/usr/share/acl2-8.0dfsg/proof-builder-b.lisp is in acl2-source 8.0dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 | ; ACL2 Version 8.0 -- A Computational Logic for Applicative Common Lisp
; Copyright (C) 2017, Regents of the University of Texas
; This version of ACL2 is a descendent of ACL2 Version 1.9, Copyright
; (C) 1997 Computational Logic, Inc. See the documentation topic NOTE-2-0.
; This program is free software; you can redistribute it and/or modify
; it under the terms of the LICENSE file distributed with ACL2.
; This program is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
; LICENSE for more details.
; Written by: Matt Kaufmann and J Strother Moore
; email: Kaufmann@cs.utexas.edu and Moore@cs.utexas.edu
; Department of Computer Science
; University of Texas at Austin
; Austin, TX 78712 U.S.A.
(in-package "ACL2")
(defmacro install-new-pc-meta-or-macro (command-type raw-name name formals doc body)
`(progn ,(pc-meta-or-macro-defun raw-name name formals doc body)
(add-pc-command ,name ',command-type)))
(defun define-pc-meta-or-macro-fn (command-type raw-name formals body)
(let ((name (make-official-pc-command raw-name)) )
`(install-new-pc-meta-or-macro ,command-type ,raw-name ,name
,formals
nil ; ,doc
,body)))
(defmacro define-pc-meta (raw-name formals &rest body)
(define-pc-meta-or-macro-fn 'meta raw-name formals body))
(defmacro define-pc-macro (raw-name formals &rest body)
(define-pc-meta-or-macro-fn 'macro raw-name formals body))
(defmacro define-pc-atomic-macro (raw-name formals &rest body)
(define-pc-meta-or-macro-fn 'atomic-macro raw-name formals body))
(defmacro toggle-pc-macro (name &optional new-tp)
(declare (xargs :guard (and (symbolp new-tp)
(or (null new-tp)
(member-equal (symbol-name new-tp)
'("MACRO" "ATOMIC-MACRO"))))))
`(toggle-pc-macro-fn ',(make-official-pc-command name) ',new-tp state))
(defmacro define-pc-primitive (raw-name formals &rest body)
; Define-pc-primitive defines a new primitive for the proof-builder. That
; primitive is always a function returning (mv pc-state state), where the
; (pc-value state-stack) has not been changed for state.
; Primitive command definitions should never look at the instruction field of
; the current state; see pc-primitive-defun-form.
; We generally rely in pc-single-step-primitive on the following property: a
; primitive leaves the top goal on the top of the :goals stack of the pc-state,
; adjusted as necessary, with its depends-on field reflecting all new subgoals
; added to that stack. However, if the top goal is proved and no forced
; hypotheses are stored in the tag tree (see pc-single-step-primitive), then we
; may drop a proved goal.
(let ((name (make-official-pc-command raw-name)))
`(progn
,(pc-primitive-defun-form raw-name name formals
nil ; doc
body)
(add-pc-command ,name 'primitive))))
(define-pc-primitive comment (&rest x)
(declare (ignore x))
(mv pc-state state))
(defun non-bounded-nums (nums lower upper)
(declare (xargs :guard (and (rationalp lower)
(rationalp upper)
(true-listp nums))))
(if (consp nums)
(if (and (integerp (car nums))
(<= lower (car nums))
(<= (car nums) upper))
(non-bounded-nums (cdr nums) lower upper)
(cons (car nums)
(non-bounded-nums (cdr nums) lower upper)))
nil))
(defun delete-by-position (lst current-index nums)
(declare (xargs :guard (and (true-listp nums)
(integerp current-index))))
(if (consp lst)
(if (member current-index nums)
(delete-by-position (cdr lst) (1+ current-index) nums)
(cons (car lst)
(delete-by-position (cdr lst) (1+ current-index) nums)))
nil))
(define-pc-primitive drop (&rest nums)
(if nums
(let ((bad-nums (non-bounded-nums nums 1 (length hyps))))
(if bad-nums
(print-no-change2 "The following are not in-range hypothesis numbers: ~&0."
(list (cons #\0 bad-nums)))
(mv (change-pc-state
pc-state
:goals
(cons (change goal (car goals)
:hyps (delete-by-position hyps 1 nums))
(cdr goals)))
state)))
(if hyps
(mv (change-pc-state
pc-state
:goals
(cons (change goal (car goals)
:hyps nil)
(cdr goals)))
state)
(print-no-change2 "There are no hypotheses to drop!"))))
(define-pc-meta lisp (form)
(cond ((not (f-get-global 'in-verify-flg state))
(er soft 'acl2-pc::lisp
"You may only invoke the proof-builder LISP command when ~
you are inside the interactive loop."))
((and (symbolp form)
(or (eq form t)
(eq form nil)
(keywordp form)))
(value form))
(t
(mv-let (erp stobjs-out/vals state)
; If a user stobj changes when running this command, should we issue a warning?
; We take the position that this is much like calling some flavor of trans-eval
; directly, since an arbitrary form is evaluated. But which flavor? The
; user-stobjs-modified warnings are heuristic in nature, so we choose to avoid
; them here if we are under an LD call that avoids them, since we expect that
; the preponderance of proof-checker invocations of the :lisp command will be
; at the top level inside a verify call.
(trans-eval-default-warning form :lisp state t)
(let ((stobjs-out (car stobjs-out/vals))
(vals (cdr stobjs-out/vals)))
(if (equal stobjs-out *error-triple-sig*)
(mv (or erp (car vals)) (cadr vals) state)
(mv erp vals state)))))))
(define-pc-primitive fail-primitive ()
(declare (ignore pc-state))
(mv nil state))
(define-pc-macro fail (&optional hard)
(if hard
(value '(lisp (mv hard nil state)))
(value 'fail-primitive)))
(define-pc-macro illegal (instr)
(pprogn (print-no-change "Illegal interactive instruction, ~x0.~% An instruction must be a ~
symbol or a proper list headed by a symbol."
(list (cons #\0 instr)))
(value :fail)))
(defun chk-assumption-free-ttree-1 (ttree ctx)
;; Same as chk-assumption-free-ttree, but returns a value.
(cond ((tagged-objectsp 'assumption ttree)
(er hard ctx
"The 'assumption ~x0 was found in the final ttree!"
(car (tagged-objects 'assumption ttree))))
((tagged-objectsp 'fc-derivation ttree)
(er hard ctx
"The 'fc-derivation ~x0 was found in the final ttree!"
(car (tagged-objects 'fc-derivation ttree))))
(t t)))
(defun put-cdr-assoc-query-id (id val alist)
(cond ((atom alist) (cons (cons id val) alist))
((eq id (caar alist)) (cons (cons id val) (cdr alist)))
(t (cons (car alist)
(put-cdr-assoc-query-id id val (cdr alist))))))
(defun set-query-val (id val state)
;; If val is 'toggle, then a NIL default is changed to T and every
;; other default is changed to NIL. Otherwise, VAL is the new default.
(let ((alist (ld-query-control-alist state)))
(set-ld-query-control-alist
(put-cdr-assoc-query-id
id
(if (eq val 'toggle)
(not (cdr-assoc-query-id id alist))
val)
alist)
state)))
(defmacro query-on-exit (&optional (val 'toggle))
`(set-query-val 'acl2-pc::exit ',val state))
(defun replay-query (state)
;; Returns a state-stack, T or NIL. A T value means we should replay instructions
;; in order to create the state-stack. A value of NIL means that we should exit
;; without creating the event (by making the state-stack nil).
;; In fact, the only time we return other than the current
;; state-stack is if we're inside verify and
;; either the query flag is off or the response is other than "Y".
(acl2-query 'acl2-pc::exit
'("~%Do you want to submit this event? Possible replies are:~%~
Y (Yes), R (yes and Replay commands), N (No, but exit), A (Abort exiting).~|~ "
:y :y :r :r :n :n :a :a)
nil state))
(define-pc-meta exit (&optional event-name rule-classes do-it-flg)
; We allow (exit .. nil ..) to indicate that information is to be picked up
; from the initial pc-state.
(if (not (f-get-global 'in-verify-flg state))
(er soft 'acl2-pc::exit
"You may not invoke the EXIT command unless inside the ~
interactive loop.")
(if args ; so it's not just a command to exit
(let* ((event-name-and-types-and-raw-term
(event-name-and-types-and-raw-term state-stack))
(event-name
(or event-name
(car event-name-and-types-and-raw-term)))
(instructions (instructions-of-state-stack state-stack nil)))
(er-let* ((event-name
(if event-name
(value event-name)
(pprogn (io? proof-builder nil state
nil
(fms0 "Please supply an event name (or :A to ~
abort)~%>> "))
(with-infixp-nil
(read-object *standard-oi* state))))))
(if (eq event-name :a)
(pprogn (io? proof-builder nil state
nil
(fms0 "~|Exit aborted.~%"))
(mv nil nil state))
(if (null (goals t))
(let* ((rule-classes (if (consp (cdr args))
rule-classes
(if (and (consp args)
(eq (car args) nil))
(cadr event-name-and-types-and-raw-term)
'(:rewrite))))
(event-form `(defthm ,event-name
,(caddr event-name-and-types-and-raw-term)
,@(if (equal rule-classes '(:rewrite))
nil
(list :rule-classes rule-classes))
:instructions ,instructions)))
(mv-let (erp stobjs-out/vals state)
(pprogn
(print-pc-defthm event-form state)
(mv-let (erp ans state)
(cond (do-it-flg (value :y))
((eq event-name t) (value :n))
(t (replay-query state)))
(declare (ignore erp))
(case ans
(:y (trans-eval-default-warning
event-form
'acl2-pc::exit
state
t))
(:r (pprogn (state-from-instructions
(caddr event-form)
event-name
rule-classes
instructions
'(signal value)
state)
(trans-eval-default-warning
event-form
'acl2-pc::exit
state
t)))
(:a (mv t '(nil . t) state))
(otherwise (mv t '(nil . nil) state)))))
; We assume here that if DEFTHM returns without error, then it succeeds.
(if (or erp (null (car stobjs-out/vals)))
(if (eq (cdr stobjs-out/vals) t)
(pprogn (io? proof-builder nil state
nil
(fms0 "~|Exit aborted.~%"))
(mv nil nil state))
(mv *pc-complete-signal* nil state))
(mv *pc-complete-signal* event-name state))))
; Otherwise, we have an incomplete proof.
(pprogn (io? proof-builder nil state
(instructions event-name-and-types-and-raw-term
state-stack)
(fms0 "~%Not exiting, as there remain unproved ~
goals: ~&0.~%The original goal is:~%~ ~ ~ ~
~ ~y1~| Here is the current instruction ~
list, starting with the first:~%~ ~ ~ ~ ~
~y2~|"
(list (cons #\0 (goal-names (goals t)))
(cons #\1 (caddr event-name-and-types-and-raw-term))
(cons #\2 instructions))))
(mv nil nil state))))))
(pprogn (io? proof-builder nil state
nil
(fms0 "~|Exiting....~%"))
(mv *pc-complete-signal* nil state)))))
(define-pc-meta undo (&optional n)
(if (and args
(not (and (integerp n)
(< 0 n))))
(pprogn (print-no-change
"The optional argument to undo must be a positive integer.")
(mv nil nil state))
(let ((m (min (or n 1) (1- (length state-stack)))))
(if (null (cdr state-stack))
(pprogn (print-no-change "Already at the start.")
(mv nil nil state))
(pprogn (pc-assign old-ss state-stack)
(io? proof-builder nil state
(state-stack m)
(fms0 "~|Undoing: ~y0~|"
(list (cons #\0
(access pc-state
(car (nthcdr (1- m) state-stack))
:instruction)))))
(pc-assign state-stack
(nthcdr m state-stack))
(if (consp (cdr (state-stack)))
state
(io? proof-builder nil state
nil
(fms0 "Back to the start.~%")))
(mv nil t state))))))
(define-pc-meta restore ()
(let ((old-ss (pc-value old-ss)))
(if (null old-ss)
(pprogn (io? proof-builder nil state
nil
(fms0 "~%Nothing to restore from!~%"))
(mv nil nil state))
(let ((saved-ss state-stack))
(pprogn (pc-assign state-stack old-ss)
(pc-assign old-ss saved-ss)
(mv nil t state))))))
(defun print-commands (indexed-instrs state)
(if (null indexed-instrs)
state
(if (null (caar indexed-instrs))
(io? proof-builder nil state
(indexed-instrs)
(fms0 (car (cdar indexed-instrs))
(cdr (cdar indexed-instrs))))
(pprogn (io? proof-builder nil state
(indexed-instrs)
(fms0 "~|~x0. ~y1~|"
(list (cons #\0 (caar indexed-instrs))
(cons #\1 (cdar indexed-instrs)))))
(print-commands (cdr indexed-instrs) state)))))
(defun make-pretty-start-instr (state-stack)
(let* ((triple (event-name-and-types-and-raw-term state-stack))
(name (car triple))
(types (cadr triple)))
(if name
(list "~|[started with (~x0 ~x1 ...)]~%"
(cons #\0 name)
(cons #\1 types))
(list "~|<< no event name specified at start >>~%"))))
(defun raw-indexed-instrs (start-index finish-index state-stack)
(declare (xargs :guard (and (integerp start-index)
(integerp finish-index)
(<= start-index finish-index)
(true-listp state-stack)
;; It's tempting to add the following guard, but
;; since state-stack keeps shrinking, it can get violated
;; on recursive calls.
;; (<= finish-index (length state-stack))
)))
(if (< start-index finish-index)
(cons (cons start-index (access pc-state (car state-stack) :instruction))
(raw-indexed-instrs (1+ start-index) finish-index (cdr state-stack)))
(if (cdr state-stack)
(list (cons start-index (access pc-state (car state-stack) :instruction)))
(list (cons nil (make-pretty-start-instr state-stack))))))
(define-pc-macro sequence-no-restore (instr-list)
(value `(sequence ,instr-list nil nil nil nil t)))
(define-pc-macro skip ()
(value '(sequence-no-restore nil)))
(defmacro define-pc-help (name args &rest body)
`(define-pc-macro ,name ,args ,@(butlast body 1)
(pprogn ,(car (last body))
(value 'skip))))
(defun evisc-indexed-instrs-1 (name rev-indexed-instrs)
(if (consp rev-indexed-instrs)
(let ((instr (cdr (car rev-indexed-instrs))))
(case-match instr
((comm ':end x . &)
(if (and (eq comm (make-pretty-pc-command :comment))
(equal x name))
rev-indexed-instrs
(evisc-indexed-instrs-1 name (cdr rev-indexed-instrs))))
(& (evisc-indexed-instrs-1 name (cdr rev-indexed-instrs)))))
nil))
(defun evisc-indexed-instrs-rec (rev-indexed-instrs)
(if (consp rev-indexed-instrs)
(let ((instr (cdr (car rev-indexed-instrs)))
(evisc-cdr (evisc-indexed-instrs-rec (cdr rev-indexed-instrs))))
(case-match instr
((comm ':begin name . &)
(if (eq comm (make-pretty-pc-command :comment))
(let ((rst (evisc-indexed-instrs-1 name evisc-cdr)))
(if rst
(cons (cons (car (car rev-indexed-instrs))
(cons "***HIDING***" instr))
(cdr rst))
(cons (car rev-indexed-instrs)
evisc-cdr)))
(cons (car rev-indexed-instrs)
evisc-cdr)))
(& (cons (car rev-indexed-instrs)
evisc-cdr))))
nil))
(defun mark-unfinished-instrs (indexed-instrs)
;; any "begin" in here was not matched with an "end"
(if (consp indexed-instrs)
(let ((instr (cdr (car indexed-instrs))))
(case-match instr
((comm ':begin & . &)
(if (eq comm (make-pretty-pc-command :comment))
(cons (cons (car (car indexed-instrs))
(cons "***UNFINISHED***" instr))
(mark-unfinished-instrs (cdr indexed-instrs)))
(cons (car indexed-instrs)
(mark-unfinished-instrs (cdr indexed-instrs)))))
(& (cons (car indexed-instrs)
(mark-unfinished-instrs (cdr indexed-instrs))))))
nil))
(defun evisc-indexed-instrs (indexed-instrs)
;; for now, returns a new state stack in which we drop bookends
;; (comment (begin <name>) ...)
