOFTWARE.
;
; Original authors: Sol Swords and Jared Davis
;                   {sswords,jared}@centtech.com

(in-package "ACL2")
(include-book "xdoc/top" :dir :system)
(program)

(defxdoc rulesets
  :parents (theories deftheory)
  :short "Table-based alternative to ACL2's named theories."

  :long "<p>Rulesets are like @(see theories), but can be extended with
additional rules after first being defined.  That is, you can build up a
ruleset incrementally, across many books, instead of having to define it all at
once and having it be forever fixed.</p>

<p>Basic usage of rulesets is just like theories.  You can:</p>

<ul>
<li>Introduce rulesets with @(see def-ruleset)</li>
<li>Extend existing rulesets with @(see add-to-ruleset).</li>
<li>Enable/disable rulesets with @(see enable*), @(see disable*), and @(see
e/d*)</li>
</ul>

<p>When we define a new package @('FOO'), we often set up @('FOO::enable') as
an alias for @('enable*'), to make using rulesets more convenient.</p>

<p>Advanced users can do some nifty things with rulesets, e.g., you can have a
superior ruleset that contains other rulesets, and it will grow as you add
rules to the contained rulesets.</p>

<p>A ruleset is actually a list of so-called <i>ruleset designators</i>.  All
ruleset operators, such as @(tsee e/d*) and @(tsee def-ruleset), take arguments
that are rulesets.  See @(see expand-ruleset) for a discussion of ruleset
designators and the corresponding @(see theories) that they represent.</p>")

(defsection get-ruleset
  :parents (rulesets)
  :short "The @(see ruleset) associated with a given name"
  :long "<p>Example usage:</p>

@({ (get-ruleset 'my-ruleset (w state)) })

<p>Also see @(see ruleset).  For a more powerful operator that recursively
expands ruleset names within a given ruleset, see @(see expand-ruleset).</p>"

  (defun get-ruleset (name world)
    (let* ((ruleset-alist (table-alist 'ruleset-table world)))
      (cdr (assoc name ruleset-alist)))))

(defsection ruleset
  :parents (rulesets)
  :short "The ruleset associated with a given name"
  :long "<p>See @(see rulesets) for an introduction to rulesets.</p>

<p>Examples of calls of @('ruleset'):</p>

@({
 (ruleset 'my-ruleset) ; assumes that WORLD is bound
 (ruleset 'my-ruleset (w state)) ; ruleset currently associated with MY-RULESET
})

<p>Also see @(see get-ruleset).  For a more powerful operator that recursively
expands ruleset names within a given ruleset, see @(see expand-ruleset).</p>"

  (defmacro ruleset (name &optional (world 'world))
    `(get-ruleset ,name ,world)))

(defun is-ruleset (name world)
  (let* ((ruleset-alist (table-alist 'ruleset-table world)))
    (consp (assoc name ruleset-alist))))

(defun ruleset-designatorp (x world)
  (cond ((rule-name-designatorp x (macro-aliases world) world))
        ((symbolp x)
         (or (is-ruleset x world)
             (cw "~
**NOTE**:~%~x0 is not a rune, theory name, or ruleset name.~%" x)))
        (t (and (consp x)
                (case-match x
                  ((':ruleset ruleset)
                   (or (is-ruleset ruleset world)
                       (cw "**NOTE**:~%~x0 is not a ruleset.~%"
                           ruleset)))
                  ((':executable-counterpart-theory &) t)
                  ((':current-theory &) t)
                  ((':theory &) t)
                  ((':rules-of-class & &) t)
                  (& (cw "~
**NOTE**:~%~x0 is neither a rune nor a valid ruleset designator.~%" x)))))))


;; This does not short-circuit, so that we get error messages for all the
;; invalid entries.
(defun ruleset-designator-listp1 (x world ok)
  (if (atom x)
      (and (eq x nil) ok)
    (ruleset-designator-listp1
     (cdr x) world (and (ruleset-designatorp (car x) world) ok))))

(defun ruleset-designator-listp (x world)
  (ruleset-designator-listp1 x world t))


