/usr/share/acl2-8.0dfsg/books/tools/rulesets.lisp is in acl2-books-source 8.0dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 | ; Rulesets -- Extensible alternative to theories
; Copyright (C) 2008-2012 Centaur Technology
;
; Contact:
; Centaur Technology Formal Verification Group
; 7600-C N. Capital of Texas Highway, Suite 300, Austin, TX 78731, USA.
; http://www.centtech.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original authors: Sol Swords and Jared Davis
; {sswords,jared}@centtech.com
(in-package "ACL2")
(include-book "xdoc/top" :dir :system)
(program)
(defxdoc rulesets
:parents (theories deftheory)
:short "Table-based alternative to ACL2's named theories."
:long "<p>Rulesets are like @(see theories), but can be extended with
additional rules after first being defined. That is, you can build up a
ruleset incrementally, across many books, instead of having to define it all at
once and having it be forever fixed.</p>
<p>Basic usage of rulesets is just like theories. You can:</p>
<ul>
<li>Introduce rulesets with @(see def-ruleset)</li>
<li>Extend existing rulesets with @(see add-to-ruleset).</li>
<li>Enable/disable rulesets with @(see enable*), @(see disable*), and @(see
e/d*)</li>
</ul>
<p>When we define a new package @('FOO'), we often set up @('FOO::enable') as
an alias for @('enable*'), to make using rulesets more convenient.</p>
<p>Advanced users can do some nifty things with rulesets, e.g., you can have a
superior ruleset that contains other rulesets, and it will grow as you add
rules to the contained rulesets.</p>
<p>A ruleset is actually a list of so-called <i>ruleset designators</i>. All
ruleset operators, such as @(tsee e/d*) and @(tsee def-ruleset), take arguments
that are rulesets. See @(see expand-ruleset) for a discussion of ruleset
designators and the corresponding @(see theories) that they represent.</p>")
(defsection get-ruleset
:parents (rulesets)
:short "The @(see ruleset) associated with a given name"
:long "<p>Example usage:</p>
@({ (get-ruleset 'my-ruleset (w state)) })
<p>Also see @(see ruleset). For a more powerful operator that recursively
expands ruleset names within a given ruleset, see @(see expand-ruleset).</p>"
(defun get-ruleset (name world)
(let* ((ruleset-alist (table-alist 'ruleset-table world)))
(cdr (assoc name ruleset-alist)))))
(defsection ruleset
:parents (rulesets)
:short "The ruleset associated with a given name"
:long "<p>See @(see rulesets) for an introduction to rulesets.</p>
<p>Examples of calls of @('ruleset'):</p>
@({
(ruleset 'my-ruleset) ; assumes that WORLD is bound
(ruleset 'my-ruleset (w state)) ; ruleset currently associated with MY-RULESET
})
<p>Also see @(see get-ruleset). For a more powerful operator that recursively
expands ruleset names within a given ruleset, see @(see expand-ruleset).</p>"
(defmacro ruleset (name &optional (world 'world))
`(get-ruleset ,name ,world)))
(defun is-ruleset (name world)
(let* ((ruleset-alist (table-alist 'ruleset-table world)))
(consp (assoc name ruleset-alist))))
(defun ruleset-designatorp (x world)
(cond ((rule-name-designatorp x (macro-aliases world) world))
((symbolp x)
(or (is-ruleset x world)
(cw "~
**NOTE**:~%~x0 is not a rune, theory name, or ruleset name.~%" x)))
(t (and (consp x)
(case-match x
((':ruleset ruleset)
(or (is-ruleset ruleset world)
(cw "**NOTE**:~%~x0 is not a ruleset.~%"
ruleset)))
((':executable-counterpart-theory &) t)
((':current-theory &) t)
((':theory &) t)
((':rules-of-class & &) t)
(& (cw "~
**NOTE**:~%~x0 is neither a rune nor a valid ruleset designator.~%" x)))))))
;; This does not short-circuit, so that we get error messages for all the
;; invalid entries.