;; (comment (end <name>) ...)
(mark-unfinished-instrs (reverse (evisc-indexed-instrs-rec (reverse indexed-instrs)))))
(define-pc-help commands (&optional n evisc-p)
(if (and n (not (and (integerp n) (> n 0))))
(io? proof-builder nil state
(n)
(fms0 "*** The first optional argument to the COMMANDS command must ~
be a positive integer, but ~x0 is not.~|"
(list (cons #\0 n))))
(let* ((indexed-instrs (raw-indexed-instrs 1
(if n
(min n (length state-stack))
(length state-stack))
state-stack)))
(print-commands (if evisc-p (evisc-indexed-instrs indexed-instrs) indexed-instrs)
state))))
(define-pc-macro comm (&optional n)
(value (list 'commands n t)))
(defun promote-guts (pc-state goals hyps x y no-flatten-flg)
(change-pc-state
pc-state
:goals
(cons (change goal (car goals)
:hyps (append hyps
(if no-flatten-flg
(list x)
(flatten-ands-in-lit x)))
:conc y)
(cdr goals))))
(define-pc-primitive promote (&optional do-not-flatten-flag)
(if current-addr
(print-no-change2 "You must be at the top ~
of the goal in order to promote the ~
antecedents of an implication. Try TOP first.")
(case-match conc
(('implies x y)
(mv (promote-guts pc-state goals hyps x y do-not-flatten-flag) state))
(('if x y *t*)
(mv (promote-guts pc-state goals hyps x y do-not-flatten-flag) state))
(& (print-no-change2 "The goal must be of the form ~x0 or ~x1."
(list (cons #\0 '(IMPLIES P Q))
(cons #\1 '(IF P Q T))))))))
(defun remove-by-indices (m indices lst)
;; (declare (xargs :guard (null (non-bounded-nums indices m (length lst)))))
;; this was ok for the original entry, but it's not preserved
(if (consp lst)
(if (member-equal m indices)
(remove-by-indices (1+ m) indices (cdr lst))
(cons (car lst) (remove-by-indices (1+ m) indices (cdr lst))))
nil))
;;; **** Should improve the following so that if form outputs a state or
;;; does return just one result, then fms0 isn't even called but instead
;;; an appropriate error message is printed.
(define-pc-macro print (form &optional without-evisc)
; NOTE: The saved-output mechanism described in the Essay on Saved-output won't
; work here, because there is no call of io?. We can't call io? because form
; is arbitrary and hence we cannot check its variables.
(let ((print-form `(fms0 "~|~y0~|" (list (cons #\0 ,form)))))
(value `(lisp ,(if without-evisc
`(without-evisc ,print-form)
print-form)))))
(defun bounded-integer-listp (i j lst)
;; If i is a non-integer, then it's -infinity.
;; If j is a non-integer, then it's +infinity.
(if (consp lst)
(and (integerp (car lst))
(if (integerp i)
(if (integerp j)
(and (<= i (car lst))
(<= (car lst) j))
(<= i (car lst)))
(<= (car lst) j)))
(null lst)))
(defun fetch-term-and-cl (term addr cl)
;; Returns the subterm of TERM at address ADDR paired with a list
;; containing the tests governing that occurrence of the subterm plus
;; the literals of the input CL. However, if CL is T then we simply
;; return (mv nil t) (see also below).
;; I've assumed that the address is a list of positive integers. If
;; the address is not valid for diving into TERM according to ADDR,
;; then we return (mv nil t). Notice that ADDR is expected to be in
;; the correct order, while CL is in reverse order and the extension
;; of CL returned in the second position is also in reverse order.
;; For the funny contrapositive subcase of IMPLIES, note that
;; (implies (implies (and u (not x)) (equal y1 y2))
;; (implies u (equal (implies y1 x) (implies y2 x))))
;; is a tautology. However, the corresponding fact does not hold in
;; general for IF; it depends on x being boolean.
(declare (xargs :guard (bounded-integer-listp 1 'infinity addr)))
(cond ((eq cl t)
(mv nil t))
((null addr)
(mv term cl))
((or (variablep term) (fquotep term))
;; can't dive any further
(mv nil t))
((and (integerp (car addr))
(< 0 (car addr))
(< (car addr) (length term)))
(case-match term
(('if t1 t2 t3)
(cond ((= 1 (car addr))
(fetch-term-and-cl t1 (cdr addr) cl))
((= 2 (car addr))
(fetch-term-and-cl t2 (cdr addr) (cons t1 cl)))
(t (fetch-term-and-cl t3 (cdr addr) (cons (dumb-negate-lit t1) cl)))))
(('implies t1 t2)
(cond ((= 1 (car addr))
(fetch-term-and-cl t1 (cdr addr) (cons (dumb-negate-lit t2) cl)))
(t
(fetch-term-and-cl t2 (cdr addr) (cons t1 cl)))))
(& (fetch-term-and-cl (nth (1- (car addr)) (fargs term)) (cdr addr) cl))))
(t
(mv nil t))))
(defun fetch-term (term addr)
;; causes hard error when appropriate
(mv-let (term cl)
(fetch-term-and-cl term addr nil)
(if (eq cl t)
(er hard 'fetch-term
"FETCH-TERM-AND-CL did not find a subterm of ~x0 at address ~x1."
term addr)
term)))
(defun governors (term addr)
(mv-let (term cl)
(fetch-term-and-cl term addr nil)
(declare (ignore term))
;; note that cl could be T rather than a list of governors
cl))
;;;;;;!!!!!!! I should generalize the following to arbitrary equivalence stuff.
(defun term-id-iff (term address iff-flg)
;; The property we want is that if one substitutes an equivalent subterm
;; of TERM at the given address (equivalent modulo the flag returned by
;; this function, that is), then the resulting term is equivalent modulo
;; the IFF-FLG argument to the original TERM. We assume that address is
;; a valid address for term. (*** This should really be a guard.)
(if (null address)
iff-flg
;; so, the term is a function application
(term-id-iff (nth (car address) term)
(cdr address)
(cond ((eq (ffn-symb term) (quote if))
(if (= (car address) 1)
t
iff-flg))
((member-eq (ffn-symb term) (quote (implies iff not)))
t)
(t
nil)))))
;; The way abbreviations will work is as follows. For input, an
;; abbreviation variable is to be thought of as a placeholder for
;; literal substitution (*before* translation!). It was tempting to
;; think of abbreviation variables as standing for something else only
;; when they're in variable position, but the problem with that
;; approach is that we can't tell about the position until we've done
;; the translation (consider macro calls that look at the first
;; character, say, for example). On a pragmatic (implementation)
;; level, it's hard to see how to implement a translator that
;; substitutes for abbreviation variables only when they're in
;; variable position, except by modifying translate. On the other
;; hand, for untranslation the specification is only that
;; (trans (untrans x)) = x, where here translation is with respect
;; to abbreviations. Notice though that this spec messes things
;; up, because if x is (quote &v) then untrans of that is still
;; (quote &v) but then trans would remove the &v, if we use sublis
;; to deal with abbreviations.
;; So, I think I'll implement abbreviations as follows. There will
;; be a new "macro":
;; (defmacro ? (x)
;; (cdr (assoc-eq x (abbreviations))))
;; Notice however that (abbreviations) generates a reference to
;; state, which isn't compatible with ? being a macro. So, I'll
;; stub it out:
(defmacro ? (x)
`(?-fn ',x))
(defstub ?-fn (x)
t)
;; Now, translation will be followed by an appropriate substitution.
;; For convenience, abbreviations will be turned into an alist whose
;; pairs are of the form ((&-fn 'var) . term).
(defun abbreviations-alist (abbreviations)
(if (consp abbreviations)
(cons (cons (fcons-term* '?-fn (kwote (caar abbreviations)))
(cdar abbreviations))
(abbreviations-alist (cdr abbreviations)))
nil))
(mutual-recursion
(defun chk-?s (term ctx state)
;; There shouldn't be any ?-fns in term.
(cond
((or (variablep term) (fquotep term))
(value nil))
((eq (ffn-symb term) '?-fn)
(case-match term
((& ('quote var))
(if (variablep var)
(er soft ctx "The variable ~x0 is not among the current abbreviations."
var)
(er soft ctx "Expected a variable in place of ~x0."
var)))
(& (value (er hard ctx "Bad call of ?-FN, ~x0. ?-FN must be called on the quotation of ~
a variable."
term)))))
((flambdap (ffn-symb term))
(er-progn (chk-?s (lambda-body (ffn-symb term)) ctx state)
(chk-?s-lst (fargs term) ctx state)))
(t (chk-?s-lst (fargs term) ctx state))))
(defun chk-?s-lst (term-lst ctx state)
(if (consp term-lst)
(er-progn (chk-?s (car term-lst) ctx state)
(chk-?s-lst (cdr term-lst) ctx state))
(value nil)))
)
(defun remove-?s (term abbreviations-alist ctx state)
(let ((newterm (sublis-expr abbreviations-alist term)))
(er-progn (chk-?s newterm ctx state)
(value newterm))))
(defun translate-abb (x abbreviations ctx state)
(mv-let
(erp term state)
(translate x t
; Since we only use this function in a logical context, we set
; logic-modep to t.
t t ctx (w state) state)
(if erp
(mv erp term state)
(remove-?s term (abbreviations-alist abbreviations) ctx state))))
(defmacro trans0 (x &optional abbreviations ctx)
`(translate-abb ,x ,abbreviations ,(or ctx ''trans0) state))
(defun p-body (conc current-addr abbreviations state)
(io? proof-builder nil state
(abbreviations current-addr conc)
(fms0 "~|~y0~|"
(list (cons #\0 (untrans0 (fetch-term conc current-addr)
(term-id-iff conc current-addr t)
abbreviations))))))
(define-pc-help p ()
(when-goals
(p-body (conc t) (current-addr t) (abbreviations t) state)))
(define-pc-help pp ()
(when-goals
(io? proof-builder nil state
(state-stack)
(fms0 "~|~y0~|"
(list (cons #\0 (fetch-term (conc t) (current-addr t))))))))
(defun take-by-indices (m indices lst)
;; (declare (xargs :guard (null (non-bounded-nums indices m (length lst)))))
;; this was ok for the original entry, but it's not preserved
(if (consp lst)
(if (member-equal m indices)
(cons (car lst) (take-by-indices (1+ m) indices (cdr lst)))
(take-by-indices (1+ m) indices (cdr lst)))
nil))
(defun print-hyps (indexed-hyps ndigits abbreviations state)
(declare (xargs :guard (and (eqlable-alistp indexed-hyps)
(integerp ndigits)
(> ndigits 0))))
(if (null indexed-hyps)
state
(pprogn (io? proof-builder nil state
(abbreviations ndigits indexed-hyps)
(fms0 "~c0. ~y1~|"
(list (cons #\0 (cons (caar indexed-hyps) ndigits))
(cons #\1 (untrans0 (cdar indexed-hyps) t abbreviations)))))
(print-hyps (cdr indexed-hyps) ndigits abbreviations state))))
(defun some-> (lst n)
;; says whether some element of lst exceeds n
(declare (xargs :guard (and (rational-listp lst)
(rationalp n))))
(if lst
(or (> (car lst) n)
(some-> (cdr lst) n))
nil))
(defun print-hyps-top (indexed-hyps abbreviations state)
(declare (xargs :guard (eqlable-alistp indexed-hyps)))
(if (null indexed-hyps)
(io? proof-builder nil state
nil
(fms0 "~|There are no top-level hypotheses.~|"))
(print-hyps indexed-hyps (if (some-> (strip-cars indexed-hyps) 9) 2 1)
abbreviations state)))
(defun print-governors-top (indexed-hyps abbreviations state)
(declare (xargs :guard (eqlable-alistp indexed-hyps)))
(if (null indexed-hyps)
(io? proof-builder nil state
nil
(fms0 "~|There are no governors.~|"))
(print-hyps indexed-hyps (if (some-> (strip-cars indexed-hyps) 9) 2 1)
abbreviations state)))
(defun pair-indices (seed indices lst)
;; Returns a list of indices paired with the corresponding (1-based) element of
;; lst when in range. Seed is a starting integer; we do things this way
;; because we want the result sorted (and hence want to recurse on lst).
(declare (xargs :guard (and (integerp seed)
(true-listp lst)
(bounded-integer-listp 1 (length lst) indices))))
(if lst
(let ((rest-lst
(pair-indices (1+ seed) indices (cdr lst))))
(if (member seed indices)
(cons (cons seed (car lst))
rest-lst)
rest-lst))
nil))
(define-pc-macro hyps (&optional hyps-indices govs-indices)
(when-goals-trip
(let* ((hyps (hyps t))
(len-hyps (length hyps))
(govs (and govs-indices;; for efficiency
(governors (conc t) (current-addr t))))
(len-govs (length govs))
(abbs (abbreviations t))
(hyps-indices (or hyps-indices
(null args))))
(cond
((not (or (eq hyps-indices t) (bounded-integer-listp 1 len-hyps hyps-indices)))
(pprogn
(io? proof-builder nil state
(len-hyps hyps-indices)
(fms0 "~|Bad hypothesis-list argument to HYPS, ~X0n. The ~
hypothesis-list argument should either be T or should be a ~
list of integers between 1 and the number of top-level ~
hypotheses, ~x1.~%"
(list (cons #\0 hyps-indices)
(cons #\n nil)
(cons #\1 len-hyps))))
(value :fail)))
((not (or (eq govs-indices t) (bounded-integer-listp 1 len-govs govs-indices)))
(pprogn
(io? proof-builder nil state
(len-govs govs-indices)
(fms0 "~|Bad governors-list argument to HYPS,~% ~X0n.~%The ~
governors-list argument should either be T or should be a ~
list of integers between 1 and the number of top-level ~
governors, ~x1."