(defun rules-of-class1 (class theory)
  (declare (xargs :mode :program))
  (if (atom theory)
      nil
    (if (and (consp (car theory))
             (eq (caar theory) class))
        (cons (car theory) (rules-of-class1 class (cdr theory)))
      (rules-of-class1 class (cdr theory)))))

(defmacro rules-of-class (class name)
  `(rules-of-class1 ,class (universal-theory ,name)))

(defun def-ruleset-core (name rules world state)
  (declare (xargs :stobjs state))
  (if (ruleset-designator-listp rules world)
      (value `(table ruleset-table ',name ',rules))
    (er soft 'def-ruleset "Invalid ruleset specified~%")))

(defun add-to-ruleset-core (name rules world state)
  (declare (xargs :stobjs state))
  (if (ruleset-designator-listp rules world)
      (value `(table ruleset-table ',name
                     (union-equal ',rules (ruleset ',name))))
    (er soft 'add-to-ruleset "Invalid ruleset specified~%")))

(defun check-not-ruleset (name world state)
  (declare (xargs :stobjs state))
  (if (is-ruleset name world)
      (er soft 'def-ruleset
          "~x0 is already a ruleset.  Use add-to-ruleset or def-ruleset! ~
               instead.~%" name)
    (value 'ok)))

(defun check-ruleset (name world state)
  (declare (xargs :stobjs state))
  (if (is-ruleset name world)
      (value 'ok)
    (er soft 'add-to-ruleset
        "~x0 is not already a ruleset.  Use def-ruleset, def-ruleset! ~
             or add-to-ruleset! instead.~%" name)))

(defun ruleset-form-preprocess (form)
  (if (and (symbolp form)
           (not (booleanp form)))
      `'(,form)
    form))

(defsection def-ruleset
  :parents (rulesets)
  :short "@(call def-ruleset) creates a new @(see ruleset)."

  :long "<p>Examples:</p>
@({
 (def-ruleset my-rules
   '(append reverse))

 (def-ruleset other-rules
   '(member-equal my-rules revappend))
})

<p>The first example creates a new ruleset, @('my-rules'), with only the
definitions of @('append') and @('reverse').</p>

<p>The section example creates a new ruleset, @('other-rules'), with the
definitions of @('member-equal') and @('revappend'), and also a link to
@('my-rules').  When rules are added to @('my-rules'), @('other-rules')
also grows.</p>

<p>See @(see def-ruleset!) for a version that's more friendly towards
redundant calls.</p>"

  (defmacro def-ruleset (name form)
    (declare (xargs :guard (symbolp name)))
    `(make-event
      (let ((world (w state))
            (name ',name))
        (er-progn
         (check-not-ruleset name world state)
         (let ((rules ,(ruleset-form-preprocess form)))
           (def-ruleset-core
             name rules world state)))))))

(defsection add-to-ruleset
  :parents (rulesets)
  :short "@(call add-to-ruleset) adds additional rules to an existing
@(see ruleset)."

  :long "<p>Examples:</p>
@({
 (add-to-ruleset my-rules
   '(foop))

 (add-to-ruleset other-rules
   '(car-cons cdr-cons (force)))
})"

  (defmacro add-to-ruleset (name form)
    (declare (xargs :guard (symbolp name)))
    `(make-event
      (let ((world (w state))
            (name ',name))
        (er-progn
         (check-ruleset name world state)
         (let ((rules ,(ruleset-form-preprocess form)))
           (add-to-ruleset-core name rules world state)))))))

(defsection def-ruleset!
  :parents (rulesets)
  :short "Same as @(see def-ruleset) except that it does not complain if the
@(see ruleset) already exists, instead acting like @('add-to-ruleset') in that
case."