(defun ruleset-designator-listp1 (x world ok)
(if (atom x)
(and (eq x nil) ok)
(ruleset-designator-listp1
(cdr x) world (and (ruleset-designatorp (car x) world) ok))))
(defun ruleset-designator-listp (x world)
(ruleset-designator-listp1 x world t))
(defun rules-of-class1 (class theory)
(declare (xargs :mode :program))
(if (atom theory)
nil
(if (and (consp (car theory))
(eq (caar theory) class))
(cons (car theory) (rules-of-class1 class (cdr theory)))
(rules-of-class1 class (cdr theory)))))
(defmacro rules-of-class (class name)
`(rules-of-class1 ,class (universal-theory ,name)))
(defun def-ruleset-core (name rules world state)
(declare (xargs :stobjs state))
(if (ruleset-designator-listp rules world)
(value `(table ruleset-table ',name ',rules))
(er soft 'def-ruleset "Invalid ruleset specified~%")))
(defun add-to-ruleset-core (name rules world state)
(declare (xargs :stobjs state))
(if (ruleset-designator-listp rules world)
(value `(table ruleset-table ',name
(union-equal ',rules (ruleset ',name))))
(er soft 'add-to-ruleset "Invalid ruleset specified~%")))
(defun check-not-ruleset (name world state)
(declare (xargs :stobjs state))
(if (is-ruleset name world)
(er soft 'def-ruleset
"~x0 is already a ruleset. Use add-to-ruleset or def-ruleset! ~
instead.~%" name)
(value 'ok)))
(defun check-ruleset (name world state)
(declare (xargs :stobjs state))
(if (is-ruleset name world)
(value 'ok)
(er soft 'add-to-ruleset
"~x0 is not already a ruleset. Use def-ruleset, def-ruleset! ~
or add-to-ruleset! instead.~%" name)))
(defun ruleset-form-preprocess (form)
(if (and (symbolp form)
(not (booleanp form)))
`'(,form)
form))
(defsection def-ruleset
:parents (rulesets)
:short "@(call def-ruleset) creates a new @(see ruleset)."
:long "<p>Examples:</p>
@({
(def-ruleset my-rules
'(append reverse))
(def-ruleset other-rules
'(member-equal my-rules revappend))
})
<p>The first example creates a new ruleset, @('my-rules'), with only the
definitions of @('append') and @('reverse').</p>
<p>The section example creates a new ruleset, @('other-rules'), with the
definitions of @('member-equal') and @('revappend'), and also a link to
@('my-rules'). When rules are added to @('my-rules'), @('other-rules')
also grows.</p>
<p>See @(see def-ruleset!) for a version that's more friendly towards
redundant calls.</p>"
(defmacro def-ruleset (name form)
(declare (xargs :guard (symbolp name)))
`(make-event
(let ((world (w state))
(name ',name))
(er-progn
(check-not-ruleset name world state)
(let ((rules ,(ruleset-form-preprocess form)))
(def-ruleset-core
name rules world state)))))))
(defsection add-to-ruleset
:parents (rulesets)
:short "@(call add-to-ruleset) adds additional rules to an existing
@(see ruleset)."
:long "<p>Examples:</p>
@({
(add-to-ruleset my-rules
'(foop))
(add-to-ruleset other-rules
'(car-cons cdr-cons (force)))
})"
(defmacro add-to-ruleset (name form)
(declare (xargs :guard (symbolp name)))
`(make-event
(let ((world (w state))
(name ',name))
(er-progn
(check-ruleset name world state)
(let ((rules ,(ruleset-form-preprocess form)))
(add-to-ruleset-core name rules world state)))))))
(defsection def-ruleset!
:parents (rulesets)
:short "Same as @(see def-ruleset) except that it does not complain if the
@(see ruleset) already exists, instead acting like @('add-to-ruleset') in that
case."