(list (cons #\0 govs-indices)
(cons #\n nil)
(cons #\1 len-govs))))
(value :fail)))
((and (null hyps-indices) (null govs-indices))
(pprogn
(io? proof-builder nil state
nil
(fms0 "~|You have specified no printing of either hypotheses or ~
governors! Perhaps you should read the documentation for ~
the HYPS command.~|"))
(value :fail)))
(t
(let ((hyps-to-print
(if (eq hyps-indices t)
(count-off 1 hyps)
(pair-indices 1 hyps-indices hyps)))
(govs-to-print
(if (eq govs-indices t)
(count-off 1 govs)
(pair-indices 1 govs-indices govs))))
(pprogn
(if hyps-indices
(pprogn
(if (eq hyps-indices t)
(io? proof-builder nil state
nil
(fms0 "~|*** Top-level hypotheses:~|"))
(io? proof-builder nil state
nil
(fms0 "~|*** Specified top-level hypotheses:~|")))
(print-hyps-top hyps-to-print abbs state))
state)
(if govs-indices
(pprogn
(if (eq govs-indices t)
(io? proof-builder nil state
nil
(fms0 "~|~%*** Governors:~|"))
(io? proof-builder nil state
nil
(fms0 "~|~%*** Specified governors:~|")))
(print-governors-top govs-to-print abbs state))
state)
(value 'skip))))))))
(define-pc-primitive demote (&rest rest-args)
(cond
(current-addr
(print-no-change2 "You must be at the top of the conclusion in order to ~
demote hypotheses. Try TOP first."))
((null hyps)
(print-no-change2 "There are no top-level hypotheses."))
(t
(let ((badindices (non-bounded-nums rest-args 1 (length hyps))))
(if badindices
(print-no-change2 "The arguments to DEMOTE ~
must be indices of active top-level hypotheses, ~
but the following are not: ~&0."
(list (cons #\0 badindices)))
(mv (change-pc-state
pc-state
:goals
(cons (change goal (car goals)
:hyps (if rest-args
(remove-by-indices 1 rest-args hyps)
nil)
:conc (make-implication
(if rest-args
(take-by-indices 1 rest-args hyps)
hyps)
conc))
(cdr goals)))
state))))))
(defun pair-keywords (keywords lst)
(declare (xargs :guard (and (all-keywords-p keywords)
(keyword-value-listp lst))))
;; returns (mv alist rst)
(if (consp keywords)
(mv-let (alist rst)
(pair-keywords (cdr keywords) lst)
(let ((tail (assoc-keyword (car keywords) rst)))
(if tail
(mv (cons (cons (car tail) (cadr tail)) alist)
;; could use a remove1 version of the following, but who cares?
(remove-keyword (car keywords) rst))
(mv alist rst))))
(mv nil lst)))
(defun null-pool (pool)
(cond
((null pool) t)
((eq (access pool-element (car pool) :tag) 'being-proved-by-induction)
(null-pool (cdr pool)))
(t nil)))
(defun initial-pspv (term displayed-goal otf-flg ens wrld state splitter-output
orig-hints)
; This is close to being equivalent to a call (make-pspv ...). However, the
; splitter-output is supplied as a parameter here.
(change prove-spec-var *empty-prove-spec-var*
:rewrite-constant
(initial-rcnst-from-ens ens wrld state splitter-output)
:user-supplied-term term
:displayed-goal displayed-goal
:otf-flg otf-flg
:orig-hints orig-hints
))
(defun pc-prove (term displayed-goal hints otf-flg ens wrld ctx state)
; This is exactly the same as the ACL2 PROVE function, except that we allow
; :bye objects in the tag-tree, there is no checking of the load mode, and the
; warning above.
(prog2$
(initialize-brr-stack state)
(er-let* ((ttree
(let ((pspv (initial-pspv term displayed-goal otf-flg ens wrld
state
(splitter-output)
hints))
(clauses (list (list term))))
(if (f-get-global 'in-verify-flg state) ;interactive
(state-global-let*
((saved-output-p t)
(saved-output-token-lst :all))
(pprogn (f-put-global 'saved-output-reversed nil state)
(prove-loop clauses pspv hints ens wrld ctx state)))
(prove-loop clauses pspv hints ens wrld ctx state)))))
(er-progn
(chk-assumption-free-ttree ttree ctx state)
(value ttree)))))
(defun sublis-equal (alist tree)
(declare (xargs :guard (alistp alist)))
(let ((pair (assoc-equal tree alist)))
(if pair
(cdr pair)
(if (atom tree)
tree
(cons (sublis-equal alist (car tree))
(sublis-equal alist (cdr tree)))))))
(defun abbreviations-alist-? (abbreviations)
;; Same as abbreviations-alist, except that we assume that we
;; haven't translated yet, and hence we use ? instead of ?-fn
;; and we don't quote the variable.
(if (consp abbreviations)
(cons (cons (fcons-term* '? (caar abbreviations))
(cdar abbreviations))
(abbreviations-alist-? (cdr abbreviations)))
nil))
(defun find-?-fn (x)
;; x is not necessarily a term. Heuristically though it's useful
;; to be able to find all (?-fn var) subexpressions of x.
(if (atom x)
nil
(if (eq (car x) '?-fn)
(list (cadr x))
(union-equal (find-?-fn (car x))
(find-?-fn (cdr x))))))
(defun unproved-pc-prove-clauses (ttree)
(reverse-strip-cdrs (tagged-objects :bye ttree) nil))
(defun prover-call (comm term-to-prove rest-args pc-state state)
;; We assume that the :otf-flg and :hints "hints" are locally inside
;; a variable called rest-args, which in fact are the arguments to the
;; instruction being processed.
;; Returns an error triple (mv erp-flg ttree state).
(declare (xargs :guard (keywordp comm)))
(let ((prover-call-abbreviations (access pc-state pc-state :abbreviations))
(prover-call-wrld (w state)))
(let ((prover-call-pc-ens (make-pc-ens (access pc-state pc-state :pc-ens)
state)))
(mv-let (prover-call-pairs prover-call-tail)
(pair-keywords '(:otf-flg :hints) rest-args)
(if prover-call-tail
(pprogn
(print-no-change
"The only keywords allowed in the arguments to the ~x0 command ~
are :otf-flg and :hints. Your ~
instruction ~x1 violates this requirement."
(list (cons #\0 comm)
(cons #\1
(make-pretty-pc-instr (cons comm rest-args)))))
(mv t nil state))
(mv-let (prover-call-erp prover-call-hints state)
(let ((un-?-hints
(sublis-equal
;; *** someday I should do this all right
(abbreviations-alist-? prover-call-abbreviations)
(cdr (assoc-eq :hints prover-call-pairs)))))
(let ((?-exprs (find-?-fn un-?-hints)))
(if ?-exprs
(pprogn
(print-no-change
"You appear to have attempted to use the following ~
abbreviation variable~#0~[~/~/s~], which however ~
~#0~[~/is~/are~] not among ~
the current abbreviation variables (see SHOW-ABBREVIATIONS): ~&1."
(list (cons #\0 (zero-one-or-more (length ?-exprs)))
(cons #\1 ?-exprs)))
(mv t nil state))
(pprogn
(io? proof-builder nil state
nil
(fms0 "~|***** Now entering the theorem ~
prover *****~|"))
(translate-hints+
'proof-builder
un-?-hints
(default-hints prover-call-wrld)
comm
prover-call-wrld
state)))))
(if prover-call-erp
(pprogn (print-no-change
"Failed to translate hints successfully.")
(mv t nil state))
(let ((prover-call-otf-flg (cdr (assoc-eq :otf-flg prover-call-pairs))))
(mv-let (prover-call-erp prover-call-ttree state)
(pc-prove
term-to-prove
(untranslate term-to-prove t prover-call-wrld)
prover-call-hints prover-call-otf-flg
prover-call-pc-ens
prover-call-wrld
comm state)
(pprogn (io? proof-builder nil state
nil
(fms0 "~%"))
(if prover-call-erp
(pprogn (print-no-change "Proof failed.")
(mv t nil state))
(mv nil prover-call-ttree
state))))))))))))
(defun make-new-goals (cl-set goal-name start-index)
;; assumes that every member of CL-SET is a non-empty true list (should be a guard)
(if (consp cl-set)
(cons (make goal
:conc (car (last (car cl-set)))
:hyps (dumb-negate-lit-lst (butlast (car cl-set) 1))
:current-addr nil
:goal-name (cons goal-name start-index)
:depends-on 1)
(make-new-goals (cdr cl-set) goal-name (1+ start-index)))
nil))
(defun same-goal (goal1 goal2)
(and (equal (access goal goal1 :hyps)
(access goal goal2 :hyps))
(equal (access goal goal1 :conc)
(access goal goal2 :conc))))
(defun remove-byes-from-tag-tree (ttree)
(remove-tag-from-tag-tree :bye ttree))
(define-pc-primitive prove (&rest rest-args)
(cond
(current-addr
(print-no-change2 "The PROVE command should only be used at ~
the top. Use (= T) if that is what you want."))
((not (keyword-value-listp rest-args))
(print-no-change2 "The argument list for the PROVE command should ~
be empty or a list of even length with keywords in the odd ~
positions. See the documentation for examples and details."))
(t
(mv-let
(erp ttree state)
(prover-call
:prove (make-implication hyps conc) rest-args pc-state state)
(cond
(erp (mv nil state))
(t
(let* ((new-clauses
(unproved-pc-prove-clauses ttree))
(new-goals
(make-new-goals new-clauses goal-name depends-on))
(len-new-goals (length new-goals)))
(cond
((and (equal len-new-goals 1)
(same-goal (car new-goals)
(car goals)))
(print-no-change2 "Exactly one new goal was created by your PROVE ~
command, and it has exactly the same hypotheses ~
and conclusion as did the current goal."))
((tagged-objects 'assumption ttree)
; See the comment in define-pc-primitive about leaving the top goal on the top
; of the :goals stack.
(mv (change-pc-state
pc-state
:goals
(cons (change goal (car goals)
:conc *t*
:depends-on (+ (access goal (car goals)
:depends-on)
len-new-goals))
(append new-goals (cdr goals)))
:local-tag-tree
(remove-byes-from-tag-tree ttree))
state))
(t (mv (change-pc-state
pc-state
:goals
(append new-goals (cdr goals))
:local-tag-tree
(remove-byes-from-tag-tree ttree))
state))))))))))
(defun add-string-val-pair-to-string-val-alist-1 (key key1 val alist replace-p)
; Key is a string (typically a goal name) and key1 is a keyword (presumably a
; hint keyword). Alist associates keys (strings) with keyword alists.
; Associate key1 with val in the keyword alist associated with key, unless key1
; is already bound in that keyword alist. In that case, just return alist if
; replace-p is nil, else make the replacement.
(cond ((null alist) (list (list key key1 val)))
((and (stringp (caar alist))
(string-equal key (caar alist)))
(if (assoc-keyword key1 (cdar alist))
(if replace-p
(cons (list* (caar alist) key1 val
(remove-keyword key1 (cdar alist)))
(cdr alist))
alist)
(cons (list* (caar alist) key1 val (cdar alist))
(cdr alist))))
(t (cons (car alist)
(add-string-val-pair-to-string-val-alist-1
key key1 val (cdr alist) replace-p)))))
(defun add-string-val-pair-to-string-val-alist (key key1 val alist)
(add-string-val-pair-to-string-val-alist-1 key key1 val alist nil))
(defun add-string-val-pair-to-string-val-alist! (key key1 val alist)
(add-string-val-pair-to-string-val-alist-1 key key1 val alist t))
(defconst *bash-skip-forcing-round-hints*
'(("[1]Goal" :by nil)
("[1]Subgoal 1" :by nil)
("[1]Subgoal 2" :by nil)
("[1]Subgoal 3" :by nil)
("[1]Subgoal 4" :by nil)
("[1]Subgoal 5" :by nil)
("[1]Subgoal 6" :by nil)
("[1]Subgoal 7" :by nil)
("[1]Subgoal 8" :by nil)
("[1]Subgoal 9" :by nil)
("[1]Subgoal 10" :by nil)
("[1]Subgoal 11" :by nil)
("[1]Subgoal 12" :by nil)
("[1]Subgoal 13" :by nil)
("[1]Subgoal 14" :by nil)
("[1]Subgoal 15" :by nil)))
(define-pc-atomic-macro bash (&rest hints)
(if (alistp hints)
(value (list :prove :hints
(append
*bash-skip-forcing-round-hints*
(add-string-val-pair-to-string-val-alist
"Goal"
;; only preprocess and simplify are allowed
:do-not
(list 'quote '(generalize eliminate-destructors
fertilize
eliminate-irrelevance))
(add-string-val-pair-to-string-val-alist!
"Goal"
:do-not-induct
'proof-builder
hints)))
:otf-flg t))
(pprogn (print-no-change
"A BASH instruction must be of the form~%~ ~ ~
(:BASH (goal_name_1 ...) ... (goal_name_n ...)),~%and hence ~
your instruction,~%~ ~ ~x0,~%is not legal."
(list (cons #\0 (cons :bash hints))))
(value :fail))))
(define-pc-primitive dive (n &rest rest-addr)
(if (not (bounded-integer-listp 1 'infinity args))
(print-no-change2 "The arguments to DIVE must all be positive integers.")
(mv-let (subterm cl)
(fetch-term-and-cl (fetch-term conc current-addr) args nil)
(declare (ignore subterm))
(if (eq cl t)
(print-no-change2
"Unable to DIVE according to the address~%~ ~ ~y0."
(list (cons #\0 (cons n rest-addr))))
(mv (change-pc-state pc-state
:goals
(cons (change goal (car goals)
:current-addr
(append (access goal (car goals) :current-addr)
args))
(cdr goals)))
state)))))
; Keep this in sync with translate-in-theory-hint.
(define-pc-atomic-macro split ()
(value '(:prove :hints
(("Goal"
:do-not-induct proof-builder
:do-not '(generalize eliminate-destructors
fertilize eliminate-irrelevance)
:in-theory (theory 'minimal-theory))))))
(define-pc-primitive add-abbreviation (var &optional raw-term)
(mv-let (erp term state)
(if (cdr args)
(trans0 raw-term abbreviations :add-abbreviation)
(value (fetch-term conc current-addr)))
(cond
(erp (mv nil state))
((variablep var)
(if (assoc-eq var abbreviations)
(print-no-change2 "The abbreviation ~x0 has already been used, and stands for ~x1."
(list (cons #\0 var)
(cons #\1 (untrans0 (cdr (assoc-eq var abbreviations))))))
(mv (change-pc-state pc-state
:abbreviations
(cons (cons var term) abbreviations))
state)))
(t
(print-no-change2 "An abbreviation must be a variable, but ~x0 is not."
(list (cons #\0 var)))))))
(defun not-in-domain-eq (lst alist)
(declare (xargs :guard (if (symbol-listp lst)
(alistp alist)
(symbol-alistp alist))))
(if (consp lst)
(if (assoc-eq (car lst) alist)
(not-in-domain-eq (cdr lst) alist)
(cons (car lst)
(not-in-domain-eq (cdr lst) alist)))
nil))
(define-pc-primitive remove-abbreviations (&rest vars)
(if (null abbreviations)
(print-no-change2 "There are currently no abbreviations.")
(let ((badvars (and args (not-in-domain-eq vars abbreviations))))
(if (and args badvars)
(print-no-change2 "The variable~#0~[~/~/s~] ~&1 ~
~#0~[~/is not currently an abbreviation variable~/~
are not currently abbreviation variables~]."
(list (cons #\0 (zero-one-or-more (length badvars)))
(cons #\1 badvars)))
(mv (change-pc-state
pc-state
:abbreviations
(if args
(delete-assoc-eq-lst vars abbreviations)
nil))
state)))))
(defun print-abbreviations (vars abbreviations state)
;; Here abbreviations can contain junky pairs.