  (defmacro def-ruleset! (name form)
    (declare (xargs :guard (symbolp name)))
    `(make-event
      (let* ((world (w state))
             (name ',name)
             (rules ,(ruleset-form-preprocess form)))
        (if (is-ruleset name world)
            (add-to-ruleset-core name rules world state)
          (def-ruleset-core name rules world state))))))

(defmacro set-ruleset! (name form)
  (declare (xargs :guard (symbolp name)))
  `(make-event
    (let* ((world (w state))
           (name ',name)
           (rules ,(ruleset-form-preprocess form)))
      (def-ruleset-core name rules world state))))

(defmacro add-to-ruleset! (name form)
  (declare (xargs :guard (symbolp name)))
  `(make-event
    (let* ((world (w state))
           (name ',name)
           (rules ,(ruleset-form-preprocess form)))
      (add-to-ruleset-core name rules world state))))


;; This is fragile; we don't recursively check rulesets that we're expanding.
(defun expand-ruleset1 (x world)
  (if (atom x)
      nil
    (let ((des (car x)))
      (cond ((rule-name-designatorp des (macro-aliases world) world)
             (cons des (expand-ruleset1 (cdr x) world)))
            ((atom des)
             (append (expand-ruleset1 (ruleset des) world)
                     (expand-ruleset1 (cdr x) world)))
            (t (case (car des)
                 (:ruleset
                  (append (expand-ruleset1 (ruleset (cadr des)) world)
                          (expand-ruleset1 (cdr x) world)))
                 (:executable-counterpart-theory
                  (append (executable-counterpart-theory (cadr des))
                          (expand-ruleset1 (cdr x) world)))
                 (:rules-of-class
                  (append (rules-of-class (cadr des) (caddr des))
                          (expand-ruleset1 (cdr x) world)))
                 (:theory
                  (append (theory (cadr des))
                          (expand-ruleset1 (cdr x) world)))
                 (:current-theory
                  (append (current-theory (cadr des))
                          (expand-ruleset1 (cdr x) world)))))))))

(defsection expand-ruleset
  :parents (rulesets)
  :short "Expand @(see rulesets) to @(see theories)."
  :long "<p>A @(see ruleset) is a list of so-called <i>ruleset designators</i>.
The @(see ruleset) operators, such as @(tsee e/d*) and @(tsee def-ruleset),
expect arguments that are (or evaluate to) rulesets.  Every ruleset represents
an ACL2 <i>theory</i>, called its ``expansion''.  Consider for example these
ruleset definitions.</p>

@({
 (def-ruleset my-rules
   '(append reverse))

 (def-ruleset other-rules
   '(member-equal my-rules revappend))
})

<p>Then the symbol @('my-rules') is a ruleset designator, which represents the
theory containing @('append') and @('reverse').  The symbol @('other-rules') is
a ruleset designator, which represents the theory containing @('member-equal'),
@('append'), @('reverse'), and @('revappend').  The function
@('expand-ruleset') returns the theory obtained by expanding every ruleset
designator in a given ruleset, for example:</p>

@({
 ACL2 !>(expand-ruleset '(car-cons (:d nth) other-rules) (w state))
 (CAR-CONS (:D NTH)
           MEMBER-EQUAL APPEND REVERSE REVAPPEND)
 ACL2 !>
})

<p>We now list the valid ruleset designators and indicate the corresponding
expansion, a theory, for each.</p>

<ul>

<li>A symbol that names a rule (e.g., from a definition or a theorem) or names
a @(see theory) is a ruleset designator.  More generally, every <i>runic
designator</i> @('x') is also a ruleset designator, which expands to the theory
containing exactly @('x').  See @(see theories) for a discussion of runic
designators.</li>

<li>If @('N') is a symbol that is the name of a ruleset @('S'), then @('N') and
@('(:ruleset N)') are ruleset designators.  They expand to the union of the
expansions of the ruleset designators in @('S').</li>

<li>The ruleset designators @('(:executable-counterpart-theory name)'),
@('(:current-theory name)'), and @('(:theory name)') expand to the values in
the current ACL2 @(see world) of the forms @('(executable-counterpart-theory
name)'), @('(current-theory name)'), and @('(theory name)'), respectively.</li>

<li>The ruleset designator @('(:rules-of-class class name)') represent the
runes of the indicated class (see @(see rule-classes)) in the value of
@('(universal-theory name)').</li>

</ul>"

  (defun expand-ruleset (x world)
    (if (ruleset-designator-listp x world)
        (expand-ruleset1 x world)
      (er hard 'expand-ruleset "~x0 is not a valid ruleset.~%" x))))