(defmacro def-ruleset! (name form)
(declare (xargs :guard (symbolp name)))
`(make-event
(let* ((world (w state))
(name ',name)
(rules ,(ruleset-form-preprocess form)))
(if (is-ruleset name world)
(add-to-ruleset-core name rules world state)
(def-ruleset-core name rules world state))))))
(defmacro set-ruleset! (name form)
(declare (xargs :guard (symbolp name)))
`(make-event
(let* ((world (w state))
(name ',name)
(rules ,(ruleset-form-preprocess form)))
(def-ruleset-core name rules world state))))
(defmacro add-to-ruleset! (name form)
(declare (xargs :guard (symbolp name)))
`(make-event
(let* ((world (w state))
(name ',name)
(rules ,(ruleset-form-preprocess form)))
(add-to-ruleset-core name rules world state))))
;; This is fragile; we don't recursively check rulesets that we're expanding.
(defun expand-ruleset1 (x world)
(if (atom x)
nil
(let ((des (car x)))
(cond ((rule-name-designatorp des (macro-aliases world) world)
(cons des (expand-ruleset1 (cdr x) world)))
((atom des)
(append (expand-ruleset1 (ruleset des) world)
(expand-ruleset1 (cdr x) world)))
(t (case (car des)
(:ruleset
(append (expand-ruleset1 (ruleset (cadr des)) world)
(expand-ruleset1 (cdr x) world)))
(:executable-counterpart-theory
(append (executable-counterpart-theory (cadr des))
(expand-ruleset1 (cdr x) world)))
(:rules-of-class
(append (rules-of-class (cadr des) (caddr des))
(expand-ruleset1 (cdr x) world)))
(:theory
(append (theory (cadr des))
(expand-ruleset1 (cdr x) world)))
(:current-theory
(append (current-theory (cadr des))
(expand-ruleset1 (cdr x) world)))))))))
(defsection expand-ruleset
:parents (rulesets)
:short "Expand @(see rulesets) to @(see theories)."
:long "<p>A @(see ruleset) is a list of so-called <i>ruleset designators</i>.
The @(see ruleset) operators, such as @(tsee e/d*) and @(tsee def-ruleset),
expect arguments that are (or evaluate to) rulesets. Every ruleset represents
an ACL2 <i>theory</i>, called its ``expansion''. Consider for example these
ruleset definitions.</p>
@({
(def-ruleset my-rules
'(append reverse))
(def-ruleset other-rules
'(member-equal my-rules revappend))
})
<p>Then the symbol @('my-rules') is a ruleset designator, which represents the
theory containing @('append') and @('reverse'). The symbol @('other-rules') is
a ruleset designator, which represents the theory containing @('member-equal'),
@('append'), @('reverse'), and @('revappend'). The function
@('expand-ruleset') returns the theory obtained by expanding every ruleset
designator in a given ruleset, for example:</p>
@({
ACL2 !>(expand-ruleset '(car-cons (:d nth) other-rules) (w state))
(CAR-CONS (:D NTH)
MEMBER-EQUAL APPEND REVERSE REVAPPEND)
ACL2 !>
})
<p>We now list the valid ruleset designators and indicate the corresponding
expansion, a theory, for each.</p>
<ul>
<li>A symbol that names a rule (e.g., from a definition or a theorem) or names
a @(see theory) is a ruleset designator. More generally, every <i>runic
designator</i> @('x') is also a ruleset designator, which expands to the theory
containing exactly @('x'). See @(see theories) for a discussion of runic
designators.</li>
<li>If @('N') is a symbol that is the name of a ruleset @('S'), then @('N') and
@('(:ruleset N)') are ruleset designators. They expand to the union of the
expansions of the ruleset designators in @('S').</li>
<li>The ruleset designators @('(:executable-counterpart-theory name)'),
@('(:current-theory name)'), and @('(:theory name)') expand to the values in
the current ACL2 @(see world) of the forms @('(executable-counterpart-theory
name)'), @('(current-theory name)'), and @('(theory name)'), respectively.</li>
<li>The ruleset designator @('(:rules-of-class class name)') represent the
runes of the indicated class (see @(see rule-classes)) in the value of
@('(universal-theory name)').</li>
</ul>"
(defun expand-ruleset (x world)
(if (ruleset-designator-listp x world)
(expand-ruleset1 x world)
(er hard 'expand-ruleset "~x0 is not a valid ruleset.~%" x))))
(defsection enable*
:parents (rulesets)
:short "@(csee Ruleset)-aware version of @(see enable)."