(declare (xargs :guard (and (true-listp vars)
(symbol-alistp abbreviations))))
(if (null vars)
state
(pprogn
(io? proof-builder nil state
nil
(fms0 "~%"))
(let ((pair (assoc-equal (car vars) abbreviations)))
(if (null pair)
;; then this pair is junk
(io? proof-builder nil state
(vars)
(fms0 "*** ~x0 does not abbreviate a term.~|"
(list (cons #\0 (car vars)))))
(let ((untrans-1 (untrans0 (cdr pair)))
(untrans-2 (untrans0 (cdr pair)
nil
(delete-assoc-eq (car pair) abbreviations))))
(pprogn
(io? proof-builder nil state
(pair)
(fms0 "(? ~x0) is an abbreviation for:~%~ ~ "
(list (cons #\0 (car pair)))))
(io? proof-builder nil state
(untrans-1)
(fms0 "~y0~|"
(list (cons #\0 untrans-1))
2))
(if (equal untrans-1 untrans-2)
state
(pprogn
(io? proof-builder nil state
nil
(fms0 "i.e. for~%~ ~ "))
(io? proof-builder nil state
(untrans-2)
(fms0 "~y0~|"
(list (cons #\0 untrans-2))
2))))))))
(print-abbreviations (cdr vars) abbreviations state))))
(define-pc-help show-abbreviations (&rest vars)
(if (null (abbreviations t))
(io? proof-builder nil state
nil
(fms0 "~|There are currently no abbreviations.~%"))
(print-abbreviations (or vars (strip-cars (abbreviations t))) (abbreviations t) state)))
(defun drop-from-end (n l)
(declare (xargs :guard (and (integerp n)
(not (< n 0))
(true-listp l)
(<= n (length l)))))
(take (- (length l) n) l))
(define-pc-primitive up (&optional n)
(let ((n (or n 1)))
(cond ((null current-addr)
(print-no-change2 "Already at the top."))
((not (and (integerp n) (> n 0)))
(print-no-change2 "If UP is supplied with an argument, it must be ~
a positive integer or NIL, unlike ~x0."
(list (cons #\0 n))))
((<= n (length current-addr))
(mv (change-pc-state pc-state
:goals
(cons (change goal (car goals)
:current-addr
(drop-from-end n current-addr))
(cdr goals)))
state))
(t
(print-no-change2 "Can only go up ~x0 level~#1~[~/~/s~]."
(list (cons #\0 (length current-addr))
(cons #\1 (zero-one-or-more (length current-addr)))))))))
(define-pc-atomic-macro top ()
(when-goals-trip
(let ((current-addr (current-addr t)))
(value (list :up (length current-addr))))))
(defmacro expand-address-recurse
(&key (ans '(cons (car addr) rest-addr))
(new-addr '(cdr addr))
(new-raw-term '(nth (car addr) raw-term))
(new-term '(nth (car addr) term))
(new-iff-flg 'nil)
(new-accumulated-addr-r '(cons (car addr) accumulated-addr-r)))
`(mv-let (erp rest-addr)
(expand-address
,new-addr ,new-raw-term ,new-term abbreviations ,new-iff-flg ,new-accumulated-addr-r
wrld)
(if erp
(mv erp rest-addr)
(mv nil ,ans))))
(defmacro dive-once-more-error ()
'(mv "When diving to subterm ~x0 using address ~x1, ~
the additional dive to ~x2 was impossible."
(list (cons #\0 raw-term)
(cons #\1 (reverse accumulated-addr-r))
(cons #\2 (car addr)))))
(defun abbreviation-raw-term-p (x)
(and (consp x)
(eq (car x) '?)))
(defmacro addr-recur (pos b)
`(if (integerp ,pos)
(mv-let (addr new-term new-iff-flg not-flg)
,b
(if (stringp addr)
(mv addr nil nil nil)
(mv (cons ,pos addr) new-term new-iff-flg not-flg)))
(if (eq ,pos 'not)
,(case-match b
(('mv 'nil x y 'nil)
`(mv nil ,x ,y t))
(&
'(mv "a NOT term unexpected by the code; sorry" nil nil nil)))
(mv ,pos nil nil nil))))
(defun or-addr (n term iff-flg)
; Warning: Keep this in sync with untranslate-or and its use in untranslate1.
; See and-addr, which has a corresponding spec except that it is applied to
; terms that untranslate as AND calls, where the present function is for OR
; instead.
(case-match term
(('if x1 x1 x2) ; see untranslate1
(prog2$
x1 ; otherwise we get a "not used" complaint
(cond ((int= n 1)
(mv "an ambiguous dive to first arg of an OR"
nil nil nil))
((int= n 2)
(addr-recur 3
(or-addr (1- n) x2 iff-flg)))
(t
(mv "an index that is out of range"
nil nil nil)))))
(('if x1 x2 *t*) ; see untranslate1
(cond ((int= n 1)
(cond ((ffn-symb-p x1 'not)
(mv '(1) x1 t t))
(t
(mv "an unexpected case of diving to first argument: for ~
an if-then-else term with THEN branch of nil, the ~
TEST was expected to be a call of NOT."
nil nil nil))))
(t
(addr-recur 2
(or-addr (1- n) x2 iff-flg)))))
(('if x1 *t* x2) ; see untranslate1
(cond ((int= n 1)
(mv '(1) x1 t nil))
(t
(addr-recur 3
(or-addr (1- n) x2 iff-flg)))))
(&
(cond ((int= n 1) ; presumably in a recursive call of this function
(mv nil term iff-flg nil))
(t
(mv "a non-IF term encountered when diving to the first argument ~
(perhaps because your DV argument was greater than the ~
number of disjuncts)."
nil nil nil))))))
(defun and-addr (n term iff-flg)
; Warning: Keep this in sync with untranslate-and and its use in untranslate1.
; We assume that term has already been abbreviated. To dive via n into the
; given translated term, which untranslates to an AND expression, we use the
; address returned by this function, dive-addr. This value is the first in the
; multiple values that we return: (mv dive-addr new-term new-iff-flg
; finish-not-p), where new-term and new-iff-flg are the term after the dive by
; addr, and finish-not-p is t if an additional dive into a NOT call is required
; for the corresponding untranslated term so that the result matches up with
; using dive-addr on the translated term. (That is, user should provide a next
; address of 1 after n so that the dive can be completed. The new-term
; returned here "assumes" that this further dive has already been done.)
(case-match term
(('if *t* x2 *nil*) ; see untranslate-and
(addr-recur 2
(and-addr n x2 iff-flg)))
(('if x1 x2 *nil*)
(cond ((and iff-flg (equal x2 *t*)) ; see untranslate-and
(addr-recur 1
(and-addr n x1 t)))
((int= n 1)
(mv '(1) x1 t nil))
(t
(addr-recur 2
(and-addr (1- n) x2 iff-flg)))))
(('if x1 *nil* x2)
(cond ((int= n 1)
(cond ((ffn-symb-p x1 'not)
(mv '(1) x1 t t))
(t
(mv "an unexpected case of diving to first argument: for ~
an if-then-else term with THEN branch of nil, the ~
TEST was expected to be a call of NOT"
nil nil nil))))
(t
(addr-recur 3
(and-addr (1- n) x2 iff-flg)))))
(&
(cond ((int= n 1) ; presumably in a recursive call of this function
(mv nil term iff-flg nil))
(t
(mv "a non-IF term encountered when diving to the first argument ~
(perhaps because your DV argument was greater than the ~
number of conjuncts)"
nil nil nil))))))
(table dive-into-macros-table nil nil
:guard
(and (symbolp key)
(or (and (function-symbolp val world)
; We can call key using ev-fncall-w in expand-address, so we had better be sure
; that the guard of ev-fncall-w will be satisfied.
(equal (stobjs-in val world) '(nil nil nil nil))
(not (assoc-eq val *ttag-fns-and-macros*))
; The following test is a bit too strong, since it fails to take into account
; temp-touchable-fns; see untouchable-fn-p. However, this drawback seems quite
; minor and it certainly does not affect soundness.
(not (member-eq val (global-val 'untouchable-fns world))))
(integerp val)
(null val))))
(defmacro add-dive-into-macro (name val)
`(table dive-into-macros-table ',name ',val))
(defmacro remove-dive-into-macro (name)
`(table dive-into-macros-table ',name nil))
(defun dive-into-macros-table (wrld)
(declare (xargs :guard (plist-worldp wrld)))
(table-alist 'dive-into-macros-table wrld))
(defun rassoc-eq-as-car (key alist)
(cond ((endp alist) nil)
((eq key (car (cdr (car alist))))
(car alist))
(t (rassoc-eq-as-car key (cdr alist)))))
(defconst *ca<d^n>r-alist*
; This alist can be constructed as follows in raw Lisp. Thus, it associates
; each legal cd..dr macro with the number of ds in its name.
; ? (loop for x in
; '(cadr cdar caar cddr
; caadr cdadr cadar cddar caaar cdaar caddr cdddr
; caaadr cadadr caadar caddar
; cdaadr cddadr cdadar cdddar
; caaaar cadaar caaddr cadddr
; cdaaar cddaar cdaddr cddddr)
; collect (cons x (- (length (symbol-name x)) 2)))
'((CADR . 2) (CDAR . 2) (CAAR . 2) (CDDR . 2)
(CAADR . 3) (CDADR . 3) (CADAR . 3) (CDDAR . 3)
(CAAAR . 3) (CDAAR . 3) (CADDR . 3) (CDDDR . 3)
(CAAADR . 4) (CADADR . 4) (CAADAR . 4) (CADDAR . 4)
(CDAADR . 4) (CDDADR . 4) (CDADAR . 4) (CDDDAR . 4)
(CAAAAR . 4) (CADAAR . 4) (CAADDR . 4) (CADDDR . 4)
(CDAAAR . 4) (CDDAAR . 4) (CDADDR . 4) (CDDDDR . 4)))
(defun car/cdr^n (n term)
; This function assumes that term is a nest of n or more nested calls of car
; and/or cdr, and returns the term obtained by stripping n such calls.
(cond
((zp n) term)
((or (variablep term)
; (fquotep term)
(not (member-eq (car term) '(car cdr))))
(er hard 'car/cdr^n
"Illegal call: ~x0.~|If you encountered this call in the ~
proof-builder, please contact the ACL2 implementors."
`(car/cdr^n ,n ,term)))
(t (car/cdr^n (1- n) (fargn term 1)))))
(defun expand-address (addr raw-term term abbreviations iff-flg
accumulated-addr-r wrld)
; This definition roughly parallels the definition of untranslate. It normally
; returns (mv nil new-addr), where new-addr is an address appropriate for
; diving into term that corresponds (in a translated setting) to use of the
; given addr to dive into raw-term (in an untranslated setting). However, this
; function can return (mv string fmt-alist) or (mv t hard-error) when there is
; an error. We keep accumulated-addr-r as the raw address already traversed,
; in reverse order, only for error messages.
; It's tempting to have a guard of (equal raw-term (untrans0 term iff-flg
; abbreviations)). We make some attempt to maintain this invariant.
(cond ((or (null addr)
(equal addr '(0)))
(mv nil nil))
((abbreviation-raw-term-p raw-term)
; The car of addr should be 0 or 1, but we forgivingly strip off whatever it
; is. By the way, it doesn't make a whole lot of sense for the cdr of addr to
; be anything other than nil (else why is dv being used?), but we won't enforce
; that here.
(let ((pair (assoc-eq (cadr raw-term) abbreviations)))
(if pair
(expand-address (cdr addr) (cdr pair) term
(remove1-equal pair abbreviations)
iff-flg
(cons (car addr) accumulated-addr-r)
wrld)
(mv t (er hard 'expand-address
"Found abbreviation variable ~x0 that is not in the ~
current abbreviations alist, ~x1."
(cadr raw-term) abbreviations)))))
((not (and (integerp (car addr))
(< 0 (car addr))))
(mv "All members of an address must be positive integers (except ~
that 0 is allowed in circumstances involving CASE, COND, and ~
abbreviations, which do not apply here). ~x0 violates this ~
requirement."
(list (cons #\0 (car addr)))))
((or (variablep raw-term)
(fquotep raw-term)
(not (< (car addr) (length raw-term))))
(dive-once-more-error))
((flambda-applicationp term)
; Raw-term is of the form
; (let ((var_0 term_0) ... (var_k-1 term_k-1)) body)
; and term is of the form
; ((lambda (var_0 ... var_k-1) body') term_0' ... term_k-1')
; where body' and termi' are the translation of body through termi,
; respectively. We cannot dive into the lambda, but we can dive into some
; term_i. So the DV command must be of the form (DV 1 n 1 . rest) for
; 0<=n<=k-1, which tells us to apply (DV . rest) after diving to term_n, which
; corresponds to position n+1 of the translated term.
(cond
((eql (car addr) 2)
(mv "Unable to dive to the body of a LET, which is really part of ~
the function symbol of the translated LAMBDA term."
nil))
((and (consp raw-term)
(eq (car raw-term) 'let) ; so we assume raw-term is well-formed
(>= (length addr) 3)
(eql (car addr) 1)
(natp (cadr addr))
(< (cadr addr) (length (cadr raw-term)))
(member (caddr addr) '(0 1)))
(cond ((eql (caddr addr) 0)
(mv "Unable to dive to a variable of a LET."
nil))
(t
(expand-address-recurse
:ans (cons (1+ (cadr addr)) rest-addr)
:new-addr (cdddr addr)
:new-raw-term (nth 1 (nth (cadr addr) (nth 1 raw-term)))
:new-term (nth (1+ (car addr)) term)
:new-accumulated-addr-r (cons (1+ (car addr))
accumulated-addr-r)))))
(t (mv "Unable to expand LAMBDA (LET) term."
nil))))
((atom raw-term)
(mv t (er hard 'expand-address
"Surprise! Found an unexpected raw-term atom, ~x0."
raw-term)))
(t
(let ((dive-fn
(cdr (assoc-eq (car raw-term)
(dive-into-macros-table wrld)))))
(cond
(dive-fn
(mv-let (erp val)
(ev-fncall-w dive-fn
(list (car addr) raw-term term wrld)
wrld nil nil t nil t)
(cond
((or erp (stringp (car val)))
(mv (car val) (cdr val)))
(t (expand-address-recurse
:ans (append val rest-addr)
:new-iff-flg nil
:new-term (fetch-term term val))))))
((or (eq (car term) 'list)
(let ((pair (rassoc-eq-as-car (car raw-term)
(untrans-table wrld))))
(and pair
(eql (arity (car pair) wrld) 2))))
; E.g., (append a b c d) is (binary-append a (binary-append b (binary-append c
; d))), so diving 3 into this (to c) generates address (2 2 1), but diving 4
; generates address (2 2 2), not (2 2 2 1).
(let* ((lst
(cond ((= (car addr) (1- (length raw-term)))
(make-list (1- (car addr)) :initial-element 2))
(t
(append (make-list (1- (car addr)) :initial-element 2)
'(1)))))
(subterm (fetch-term term lst)))
(if subterm
(expand-address-recurse
:ans (append lst rest-addr)
:new-iff-flg nil
:new-term subterm)
(dive-once-more-error))))
(t
(case
(car raw-term)
(list*
(let* ((lst (make-list (1- (car addr)) :initial-element 2))
(subterm (fetch-term term lst)))
(if subterm
(expand-address-recurse
:ans (append lst rest-addr)
:new-iff-flg nil
:new-term subterm)
(dive-once-more-error))))
(<=
; Note that (<= x y) translates to (not (< y x)).