(defsection enable*
  :parents (rulesets)
  :short "@(csee Ruleset)-aware version of @(see enable)."
  :long "<p>Examples:</p>

@({
 (in-theory (enable* my-rules append car-cons))

 (defthm ...
    :hints ((\"Goal\" :in-theory (enable* foo ...))))
})"

  (defmacro enable* (&rest x)
    `(union-current-theory-fn
      (expand-ruleset ',x world)
      nil world)))

(defsection disable*
  :parents (rulesets)
  :short "@(csee Ruleset)-aware version of @(see disable)."
  :long "<p>Examples:</p>

@({
 (in-theory (disable* my-rules append car-cons))

 (defthm ...
    :hints ((\"Goal\" :in-theory (disable* foo ...))))
})"

  (defmacro disable* (&rest x)
    `(set-difference-current-theory-fn
      (expand-ruleset ',x world)
      nil world)))

(defsection e/d*
  :parents (rulesets)
  :short "@(csee Ruleset)-aware version of @(see e/d)."
  :long "<p>Examples:</p>

@({
 (in-theory (e/d* (unusual-rules append)
                  (expensive-rules default-car default-cdr)))

 (defthm ...
    :hints ((\"Goal\"
             :in-theory (e/d* (unusual-rules append)
                              (expensive-rules default-car
                               default-cdr)))))
})"

  (defun e/d*-fn (theory e/d-list enable-p)
    (declare (xargs :guard (and (true-list-listp e/d-list)
                                (or (eq enable-p t)
                                    (eq enable-p nil)))))
    (cond ((atom e/d-list) theory)
          (enable-p (e/d*-fn `(UNION-THEORIES ,theory
                                              (expand-ruleset ',(car e/d-list) world))
                             (cdr e/d-list) nil))
          (t (e/d*-fn `(SET-DIFFERENCE-THEORIES ,theory
                                                (expand-ruleset ',(car e/d-list) world))
                      (cdr e/d-list) t))))

  (defmacro e/d** (&rest theories)
    (declare (xargs :guard (true-list-listp theories)))
    (cond ((atom theories) nil)
          (t (e/d*-fn nil theories t))))

  (defmacro e/d* (&rest theories)
    (declare (xargs :guard (true-list-listp theories)))
    (cond ((atom theories) '(current-theory :here))
          (t (e/d*-fn '(current-theory :here)
                      theories t)))))

(defmacro ruleset-theory (ruleset)
  `(expand-ruleset (ruleset ,ruleset) world))


#||

(logic)

(local
 (encapsulate
  nil

(include-book
   ;; This is on a separate line so that this book won't appear to depend on
   ;; the make-event subdir.
   "make-event/assert" :dir :system)

(def-ruleset! foo '(append reverse))
(def-ruleset! bar '(foo nth))

(add-to-ruleset foo '((consp)))

(in-theory nil)
(in-theory (enable* foo))

(assert! (let ((ens (ens state)))
           (and (not (active-runep '(:definition member-equal)))
                (not (active-runep '(:definition nth)))
                (active-runep '(:definition binary-append))
                (active-runep '(:definition reverse))
                (active-runep '(:executable-counterpart consp)))))

(in-theory nil)
(in-theory (enable* bar))
(assert! (let ((ens (ens state)))
           (and (not (active-runep '(:definition member-equal)))
                (active-runep '(:definition nth))
                (active-runep '(:definition binary-append))
                (active-runep '(:definition reverse))
                (active-runep '(:executable-counterpart consp)))))

(in-theory (disable* foo))
(assert! (let ((ens (ens state)))
           (and (active-runep '(:definition nth))
                (not (active-runep '(:definition member-equal)))
                (not (active-runep '(:definition binary-append)))
                (not (active-runep '(:definition reverse)))
                (not (active-runep '(:executable-counterpart consp))))))

(in-theory nil)
(in-theory (e/d* ((:ruleset bar)) ((:ruleset foo))))
(assert! (let ((ens (ens state)))
           (and (active-runep '(:definition nth))
                (not (active-runep '(:definition member-equal)))
                (not (active-runep '(:definition binary-append)))
                (not (active-runep '(:definition reverse)))
                (not (active-runep '(:executable-counterpart consp))))))


||#