:long "<p>Examples:</p>
@({
(in-theory (enable* my-rules append car-cons))
(defthm ...
:hints ((\"Goal\" :in-theory (enable* foo ...))))
})"
(defmacro enable* (&rest x)
`(union-current-theory-fn
(expand-ruleset ',x world)
nil world)))
(defsection disable*
:parents (rulesets)
:short "@(csee Ruleset)-aware version of @(see disable)."
:long "<p>Examples:</p>
@({
(in-theory (disable* my-rules append car-cons))
(defthm ...
:hints ((\"Goal\" :in-theory (disable* foo ...))))
})"
(defmacro disable* (&rest x)
`(set-difference-current-theory-fn
(expand-ruleset ',x world)
nil world)))
(defsection e/d*
:parents (rulesets)
:short "@(csee Ruleset)-aware version of @(see e/d)."
:long "<p>Examples:</p>
@({
(in-theory (e/d* (unusual-rules append)
(expensive-rules default-car default-cdr)))
(defthm ...
:hints ((\"Goal\"
:in-theory (e/d* (unusual-rules append)
(expensive-rules default-car
default-cdr)))))
})"
(defun e/d*-fn (theory e/d-list enable-p)
(declare (xargs :guard (and (true-list-listp e/d-list)
(or (eq enable-p t)
(eq enable-p nil)))))
(cond ((atom e/d-list) theory)
(enable-p (e/d*-fn `(UNION-THEORIES ,theory
(expand-ruleset ',(car e/d-list) world))
(cdr e/d-list) nil))
(t (e/d*-fn `(SET-DIFFERENCE-THEORIES ,theory
(expand-ruleset ',(car e/d-list) world))
(cdr e/d-list) t))))
(defmacro e/d** (&rest theories)
(declare (xargs :guard (true-list-listp theories)))
(cond ((atom theories) nil)
(t (e/d*-fn nil theories t))))
(defmacro e/d* (&rest theories)
(declare (xargs :guard (true-list-listp theories)))
(cond ((atom theories) '(current-theory :here))
(t (e/d*-fn '(current-theory :here)
theories t)))))
(defmacro ruleset-theory (ruleset)
`(expand-ruleset (ruleset ,ruleset) world))
#||
(logic)
(local
(encapsulate
nil
(include-book
;; This is on a separate line so that this book won't appear to depend on
;; the make-event subdir.
"make-event/assert" :dir :system)
(def-ruleset! foo '(append reverse))
(def-ruleset! bar '(foo nth))
(add-to-ruleset foo '((consp)))
(in-theory nil)
(in-theory (enable* foo))
(assert! (let ((ens (ens state)))
(and (not (active-runep '(:definition member-equal)))
(not (active-runep '(:definition nth)))
(active-runep '(:definition binary-append))
(active-runep '(:definition reverse))
(active-runep '(:executable-counterpart consp)))))
(in-theory nil)
(in-theory (enable* bar))
(assert! (let ((ens (ens state)))
(and (not (active-runep '(:definition member-equal)))
(active-runep '(:definition nth))
(active-runep '(:definition binary-append))
(active-runep '(:definition reverse))
(active-runep '(:executable-counterpart consp)))))
(in-theory (disable* foo))
(assert! (let ((ens (ens state)))
(and (active-runep '(:definition nth))
(not (active-runep '(:definition member-equal)))
(not (active-runep '(:definition binary-append)))
(not (active-runep '(:definition reverse)))
(not (active-runep '(:executable-counterpart consp))))))
(in-theory nil)
(in-theory (e/d* ((:ruleset bar)) ((:ruleset foo))))
(assert! (let ((ens (ens state)))
(and (active-runep '(:definition nth))
(not (active-runep '(:definition member-equal)))
(not (active-runep '(:definition binary-append)))
(not (active-runep '(:definition reverse)))
(not (active-runep '(:executable-counterpart consp))))))
||#
|