(cond
((not (member (car addr) '(1 2)))
(dive-once-more-error))
((= (car addr) 1)
(expand-address-recurse
:ans (cons 1 (cons 2 rest-addr))
:new-iff-flg nil
:new-term (nth 2 (nth 1 term))))
(t ; (= (car addr) 2)
(expand-address-recurse
:ans (cons 1 (cons 1 rest-addr))
:new-iff-flg nil
:new-term (nth 1 (nth 1 term))))))
((and or)
(mv-let (and-or-addr new-term new-iff-flg finish-not-p)
(if (eq (car raw-term) 'and)
(and-addr (car addr)
(abbreviate term abbreviations)
iff-flg)
(or-addr (car addr)
(abbreviate term abbreviations)
iff-flg))
(cond
((stringp and-or-addr)
(mv "The dive via address ~x0 brings us to the ~x4 ~
term~%~ ~ ~y1,~|~%which translates to~%~ ~ ~
~y2.~|~%The requested dive into this ~x4 term ~
is problematic, because of ~@3. Try using ~
DIVE instead (after using PP to find the ~
appropriate address)."
(list (cons #\0 (reverse accumulated-addr-r))
(cons #\1 raw-term)
(cons #\2 term)
(cons #\3 and-or-addr)
(cons #\4 (car raw-term)))))
(finish-not-p
(cond
((and (cdr addr)
(int= (cadr addr) 1))
(expand-address-recurse
:ans (append and-or-addr rest-addr)
:new-addr (cddr addr)
:new-term new-term
:new-iff-flg new-iff-flg
:new-accumulated-addr-r
(cons 1 (cons (car addr) accumulated-addr-r))))
(t
(mv "The dive via address ~x0 apparently brings ~
us to the NOT term ~x1, which does not ~
actually exist in the internal syntax of the ~
current term, namely:~%~x2. Try using DIVE ~
instead (after using PP to find the ~
appropriate address)."
(list (cons #\0 (reverse (cons (car addr)
accumulated-addr-r)))
(cons #\1 (nth (car addr) raw-term))
(cons #\2 term))))))
(t
(expand-address-recurse
:ans (append and-or-addr rest-addr)
:new-term new-term
:new-iff-flg new-iff-flg)))))
(case
; For example,
; (case a (b c) (d e) ((f g) h) (otherwise k))
; translates to
; (IF (EQL A 'B)
; C
; (IF (EQL A 'D)
; E
; (IF (MEMBER A '(F G)) H K))) .
; So, we can only dive to addresses of the form (n 1 ...)
; and (n 0 ...), though the latter cases aren't too interesting.
; In the example above,
; (2 1 ...) gets us to c, which should generate (2)
; (3 1 ...) gets us to e, which should generate (3 2)
; (4 1 ...) gets us to h, which should generate (3 3 2)
; (5 1 ...) gets us to k, which should generate (3 3 3).
; (2 0 ...) gets us to b, which should generate (1 2)
; (3 0 ...) gets us to d, which should generate (3 1 2)
; (4 0 ...) gets us to (f g), which should generate (3 3 1 2)
; (5 0 ...) gets us to "otherwise", which is an error
(cond
((= (car addr) 1)
(mv "The dive via address ~x0 brings us to the CASE ~
term~%~ ~ ~x1,~%which corresponds to the translated ~
term~%~ ~ ~x2.~%A further dive to the first argument ~
doesn't really make sense here."
(list (cons #\0 (reverse accumulated-addr-r))
(cons #\1 raw-term)
(cons #\2 term))))
((not (and (consp (cdr addr))
(member-equal (cadr addr) '(0 1))))
(mv "The dive via address ~x0 brings us to the CASE ~
term~%~ ~ ~x1,~%A further dive past argument number ~
~x2 to the zeroth or first ``argument'' is required ~
at this point.~%"
(list (cons #\0 (reverse accumulated-addr-r))
(cons #\1 raw-term)
(cons #\2 (car addr)))))
((and (= (cadr addr) 0)
(= (car addr) (1- (length raw-term))))
(mv "The dive via address ~x0 brings us to the CASE ~
term~%~ ~ ~x1,~%A further dive to the ``otherwise'' ~
expression is not allowed."
(list (cons #\0 (reverse accumulated-addr-r))
(cons #\1 raw-term))))
(t
(let* ((lst (if (= (cadr addr) 1)
(if (= (car addr) (1- (length raw-term)))
(make-list (- (car addr) 2) :initial-element 3)
(append (make-list (- (car addr) 2)
:initial-element 3)
'(2)))
;; otherwise (car addr) is 0 and
;; (car addr) < (1- (length raw-term))
(append (make-list (- (car addr) 2)
:initial-element 3)
'(1 2))))
(subterm (fetch-term term lst)))
(if subterm
(expand-address-recurse
:ans (append lst rest-addr)
:new-addr (cddr addr)
:new-raw-term (cadr (nth (1+ (car addr)) raw-term))
:new-term subterm
:new-iff-flg iff-flg
:new-accumulated-addr-r (cons (car addr) (cons (cadr addr) accumulated-addr-r)))
(mv t
(er hard 'expand-address
"Surprise! Unable to dive into raw-term ~x0, which is term ~x1,
using list ~x2. So far we have DV-ed using ~x3."
raw-term
term
lst
(reverse accumulated-addr-r))))))))
(cond
; For example,
; (cond (a b) (c d) (e f) (t g))
; translates to
; (if a b (if c d (if e f g)))
; So, we can dive to addresses of the form (n 0 ...)
; and (n 1 ...).
; (1 0 ...) gets us to a, which should generate (1)
; (2 0 ...) gets us to c, which should generate (3 1)
; (3 0 ...) gets us to e, which should generate (3 3 1)
; (4 0 ...) gets us to t, which is not allowed.
; (1 1 ...) gets us to b, which should generate (2)
; (2 1 ...) gets us to d, which should generate (3 2)
; (3 1 ...) gets us to f, which should generate (3 3 2)
; (4 1 ...) gets us to g, which should generate (3 3 3)
(cond
((not (and (consp (cdr addr))
(member-equal (cadr addr) '(0 1))))
(mv "The dive via address ~x0 brings us to the COND term~%~ ~
~ ~x1,~%A further dive past argument number ~x2 to the ~
zeroth or first ``argument'' is required at this ~
point.~%"
(list (cons #\0 (reverse accumulated-addr-r))
(cons #\1 raw-term)
(cons #\2 (car addr)))))
((and (= (cadr addr) 0)
(= (car addr) (1- (length raw-term))))
(mv "The dive via address ~x0 brings us to the COND term~%~ ~
~ ~x1,~%A further dive to the ``T'' expression is not ~
allowed."
(list (cons #\0 (reverse accumulated-addr-r))
(cons #\1 raw-term))))
(t
(let* ((lst (if (= (cadr addr) 1)
(if (= (car addr) (1- (length raw-term)))
(make-list (1- (car addr)) :initial-element 3)
(append (make-list (1- (car addr))
:initial-element 3)
'(2)))
;; otherwise (cadr addr) is 0 and (car addr) < (1- (length raw-term))
(append (make-list (1- (car addr))
:initial-element 3)
'(1))))
(subterm (fetch-term term lst)))
(if subterm
(expand-address-recurse
:ans (append lst rest-addr)
:new-addr (cddr addr)
:new-raw-term (cadr (nth (1+ (car addr)) raw-term))
:new-term subterm
:new-iff-flg iff-flg
:new-accumulated-addr-r (cons (car addr) (cons (cadr addr) accumulated-addr-r)))
(mv t
(er hard 'expand-address
"Surprise! Unable to dive into raw-term ~x0, ~
which is term ~x1, using list ~x2. So far we ~
have DV-ed using ~x3."
raw-term
term
lst
(reverse accumulated-addr-r))))))))
(if
(expand-address-recurse
:new-iff-flg (if (= (car addr) 1) t iff-flg)))
((implies iff)
(expand-address-recurse :new-iff-flg t))
(t
(let ((pair (and (consp raw-term)
(assoc-eq (car raw-term) *ca<d^n>r-alist*))))
(cond
(pair
(expand-address-recurse
:ans (append (make-list (cdr pair)
:initial-element 1)
rest-addr)
:new-term (car/cdr^n (cdr pair) term)))
(t (expand-address-recurse))))))))))))
(defmacro dv-error (str alist)
`(pprogn (print-no-change
(string-append "Unable to perform the requested dive.~|~%" ,str)
; We could print the current term using ~xt in the string above, but that
; appears to be distracting in the error message.
(cons (cons #\t current-term) ,alist))
(mv t nil state)))
(define-pc-atomic-macro dv (&rest rest-args)
(let* ((conc (conc t))
(current-addr (current-addr t))
(abbreviations (abbreviations t))
(current-term (fetch-term conc current-addr))
(term-id-iff (term-id-iff conc current-addr t)))
(mv-let (erp addr)
;; If erp is not nil, then it's a string explaining why DV failed,
;; and then addr is a list of args for that string (except #\t is
;; associated with 'current-term).
(expand-address rest-args
(untrans0 current-term
term-id-iff
abbreviations)
current-term
abbreviations
term-id-iff
nil
(w state))
(if erp
(dv-error erp addr)
(mv nil (cons ':dive addr) state)))))
(mutual-recursion
(defun deposit-term (term addr subterm)
;; Puts subterm at address addr in term. Assumes that error checking is
;; not necessary, i.e. that addr is given correctly relative to term,
(cond ((null addr) subterm)
(t
(cons-term (ffn-symb term)
(deposit-term-lst (fargs term) (car addr) (cdr addr) subterm)))))
(defun deposit-term-lst (lst n addr subterm)
;; This simply puts (deposit-term term addr subterm) in place of the nth
;; element, term, of lst, but avoids consing up the unchanged tail.
(cond ((= 1 n)
(cons (deposit-term (car lst) addr subterm) (cdr lst)))
(t (cons (car lst) (deposit-term-lst (cdr lst) (1- n) addr subterm)))))
)
;; Suppose that we want to make congruence-based substitution. Here
;; is the plan. Then (unless the congruence is equality) we need to
;; make sure that wherever the substitution is to be made, the
;; congruence relation is enough to preserve the geneqv at the current
;; subterm. The following function actually returns a list of congruence
;; rules.
(defun geneqv-at-subterm (term addr geneqv pequiv-info ens wrld)
; Address is a valid address for the term, term. This function returns a
; geneqv g such that if one substitutes a subterm u of term at the given
; address such that (g term u), resulting in a term term', then (geneqv term
; term'). As usual, we may return nil for to represent the geneqv for equal.
(cond ((null addr)
geneqv)
(t
(let ((child-geneqv0
(nth (1- (car addr))
; It seems inefficient to compute the entire geneqv-lst, but we prefer not to
; write a separate function to obtain just the nth element of that list.
(geneqv-lst (ffn-symb term) geneqv ens wrld))))
(mv-let
(deep-pequiv-lst shallow-pequiv-lst)
(pequivs-for-rewrite-args (ffn-symb term) geneqv pequiv-info wrld
ens)
(mv-let
(pre-rev cur/post)
(split-at-position (car addr) (fargs term) nil)
(mv-let
(child-geneqv child-pequiv-info)
(geneqv-and-pequiv-info-for-rewrite
(ffn-symb term)
(car addr)
pre-rev cur/post
nil ; alist for cur/post (and, pre-rev in this case)
geneqv child-geneqv0
deep-pequiv-lst shallow-pequiv-lst
wrld)
(geneqv-at-subterm (car cur/post)
(cdr addr)
child-geneqv child-pequiv-info
ens wrld))))))))
(defun geneqv-at-subterm-top (term addr ens wrld)
(geneqv-at-subterm term addr *geneqv-iff* nil ens wrld))
;; In the following we want to know if every occurrence of old in term
;; is at a position at which substitution by something EQUIV to old
;; will guarantee a result that is GENEQV to term.
; (mutual-recursion
;
; (defun subst-expr1-okp (old term equiv geneqv ens wrld)
; (cond ((equal term old)
; (geneqv-refinementp equiv geneqv wrld))
; ((variablep term) t)
; ((fquotep term) t)
; (t (subst-expr1-ok-listp old (fargs term)
; (geneqv-lst (ffn-symb term) geneqv ens wrld)
; equiv ens wrld))))
;
; (defun subst-expr1-ok-listp (old args equiv geneqv-lst ens wrld)
; (cond ((null args) nil)
; (t (and (subst-expr1-okp
; old (car args) equiv (car geneqv-lst) ens wrld)
; (subst-expr1-ok-listp
; old (cdr args) equiv (cdr geneqv-lst) ens wrld)))))
;
;
; )
;; **** Need to think about what happens if we, e.g., substitute T for X
;; inside (equal X T). Probably that's OK -- but also, consider allowing
;; an equivalence relation as an argument. One would have to check that
;; the relation is OK in at the current address, and then one would use
;; that relation instead of equal to create the proof obligation. Also,
;; consider special handling for IFF in the case that it's (IFF ... T),
;; so that we can simulate pc-nqthm's PUSH command.
;; ****** give a warning if the term to be replaced doesn't occur in the
;; current subterm
;; The following are adapted from ACL2 definitions of subst-expr1 and
;; subst-expr1-lst. Note that the parameter `new' has been dropped,
;; but the given and current equivalence relations have been added.
(defun maybe-truncate-current-address (addr term orig-addr acc state)
;; Truncates the current address if it tries to dive into a quotep.
;; Here orig-addr is the original address (used for the warning message)
;; and acc is the accumulated new address (in reverse order).
(declare (xargs :guard (true-listp addr)))
(if addr
(cond
((variablep term)
(mv (er hard 'maybe-truncate-current-address
"Found variable with non-NIL address!")
state))
((fquotep term)
(let ((new-addr (reverse acc)))
(pprogn (io? proof-builder nil state
(new-addr orig-addr)
(fms0 "~|NOTE: truncating current address from ~x0 to ~
~x1. See explanation at end of help for X ~
command.~|"
(list (cons #\0 orig-addr)
(cons #\1 new-addr))
0 nil))
(mv new-addr state))))
(t
(maybe-truncate-current-address
(cdr addr) (nth (1- (car addr)) (fargs term))
orig-addr (cons (car addr) acc) state)))
(mv (reverse acc) state)))
(defun deposit-term-in-goal (given-goal conc current-addr new-term state)
;; state is passed in so that maybe-truncate-current-address can
;; print a warning message if appropriate
(let ((new-conc (deposit-term conc current-addr new-term)))
(if (quotep new-term)
(mv-let (new-current-addr state)
(maybe-truncate-current-address
current-addr new-conc current-addr nil state)
(mv (change goal given-goal
:conc
new-conc
:current-addr
new-current-addr)
state))
(mv (change goal given-goal
:conc
new-conc)
state))))
(defun split-implies (term)
;; returns hyps and conc for term, e.g.
;; (implies x y) --> (mv (list x) y),
;; (implies x (implies (and y z)) w) --> (mv (list x y z) w), and
;; (foo 3) --> (mv nil (foo 3))
(if (not (ffn-symb-p term 'implies))
(mv nil term)
(mv-let (h c)
(split-implies (fargn term 2))
(mv (append (flatten-ands-in-lit (fargn term 1)) h) c))))
(defun find-equivalence-hyp-term (term hyps target equiv w)
;; allows backchaining through IMPLIES
(if (consp hyps)
(mv-let (h c)
(split-implies (car hyps))
(if (or (variablep c)
(fquotep c)
(not (symbolp (ffn-symb c)))
(not (refinementp (ffn-symb c) equiv w)))
(find-equivalence-hyp-term term (cdr hyps) target equiv w)
(let ((x (fargn c 1))
(y (fargn c 2)))
(or
(and (subsetp-equal h hyps)
(or (and (equal x term)
(equal y target))
(and (equal y term)
(equal x target))))
(find-equivalence-hyp-term term (cdr hyps) target equiv w)))))
nil))
(defun flatten-ands-in-lit-lst (x)
(if (endp x)
nil
(append (flatten-ands-in-lit (car x))
(flatten-ands-in-lit-lst (cdr x)))))
(define-pc-primitive equiv (x y &optional equiv)
(mv-let
(current-term governors)
(fetch-term-and-cl conc current-addr nil)
(cond
((eq governors t)
(mv (er hard ':=
"Found governors of T inside command ~x0!"
(cons := args))
state))
(t
(let* ((assumptions (append hyps governors))
(w (w state))
(pc-ens (make-pc-ens pc-ens state)))
(mv-let
(erp new-pc-state state)
(er-let*
((old (trans0 x abbreviations :equiv))
(new (trans0 y abbreviations :equiv))
(equiv (if (null equiv)
(value 'equal)
(if (equivalence-relationp equiv w)
(value equiv)
(er soft :equiv
"The name ~x0 is not currently the name of an ACL2 ~
equivalence relation. The current list of ~
ACL2 equivalence relations is ~x1."
equiv
(getpropc 'equal 'coarsenings nil w))))))
(if (find-equivalence-hyp-term old
(flatten-ands-in-lit-lst assumptions)
new equiv w)
(mv-let (hitp new-current-term new-ttree)
(subst-equiv-expr1 equiv new old
(geneqv-at-subterm-top conc current-addr pc-ens w)
current-term pc-ens w state nil)
(if hitp
(mv-let
(new-goal state)
(deposit-term-in-goal
(car goals) conc current-addr new-current-term state)
(value (change-pc-state
pc-state
:local-tag-tree
new-ttree
:goals
(cons new-goal (cdr goals)))))
(pprogn
(print-no-change
"The equivalence relation that you specified, namely ~x0, is ~
not appropriate at any occurrence of the ``old'' term ~x1 ~
inside the current term, and hence no substitution has ~
been made."
(list (cons #\0 equiv)
(cons #\1 x)))
(value nil))))
(pprogn
(print-no-change
"The ~#2~[equivalence~/equality~] of the terms ~x0 and ~x1~#2~[ with respect ~
to the equivalence relation ~x3~/~] is not known at the ~
current subterm from the current hypotheses and governors."
(list (cons #\0 x)
(cons #\1 y)
(cons #\2 (if (eq equiv 'equal) 1 0))
(cons #\3 equiv)))
(value nil))))
(if erp
(print-no-change2 "EQUIV failed.")
(mv new-pc-state state))))))))
(define-pc-primitive casesplit
(expr &optional use-hyps-flag do-not-flatten-flag)
(mv-let
(erp term state)
(trans0 expr abbreviations :casesplit)
(if erp
(print-no-change2 "~x0 failed."
(list (cons #\0 (cons :casesplit args))))
(let ((claimed-term
(if use-hyps-flag
(mv-let
(current-term governors)
(fetch-term-and-cl conc current-addr nil)
(declare (ignore current-term))
(cond
((eq governors t)
(er hard ':casesplit
"Found governors of T inside command ~x0!"
(cons :casesplit args)))
(governors
(fcons-term* 'implies (conjoin governors) term))
(t term)))
term)))
(mv (change-pc-state
pc-state
:goals
(cons (change goal (car goals)
:hyps (append hyps
(if do-not-flatten-flag
(list claimed-term)
(flatten-ands-in-lit claimed-term)))
:depends-on (1+ depends-on))
(cons (change goal (car goals)
:hyps (append
hyps
(if do-not-flatten-flag
(list (dumb-negate-lit
claimed-term))
(flatten-ands-in-lit
(dumb-negate-lit claimed-term))))
:goal-name (cons goal-name depends-on)
:depends-on 1)
(cdr goals))))
state)))))
;;(defconst *pc-catch-all-tag* :pc-catch-all-tag)
(define-pc-macro top? ()
(when-goals-trip
(if (current-addr t)
(value 'top)
(value 'skip))))
(define-pc-macro contrapose-last ()
(when-goals-trip
(let ((hyps (hyps)))
(if (null hyps)
(pprogn (print-no-change "CONTRAPOSE-LAST failed -- no top-level hypotheses!")
(value :fail))
(value (list :contrapose (length hyps)))))))
(define-pc-macro drop-last ()
(when-goals-trip
(let ((hyps (hyps)))
(if (null hyps)
(pprogn (print-no-change "DROP-LAST failed -- no top-level hypotheses!")
(value :fail))
(value (list :drop (length hyps)))))))
(define-pc-macro drop-conc ()
(value `(do-strict top? contrapose-last drop-last)))
(define-pc-atomic-macro claim (expr &rest rest-args)
(when-goals-trip
(value
(let ((rest-args-1 (if (and rest-args
(car rest-args)
(not (keywordp (car rest-args))))
(list* :hints :none (cdr rest-args))
rest-args)))
(mv-let (pairs remaining-rest-args)
(pair-keywords '(:do-not-flatten) rest-args-1)
(let ((do-not-flatten-flag (cdr (assoc-eq :do-not-flatten pairs)))
(temp (cadr (member-eq :hints rest-args-1))))
(if (and temp (atom temp))
`(protect
(casesplit ,expr nil ,do-not-flatten-flag)
change-goal
drop-conc
pro
change-goal)
`(protect
(casesplit ,expr nil ,do-not-flatten-flag)
change-goal
drop-conc
(prove ,@remaining-rest-args)))))))))
(define-pc-atomic-macro induct (&optional raw-term)
(when-goals-trip
(if (and (goals t)
(current-addr t))
(pprogn (print-no-change
"You must be at the top of the goal in order to use the ~
INDUCT command. Try TOP first.")
(value :fail))
(let ((raw-term (or raw-term t)))
(value `(prove :hints
(("Goal" :induct ,raw-term
:do-not-induct proof-builder
:do-not *do-not-processes*))))))))
(defun print-on-separate-lines (vals evisc-tuple chan state)
(declare (xargs :guard (true-listp vals)))
(if (null vals)
(newline chan state)
(pprogn (io? proof-builder nil state
(evisc-tuple chan vals)
(fms "~x0" (list (cons #\0 (car vals))) chan state
evisc-tuple))
(print-on-separate-lines (cdr vals) evisc-tuple chan state))))
(define-pc-help goals ()
(io? proof-builder nil state
(state-stack)
(when-goals
(print-on-separate-lines (goal-names (goals t)) nil (proofs-co state)
state))))
(defun modified-error-triple-for-sequence (erp val success-expr state)
(mv-let (new-erp stobjs-out-and-vals state)
(state-global-let*
((pc-erp erp)
(pc-val val))
(trans-eval-default-warning success-expr :sequence state t))
; Note: Success-expr is typically an expression involving STATE, which
; accesses erp and val via (@ erp) and (@ val). It may modify STATE.
; It may, indeed, talk about single-threaded objects! It may even
; modify them, leaving their modified values in the modified state.
; But it is expected to return at least two results, and the first two
; must not be stobjs.
(let ((stobjs-out (car stobjs-out-and-vals))
(vals (cdr stobjs-out-and-vals)))
(if new-erp
(mv new-erp nil state)
(if (or (< (length stobjs-out) 2)
(car stobjs-out)
(cadr stobjs-out))
(pprogn (io? proof-builder nil state
(vals success-expr)
(fms0 "~|WARNING -- evaluation of ~
`success-expr' argument to ~
:SEQUENCE, ~x0, has been ~
ignored because it returned a ~
single-threaded object in one ~
of its first two values or ~
returned fewer than two values. ~
The value(s) returned was ~
(were):~%~ ~ ~x1.~%"
(list (cons #\0 success-expr)
(cons #\2 vals))))
(mv erp val state))
(mv (car vals) (cadr vals) state))))))
(define-pc-meta sequence
(instr-list &optional
strict-flg protect-flg success-expr no-prompt-flg no-restore-flg)
;; Note: the reason I use state globals instead of a lexical LET for
;; the success-expr argument is that I don't want to worry about the
;; translator failing because erp and val aren't declared ignored when
;; they should be.
;; This is the only place where the pc-prompt gets lengthened.
;; Also note that we always lengthen the prompt, but we only do the printing
;; if no-prompt-flg is nil AND pc-print-prompt-and-instr-flg is non-nil.
(if (not (true-listp instr-list))
(pprogn (print-no-change
"The first argument to the SEQUENCE command must be ~
a true list, but~%~ ~ ~x0~| is not."
(list (cons #\0 instr-list)))
(mv t nil state))
(state-global-let*
((pc-prompt (string-append (pc-prompt-depth-prefix)
(pc-prompt))))
(let ((saved-old-ss (old-ss))
(saved-ss (state-stack)))
(mv-let (erp val state)
(pc-main-loop instr-list
(if strict-flg '(signal value) '(signal))
t
(and (null no-prompt-flg)
(pc-print-prompt-and-instr-flg))
state)
(mv-let (erp val state)
(if success-expr
(modified-error-triple-for-sequence erp val success-expr state)
(mv erp val state))
(if (and protect-flg
(or erp (null val)))
(pprogn (print-no-change
"SEQUENCE failed, with protection on. ~
Reverting back to existing state of the ~
proof-builder.~|")
;; **** consider improving message above, say by printing
;; entire instruction with appropriate evisceration
(pc-assign state-stack saved-ss)
(pc-assign old-ss saved-old-ss)
(mv erp val state))
(pprogn (if no-restore-flg
state
(pc-assign old-ss saved-ss))
(mv erp val state)))))))))
(define-pc-macro negate (&rest instr-list)
(value (list :sequence instr-list nil nil
'(mv nil
(if (or (f-get-global 'pc-erp state)
(null (f-get-global 'pc-val state)))
t
nil)))))
(define-pc-macro succeed (&rest instr-list)
;; I won't make this atomic, since I view this as just a sequencer
;; command that should ultimately "disappear" in favor of its arguments.
(mv nil
(list :sequence
instr-list nil nil '(mv nil t))
state))
(define-pc-macro do-all (&rest instr-list)
(mv nil (list :sequence instr-list)
state))
(define-pc-macro do-strict (&rest instr-list)
(mv nil (list :sequence instr-list t)
state))
(define-pc-macro do-all-no-prompt (&rest instr-list)
(mv nil (list :sequence instr-list nil nil nil t t)
state))
(define-pc-macro th (&optional hyps-indices govs-indices)
(declare (ignore hyps-indices govs-indices))
(when-goals-trip
(value `(do-all-no-prompt (hyps ,@args)
(lisp (io? proof-builder nil state
nil
(fms0 "~%The current subterm is:~%")))
p))))
(define-pc-macro protect (&rest instr-list)
(mv nil (list :sequence instr-list t t) state))
(defun extract-goal (name goals)
;; returns (goal rest-goals) if goal is found, else (nil ...).
(if (consp goals)
(if (equal (access goal (car goals) :goal-name) name)
(mv (car goals) (cdr goals))
(mv-let (goal rest-goals)
(extract-goal name (cdr goals))
(mv goal (cons (car goals) rest-goals))))
(mv nil goals)))
(define-pc-primitive change-goal (&optional name end-flg)
(cond
((null goals)
(pprogn (print-all-goals-proved-message state)
(mv nil state)))
((null (cdr goals))
(print-no-change2 "The current goal is the only unproved goal."))
((null name)
(pprogn (io? proof-builder nil state
(goals)
(fms0 "~|Now proving ~X0n.~%"
(list (cons #\0 (access goal (cadr goals) :goal-name))
(cons #\n nil))))
(mv (change-pc-state pc-state
:goals
(if end-flg
(cons (cadr goals)
(append (cddr goals) (list (car goals))))
(list* (cadr goals) (car goals) (cddr goals))))
state)))
((equal name goal-name)
(print-no-change2 "The current goal is already ~x0."
(list (cons #\0 name))))
(t
(mv-let (gl rest-goals)
(extract-goal name (cdr goals))
(if gl
(mv (change-pc-state pc-state
:goals
(if end-flg
(cons gl (append rest-goals (list (car goals))))
(cons gl (cons (car goals) rest-goals))))
state)
(print-no-change2 "There is no unproved goal named ~x0."
(list (cons #\0 name))))))))
(define-pc-macro cg (&optional name)
(value `(change-goal ,name t)))
(defun change-by-position (lst index new)
(declare (xargs :guard (and (true-listp lst)
(integerp index)
(<= 0 index)
(< index (length lst)))))
(if (equal index 0)
(cons new (cdr lst))
(cons (car lst)
(change-by-position (cdr lst) (1- index) new))))
(define-pc-primitive contrapose (&optional n)
(let ((n (if args n 1)))
(if hyps
(if current-addr
(print-no-change2 "You must be at the top of the conclusion to apply ~
the CONTRAPOSE command. Try TOP first.")
(if (and (integerp n) (< 0 n) (<= n (length hyps)))
(mv (change-pc-state
pc-state
:goals
(cons (change goal (car goals)
:hyps (change-by-position hyps (1- n) (dumb-negate-lit conc))
:conc (dumb-negate-lit (nth (1- n) hyps)))
(cdr goals)))
state)
(print-no-change2 "The argument to CONTRAPOSE must be a positive integer ~
that does not exceed the length of the list of top-level ~
hypotheses. The argument ~x0 fails to meet this requirement."
(list (cons #\0 n)))))
(print-no-change2 "There are no top-level hypotheses."))))
(define-pc-macro contradict (&optional n)
(declare (ignore n))
(value (cons :contrapose args)))
(define-pc-atomic-macro pro ()
(value '(quiet (repeat promote))))
(define-pc-atomic-macro nx ()
(when-goals-trip
(let ((current-addr (current-addr t)))
(if current-addr
(value `(protect up ,(1+ (car (last current-addr)))))
(pprogn (print-no-change "NX failed: already at the top!")
(value :fail))))))
(define-pc-atomic-macro bk ()
(when-goals-trip
(let ((current-addr (current-addr t)))
(if current-addr
(let ((n (car (last current-addr))))
(if (equal n 1)
(pprogn (print-no-change "BK failed: already at the first argument!")
(value :fail))
(value `(do-strict up ,(1- n)))))
(pprogn (print-no-change "BK failed: already at the top!")
(value :fail))))))
(define-pc-help p-top ()
(when-goals
(let ((conc (conc t))
(current-addr (current-addr t))
(stars (intern$ "***" (f-get-global 'current-package state))))
(io? proof-builder nil state
(state-stack current-addr conc stars)
(fms0 "~|~y0~|"
(list (cons #\0
(untrans0
(deposit-term conc
current-addr
(list stars
(fetch-term conc current-addr)
stars))
t
(abbreviations t)))))))))
(define-pc-macro repeat (instr)
(value `(succeed (repeat-rec ,instr))))
(define-pc-macro repeat-rec (instr)
(value `(do-strict ,instr (repeat-rec ,instr))))
(defmacro define-pc-bind* (name &rest args)
`(define-pc-meta ,name (&rest instr-list)
(state-global-let*
(,@args)
(pc-main-loop instr-list nil t
(pc-print-prompt-and-instr-flg)
state))))
(define-pc-bind* quiet
(inhibit-output-lst
(union-eq '(prove proof-builder proof-tree warning observation)
(f-get-global 'inhibit-output-lst state))))
(define-pc-bind* quiet!
(print-clause-ids nil)
(gag-mode nil)
(inhibit-output-lst
(union-eq '(prove proof-builder proof-tree warning observation)
(f-get-global 'inhibit-output-lst state))))
(define-pc-bind* noise
(gag-mode nil)
(inhibit-output-lst '(proof-tree)))
(define-pc-bind* noise!
(gag-mode nil)
(inhibit-output-lst nil))
(defun find-equivalence-hyp-term-no-target (index term hyps equiv w)
;; Allows backchaining through IMPLIES. Returns an appropriate target.
;; Thus we are being rather silly here computationally, since we have
;; to do the work twice after generating an :equiv command. But so what?
(if (consp hyps)
(mv-let (h c)
(split-implies (car hyps))
(if (or (variablep c)
(fquotep c)
(not (symbolp (ffn-symb c)))
(not (refinementp (ffn-symb c) equiv w)))
(find-equivalence-hyp-term-no-target
(1+ index) term (cdr hyps) equiv w)
(let* ((x (fargn c 1))
(y (fargn c 2))
(hyp-to-use (and (subsetp-equal h hyps)
(or (and (equal x term)
y)
(and (equal y term)
x)))))
(if hyp-to-use
(mv index hyp-to-use)
(find-equivalence-hyp-term-no-target
(1+ index) term (cdr hyps) equiv w)))))
(mv nil nil)))
(define-pc-atomic-macro if-not-proved (goal-name cmd)
; Requires the current goal to be named goal-name if it isn't already proved.
(if (member-equal goal-name (goal-names (goals t)))
(if (equal goal-name (goal-name t))
(value cmd)
(mv-let
(erp val state)
(er soft 'if-not-proved
"The proof-builder's atomic macro IF-NOT-PROVED requires the ~
indicated goal to be the current goal. However, the current ~
goal is ~p0 while the first argument to IF-NOT-PROVED is ~p1."
(goal-name t)
goal-name)
(declare (ignore erp val))
(value 'fail)))
(value :skip)))
(define-pc-atomic-macro = (&optional x y &rest rest-args)
(when-goals-trip
(let ((conc (conc t))
(hyps (hyps t))
(current-addr (current-addr t))
(abbreviations (abbreviations t))
(w (w state))
(rest-args-1 (if (and rest-args
(car rest-args)
(not (keywordp (car rest-args))))
'(:hints :none)
rest-args)))
(if (not (keyword-value-listp rest-args-1))
(pprogn (print-no-change
"The ``rest-args'' arguments for the = command should be ~
empty or a list, either (i) containing one element, an ~
atom, or else (ii) of even length with keywords in the odd ~
positions. Thus your command ~p0 is not legal. See the ~
documentation for examples and details."
(list (cons #\0 (make-pretty-pc-instr (cons := args)))))
(value :fail))
(mv-let
(equiv-alist rest-args-1)
(if (keyword-value-listp rest-args-1)
(pair-keywords '(:equiv) rest-args-1)
(mv nil rest-args-1))
(let ((equiv (or (cdr (assoc-eq :equiv equiv-alist))
'equal)))
(mv-let
(current-term governors)
(fetch-term-and-cl conc current-addr nil)
(cond
((eq governors t)
(value (er hard ':=
"Found governors of T inside command ~p0!"
(cons := args))))
((eq x :&)
(pprogn (print-no-change
"We do not allow the first argument of the = command ~
to be the keyword :&, because no other symbol with ~
print-name & can be a term (and hence we use it to ~
represent the current subterm), but :& is a ~
legitimate term and -- we can't be really sure ~
whether you intended it to represent the term :& or ~
the current subterm.")
(value :fail)))
((not (member-eq equiv
(getpropc 'equal 'coarsenings nil w)))
(pprogn (print-no-change
"The ``equivalence relation'' that you supplied, ~p0, ~
is not known to ACL2 as an equivalence relation."
(list (cons #\0 equiv)))
(value :fail)))
((null args)
(mv-let (found-hyp new)
(find-equivalence-hyp-term-no-target
1 current-term
(flatten-ands-in-lit-lst (append hyps governors))
equiv w)
(if found-hyp
(pprogn
(io? proof-builder nil state
(found-hyp)
(fms0 "Using hypothesis #~x0.~%"
(list (cons #\0 found-hyp))))
(value (list :equiv current-term new)))
(pprogn (print-no-change
"There is no hypothesis or governor that equates ~
the current term ~#0~[under the equivalence ~
relation ~p1 ~/~]with anything."
(list (cons #\0 (if (eq equiv 'equal) 1 0))
(cons #\1 equiv)))
(value :fail)))))
(t
;; so, we have a valid equivalence relation and at least one argument
(mv-let
(rest-args-alist tail)
(pair-keywords '(:otf-flg :hints) rest-args-1)
(declare (ignore rest-args-alist))
(if tail
(pprogn
(print-no-change
"The only keywords allowed in the arguments to the = ~
command are :otf-flg, :hints, and :equiv. Your ~
instruction ~p1 violates this requirement."
(list (cons #\1
(make-pretty-pc-instr (cons := args)))))
(value :fail))
(er-let*
((old (if (or (null (cdr args))
(and (symbolp x)
(eq (intern-in-keyword-package x) :&)))
(value current-term)
(trans0 x abbreviations ':=)))
(new (if (null (cdr args))
(trans0 x abbreviations ':=)
(trans0 y abbreviations ':=))))
(value (list :protect
(list* :claim
(if governors
(fcons-term* 'implies (conjoin
governors)
(list equiv old new))
(list equiv old new))
:do-not-flatten t
rest-args-1)
(list :equiv old new equiv)
(list :if-not-proved
(goal-name t)
:drop-last)))))))))))))))
(define-pc-macro set-success (instr form)
(value `(sequence (,instr) nil nil ,form)))
(define-pc-macro orelse (instr1 instr2)
(value `(negate (do-strict (negate ,instr1) (negate ,instr2)))))
(defun applicable-rewrite-rules (current-term conc current-addr target-name-or-rune
target-index ens wrld)
; Returns a list of sar records. This list represents rules that can rewrite
; the current-term, each paired with the appropriate substitution and index,
; but filtered so that only those corresponding to target-name-or-rune are
; included (if non-NIL). If target-index is NIL then we get all such rules;
; otherwise we get a list with at most one rule, namely the one corresponding
; to that index.
(declare (xargs :guard (not (or (variablep current-term)
(fquotep current-term)
(flambdap (ffn-symb current-term))))))
(applicable-rewrite-rules1
current-term
(geneqv-at-subterm-top conc current-addr ens wrld)
(getpropc (ffn-symb current-term) 'lemmas nil wrld)
1 target-name-or-rune target-index wrld))
(define-pc-help show-rewrites (&optional rule-id enabled-only-flg)
(when-goals
(let ((conc (conc t))
(current-addr (current-addr t))
(w (w state)))
(let ((ens (make-pc-ens (pc-ens t) state))
(current-term (fetch-term conc current-addr))
(abbreviations (abbreviations t))
(term-id-iff (term-id-iff conc current-addr t))
(all-hyps (union-equal (hyps t) (governors conc current-addr))))
(show-rewrites-linears-fn
'show-rewrites rule-id enabled-only-flg ens current-term
abbreviations term-id-iff all-hyps
(geneqv-at-subterm-top conc current-addr ens w)
nil state)))))
(define-pc-macro sr (&rest args)
(value (cons :show-rewrites args)))
(define-pc-help show-linears (&optional rule-id enabled-only-flg)
(when-goals
(let ((conc (conc t))
(current-addr (current-addr t))
(w (w state)))
(let ((ens (make-pc-ens (pc-ens t) state))
(current-term (fetch-term conc current-addr))
(abbreviations (abbreviations t))
(term-id-iff (term-id-iff conc current-addr t)) ; irrelevant?
(all-hyps (union-equal (hyps t) (governors conc current-addr))))
(show-rewrites-linears-fn
'show-linears rule-id enabled-only-flg ens current-term
abbreviations term-id-iff all-hyps
(geneqv-at-subterm-top conc current-addr ens w) ; irrelevant?
nil state)))))
(define-pc-macro sls (&rest args)
(value (cons :show-linears args)))
(define-pc-macro pl (&optional x)
(cond (x (value `(lisp (pl ',x))))
((null (goals))
(pprogn (print-all-goals-proved-message state)
(value 'skip)))
(t (let* ((conc (conc t))
(current-addr (current-addr t))
(current-term (fetch-term conc current-addr)))
(cond ((or (variablep current-term)
(fquotep current-term)
(flambda-applicationp current-term))
(er soft 'pl
"The current subterm is not the application of a ~
function symbol."))
(t (value `(lisp (pl ',(ffn-symb current-term))))))))))
(define-pc-macro pr (&optional x)
(cond (x (value `(lisp (pr ',x))))
((null (goals))
(pprogn (print-all-goals-proved-message state)
(value 'skip)))
(t (let* ((conc (conc t))
(current-addr (current-addr t))
(current-term (fetch-term conc current-addr)))
(cond ((or (variablep current-term)
(fquotep current-term)
(flambda-applicationp current-term))
(er soft 'pr
"The current subterm is not the application of a ~
function symbol."))
(t (value `(lisp (pr ',(ffn-symb current-term))))))))))
(define-pc-help show-type-prescriptions (&optional rule-id)
(when-goals
(let ((conc (conc t))
(current-addr (current-addr t)))
(let ((ens (make-pc-ens (pc-ens t) state))
(current-term (fetch-term conc current-addr))
(abbreviations (abbreviations t))
(all-hyps (union-equal (hyps t) (governors conc current-addr))))
(show-type-prescription-rules current-term rule-id abbreviations
all-hyps ens state)))))
(define-pc-macro st (&rest args)
(value (cons :show-type-prescriptions args)))
(defun translate-subst-abb1 (sub abbreviations state)
;; Here sub is a list of doublets (variable form)
;; and we return a triple (erp val state). If the erp is non-nil then
;; we use it to decode the message returned in the value component.
;; We'll assume that #\s is bound to the original substitution.
;; We should check somewhere else that sub is an alistp.
;; We have to pass in and return state because of the call to translate.
(declare (xargs :guard (symbol-alistp sub)))
(if (consp sub)
(mv-let (erp term state)
(trans0 (cadar sub) abbreviations 'translate-subst-abb1)
(if erp
(mv "~|Translation error for ~x0 caused error in ~
translating ~xs.~|"
(list (cons #\0 (cadar sub)))
state)
(mv-let (erp val state)
(translate-subst-abb1 (cdr sub) abbreviations state)
(if erp
(mv erp val state)
(mv nil (cons (cons (caar sub) term) val) state)))))
(mv nil nil state)))
(defun single-valued-symbolp-alistp (alist)
(declare (xargs :guard (symbol-alistp alist)))
(if alist
(and (not (assoc-eq (caar alist) (cdr alist)))
(single-valued-symbolp-alistp (cdr alist)))
t))
(defun check-cars-are-variables (alist state)
;; return T if there's a problem
(declare (xargs :guard (symbol-alistp alist)))
(if alist
(mv-let (erp val state)
(trans0 (caar alist) nil)
(if (or erp
(not (eq val (caar alist))))
(pprogn
(io? proof-builder nil state
(alist)
(fms0 "~|A substitution must be an alist whose CARs ~
are variables, but the entry ~x0 violates this ~
property.~|"
(list (cons #\0 (caar alist)))))
(mv t state))
(check-cars-are-variables (cdr alist) state)))
(mv nil state)))
(defun translate-subst-abb (sub abbreviations state)
(cond
((not (true-listp sub))
(pprogn (io? proof-builder nil state
(sub)
(fms0 "~|A substitution must be a true (null-terminated) ~
list, but~%~x0 is not.~|"
(list (cons #\0 sub))))
(mv t nil state)))
((not (and (symbol-alistp sub)
(single-valued-symbolp-alistp sub)))
(pprogn (io? proof-builder nil state
(sub)
(fms0 "~|A substitution must be an alist of pairs without ~
duplicate keys, but ~x0 is not.~|"
(list (cons #\0 sub))))
(mv t nil state)))
(t
(mv-let (erp state)
(check-cars-are-variables sub state)
(if erp
(mv t nil state)
(mv-let (erp val state)
(translate-subst-abb1 sub abbreviations state)
(if erp
(pprogn (io? proof-builder nil state
(val sub erp)
(fms0 erp (cons (cons #\s sub) val)))
(mv t nil state))
(mv nil val state))))))))
(defun make-rewrite-instr (lemma-id raw-subst instantiate-free)
(list* (make-pretty-pc-command :rewrite)
lemma-id
(cond (instantiate-free (list raw-subst instantiate-free))
(raw-subst (list raw-subst))
(t nil))))
(define-pc-primitive rewrite (&optional rule-id raw-sub instantiate-free)
; Warning: Keep this in sync with the proof-builder apply-linear command.
(mv-let
(erp sub state)
(translate-subst-abb raw-sub abbreviations state)
(if erp
(print-no-change2 "~x0 failed."
(list (cons #\0 (cons :rewrite args))))
(let ((name (and (symbolp rule-id) rule-id))
(rune (and (consp rule-id)
(member-eq (car rule-id) '(:rewrite :definition))
rule-id))
(index (if (and (integerp rule-id) (< 0 rule-id))
rule-id
(if rule-id
nil
1)))
(pc-ens (make-pc-ens pc-ens state))
(w (w state))
(current-term (fetch-term conc current-addr))
(assumptions (union-equal hyps (governors conc current-addr))))
(cond
((or (variablep current-term)
(fquotep current-term)
(flambdap (ffn-symb current-term)))
(print-no-change2
"It is only possible to apply rewrite rules to terms that are not ~
variables, (quoted) constants, or applications of lambda ~
expressions. However, the current term is:~%~ ~ ~y0.~|"
(list (cons #\0 current-term))))
((not (or name index rune))
(print-no-change2
"The rule-id argument to REWRITE must be a name, a positive ~
integer, or a :rewrite or :definition rune, but ~x0 is none of ~
these.~|"
(list (cons #\0 rule-id))))
(t
(mv-let
(flg hyps-type-alist ttree)
(hyps-type-alist assumptions pc-ens w state)
(declare (ignore ttree))
(if flg
(print-no-change2
"Contradiction in the hypotheses!~%The S command should ~
complete this goal.~|")
(let ((app-rewrite-rules
(applicable-rewrite-rules
current-term conc current-addr (or name rune) index
pc-ens w)))
(if (null app-rewrite-rules)
(if (and index (> index 1))
(print-no-change2
"There are fewer than ~x0 applicable rewrite rules.~%"
(list (cons #\0 index)))
(print-no-change2
"There are no applicable rewrite rules.~%"))
(let* ((sar (car app-rewrite-rules))
(lemma (access sar sar :lemma))
(start-alist (access sar sar :alist))
(alist (append start-alist sub))
(rhs (access rewrite-rule lemma :rhs))
(lemma-hyps (access rewrite-rule lemma :hyps))
(lemma-rune (access rewrite-rule lemma :rune))
(lemma-name (base-symbol lemma-rune))
(lemma-id (if (cddr lemma-rune) lemma-rune lemma-name))
(non-free (union-eq (intersection-domains sub
start-alist)
(set-difference-eq
(strip-cars sub)
(append (all-vars rhs)
(all-vars1-lst lemma-hyps
nil))))))
(if non-free
(print-no-change2
"The variable~#0~[~/~/s~] ~&1 supplied by the ~
substitution in this instruction ~#0~[~/is~/are~] not ~
free for instantiation in the current context.~|"
(list (cons #\0 (zero-one-or-more (length non-free)))
(cons #\1 non-free)))
(mv-let
(subst-hyps unify-subst ttree2)
(unrelieved-hyps lemma-rune lemma-hyps alist
hyps-type-alist instantiate-free w
state pc-ens nil)
(pprogn
(let ((extra-alist (alist-difference-eq unify-subst
alist)))
(if extra-alist
(io? proof-builder nil state
(abbreviations extra-alist sub
lemma-id)
(fms0 "~|Rewriting with ~x0 under the ~
following extension of the ~
substitution generated by matching ~
that rewrite rule with the current ~
term~#1~[ (after extending it with ~
the substitution ~x2 supplied in the ~
instruction)~/~]:~|~x3.~|"
(list (cons #\0 lemma-id)
(cons #\1 (if sub 0 1))
(cons #\2 sub)
(cons #\3 (untranslate-subst-abb
extra-alist
abbreviations
state)))))
(io? proof-builder nil state
(lemma-id)
(fms0 "~|Rewriting with ~x0.~|"
(list (cons #\0 lemma-id))))))
(let ((runes (all-runes-in-ttree ttree2 nil)))
(if runes
(io? proof-builder nil state
(runes)
(fms0 "~|--NOTE-- Using the following runes ~
in addition to the indicated rule:~% ~
~x0.~|"
(list (cons #\0 runes))))
state))
(let ((new-goals
(make-new-goals-fixed-hyps subst-hyps
assumptions
goal-name
depends-on)))
(mv-let
(changed-goal state)
(deposit-term-in-goal
(car goals) conc current-addr
(sublis-var unify-subst
(access rewrite-rule lemma :rhs))
state)
(mv
(change-pc-state
pc-state
:instruction
(make-rewrite-instr lemma-id raw-sub
instantiate-free)
:goals
(cons (change goal changed-goal
:depends-on
(+ depends-on (length new-goals)))
(append new-goals (cdr goals)))
:local-tag-tree
(push-lemma lemma-rune ttree2))
state)))))))))))))))))
(defun applicable-linear-rules (current-term target-name-or-rune
target-index wrld)
; See applicable-rewrite-rules for the analogous function for rewrite rules.
(declare (xargs :guard (not (or (variablep current-term)
(fquotep current-term)
(flambdap (ffn-symb current-term))))))
(applicable-linear-rules1
current-term
(getpropc (ffn-symb current-term) 'linear-lemmas nil wrld)
1 target-name-or-rune target-index))
(defun make-linear-instr (lemma-id raw-subst instantiate-free)
(list* (make-pretty-pc-command :linear)
lemma-id
(cond (instantiate-free (list raw-subst instantiate-free))
(raw-subst (list raw-subst))
(t nil))))
(define-pc-primitive apply-linear (&optional rule-id raw-sub instantiate-free)
; Warning: Keep this in sync with the proof-builder rewrite command.
(mv-let
(erp sub state)
(translate-subst-abb raw-sub abbreviations state)
(if erp
(print-no-change2 "~x0 failed."
(list (cons #\0 (cons :rewrite args))))
(let ((name (and (symbolp rule-id) rule-id))
(rune (and (consp rule-id)
(member-eq (car rule-id) '(:linear))
rule-id))
(index (if (and (integerp rule-id) (< 0 rule-id))
rule-id
(if rule-id
nil
1)))
(pc-ens (make-pc-ens pc-ens state))
(w (w state))
(current-term (fetch-term conc current-addr))
(assumptions (union-equal hyps (governors conc current-addr))))
(cond
((or (variablep current-term)
(fquotep current-term)
(flambdap (ffn-symb current-term)))
(print-no-change2
"It is only possible to apply linear rules to terms that are not ~
variables, (quoted) constants, or applications of lambda ~
expressions. However, the current term is:~%~ ~ ~y0.~|"
(list (cons #\0 current-term))))
((not (or name index rune))
(print-no-change2
"The rule-id argument to REWRITE must be a name, a positive ~
integer, or a :linear rune, but ~x0 is none of these.~|"
(list (cons #\0 rule-id))))
(t
(mv-let
(flg hyps-type-alist ttree)
(hyps-type-alist assumptions pc-ens w state)
(declare (ignore ttree))
(if flg
(print-no-change2
"Contradiction in the hypotheses!~%The S command should ~
complete this goal.~|")
(let ((app-linear-rules
(applicable-linear-rules
current-term (or name rune) index w)))
(if (null app-linear-rules)
(if (and index (> index 1))
(print-no-change2
"There are fewer than ~x0 applicable linear rules.~%"
(list (cons #\0 index)))
(print-no-change2 "There are no applicable linear rules.~%"))
(let* ((sar (car app-linear-rules))
(lemma (access sar sar :lemma))
(start-alist (access sar sar :alist))
(alist (append start-alist sub))
(lemma-concl (access linear-lemma lemma :concl))
(lemma-hyps (access linear-lemma lemma :hyps))
(lemma-rune (access linear-lemma lemma :rune))
(lemma-name (base-symbol lemma-rune))
(lemma-id (if (cddr lemma-rune) lemma-rune lemma-name))
(non-free (union-eq (intersection-domains sub
start-alist)
(set-difference-eq
(strip-cars sub)
(append (all-vars lemma-concl)
(all-vars1-lst lemma-hyps
nil))))))
(if non-free
(print-no-change2
"The variable~#0~[~/~/s~] ~&1 supplied by the ~
substitution in this instruction ~#0~[~/is~/are~] not ~
free for instantiation in the current context.~|"
(list (cons #\0 (zero-one-or-more (length non-free)))
(cons #\1 non-free)))
(mv-let
(subst-hyps unify-subst ttree2)
(unrelieved-hyps lemma-rune lemma-hyps alist
hyps-type-alist instantiate-free w
state pc-ens nil)
(pprogn
(let ((extra-alist (alist-difference-eq unify-subst
alist)))
(if extra-alist
(io? proof-builder nil state
(abbreviations extra-alist sub
lemma-id)
(fms0 "~|Apply linear rule ~x0 under the ~
following extension of the the ~
substitution generated by matching ~
that rule's trigger term with the ~
current term ~#1~[ (after extending ~
it with the substitution ~x2 supplied ~
in the instruction)~/~]: ~x3.~|"
(list (cons #\0 lemma-id)
(cons #\1 (if sub 0 1))
(cons #\2 sub)
(cons #\3 (untranslate-subst-abb
extra-alist
abbreviations
state)))))
(io? proof-builder nil state
(lemma-id)
(fms0 "~|Applying linear rule ~x0.~|"
(list (cons #\0 lemma-id))))))
(let ((runes (all-runes-in-ttree ttree2 nil)))
(if runes
(io? proof-builder nil state
(runes)
(fms0 "~|--NOTE-- Using the following runes ~
in addition to the indicated rule:~% ~
~x0.~|"
(list (cons #\0 runes))))
state))
(let ((new-goals
(make-new-goals-fixed-hyps subst-hyps
assumptions
goal-name
depends-on)))
(let ((changed-goal
(change goal (car goals)
:hyps
(append hyps
(list
(sublis-var unify-subst
lemma-concl)))
:depends-on
(+ depends-on (length new-goals)))))
(mv
(change-pc-state
pc-state
:instruction
(make-linear-instr lemma-id raw-sub
instantiate-free)
:goals
(cons changed-goal
(append new-goals (cdr goals)))
:local-tag-tree
(push-lemma lemma-rune ttree2))
state)))))))))))))))))
(define-pc-macro al (&rest args)
(value (cons :apply-linear args)))
(define-pc-macro doc (&optional name)
(let ((name (or name (make-official-pc-command 'doc))))
(cond ((and (equal (assoc-eq :doc (ld-keyword-aliases state))
'(:DOC 1 XDOC))
(function-symbolp 'colon-xdoc-initialized (w state)))
(value `(lisp (if (colon-xdoc-initialized state)
(xdoc ',name)
(pprogn
(fms0 "Note: Using built-in :doc command. To use ~
:xdoc command, exit the proof-builder and ~
run :doc in the top-level loop.~|~%")
(doc ',name))))))
(t (value `(lisp (doc ',name)))))))
(define-pc-macro help (&optional name)
(cond ((not (symbolp name))
(pprogn
(print-no-change "The argument for :HELP requires a symbol, but ~x0 ~
is not a symbol."
(list (cons #\0 name)))
(value :fail)))
(t (let ((name (if (equal (symbol-name name) "ALL")
'proof-builder-commands
(make-official-pc-command (or name 'help)))))
(value `(doc ,name))))))
(defun pc-rewrite*-1
(term type-alist geneqv iff-flg wrld rcnst old-ttree pot-lst normalize-flg
rewrite-flg ens state repeat backchain-limit step-limit)
; This function may be called with a pot-lst of nil in the proof-builder, but
; need not be can figure out a good way to do linear there. Also, note that
; rcnst can be anything (and is ignored) if rewrite-flg is not set.
(mv-let (nterm old-ttree)
(if normalize-flg
(normalize term iff-flg type-alist ens wrld old-ttree
(backchain-limit wrld :ts))
(mv term old-ttree))
(sl-let (newterm ttree)
(if rewrite-flg
(let ((gstack nil))
(rewrite-entry
(rewrite nterm nil 'proof-builder)
:pequiv-info nil
:rdepth (rewrite-stack-limit wrld)
:step-limit step-limit
:obj '?
:fnstack nil
:ancestors nil
:simplify-clause-pot-lst pot-lst
:rcnst (change rewrite-constant rcnst
:current-literal
(make current-literal
:atm nterm
:not-flg nil))
:gstack gstack
:ttree old-ttree))
(mv 0 ; irrelevant step-limit
nterm old-ttree))
(declare (ignorable step-limit))
(cond
((equal newterm nterm)
(mv step-limit newterm old-ttree state))
((<= repeat 0)
(mv step-limit newterm ttree state))
(t
(pc-rewrite*-1 newterm type-alist geneqv iff-flg wrld rcnst
ttree
pot-lst normalize-flg rewrite-flg ens state
(1- repeat) backchain-limit step-limit))))))
(defun pc-rewrite*
(term type-alist geneqv iff-flg wrld rcnst old-ttree pot-lst normalize-flg
rewrite-flg ens state repeat backchain-limit step-limit)
(sl-let
(newterm ttree state)
(catch-step-limit
(pc-rewrite*-1 term type-alist geneqv iff-flg wrld rcnst old-ttree pot-lst
normalize-flg rewrite-flg ens state repeat backchain-limit
step-limit))
(cond ((eql step-limit -1)
(mv step-limit term old-ttree state))
(t
(mv step-limit newterm ttree state)))))
(defun make-goals-from-assumptions (assumptions conc hyps current-addr goal-name start-index)
(if assumptions
(cons (make goal
:conc conc
:hyps (cons (dumb-negate-lit (car assumptions)) hyps)
:current-addr current-addr
:goal-name (cons goal-name start-index)
:depends-on 1)
(make-goals-from-assumptions (cdr assumptions)
conc hyps current-addr goal-name
(1+ start-index)))
nil))
(defun make-new-goals-from-assumptions (assumptions goal)
(and assumptions
(make-goals-from-assumptions
assumptions
(access goal goal :conc)
(access goal goal :hyps)
(access goal goal :current-addr)
(access goal goal :goal-name)
(access goal goal :depends-on))))
(defconst *default-s-repeat-limit* 10)
(defun hyps-type-alist-and-pot-lst (assumptions rcnst ens wrld state)
; Rcnst is a rewrite constant if we are to use linear arithmetic, else nil.
(mv-let
(flg type-alist ttree-or-fc-pair-lst)
(hyps-type-alist assumptions ens wrld state)
(cond
((or (not rcnst) ; see comment above
flg)
(mv flg type-alist nil ttree-or-fc-pair-lst))
(t
(mv-let
(step-limit contradictionp pot-lst)
(setup-simplify-clause-pot-lst
(dumb-negate-lit-lst assumptions)
nil ttree-or-fc-pair-lst type-alist rcnst wrld state
*default-step-limit*)
(declare (ignore step-limit))
(cond
(contradictionp
(mv t nil nil
(push-lemma
*fake-rune-for-linear*
(access poly contradictionp :ttree))))
(t (mv nil type-alist pot-lst ttree-or-fc-pair-lst))))))))
(define-pc-primitive s (&rest args)
(cond
((not (keyword-value-listp args))
(print-no-change2
"The argument list to S must be a KEYWORD-VALUE-LISTP, i.e. a list of ~
the form (:kw-1 val-1 ... :kw-n val-n), where each of the arguments ~
:kw-i is a keyword. Your argument list ~x0 does not have this ~
property. Try (HELP S)."
(list (cons #\0 args))))
(t
(let ((comm (make-official-pc-command 's))
(w (w state))
(current-term (fetch-term conc current-addr))
(assumptions (union-equal hyps
(flatten-ands-in-lit-lst
(governors conc current-addr)))))
(let ((pc-ens (make-pc-ens pc-ens state)))
(mv-let
(bcl-alist rst)
(pair-keywords '(:backchain-limit :normalize :rewrite :repeat) args)
(let* ((local-backchain-limit
(or (cdr (assoc-eq :backchain-limit bcl-alist)) 0))
; IF-normalization and rewriting will happen by default
(normalize
(let ((pair (assoc-eq :normalize bcl-alist)))
(if pair (cdr pair) t)))
(rewrite
(let ((pair (assoc-eq :rewrite bcl-alist)))
(if pair (cdr pair) t)))
(linear
(let ((pair (assoc-eq :linear bcl-alist)))
(if pair (cdr pair) rewrite)))
(repeat
(let ((pair (assoc-eq :repeat bcl-alist)))
(if pair
(if (equal (cdr pair) t)
*default-s-repeat-limit*
(cdr pair))
0))))
(cond
((not (natp repeat))
(print-no-change2
"The :REPEAT argument provided to S (or a command that invoked ~
S), which was ~x0, is illegal. ~ It must be T or a natural ~
number."
(list (cons #\0 repeat))))
((not (natp local-backchain-limit))
(print-no-change2
"The :BACKCHAIN-LIMIT argument provided to S (or a command ~
that invoked S), which was ~x0, is illegal. It must be NIL ~
or a natural number."
(list (cons #\0 local-backchain-limit))))
((not (or normalize rewrite))
(print-no-change2 "You may not specify in the S command that ~
neither IF normalization nor rewriting is to ~
take place."))
((and (null rewrite)
(or (assoc-eq :backchain-limit bcl-alist)
(assoc-eq :repeat bcl-alist)
rst))
(print-no-change2 "When the :REWRITE NIL option is specified, ~
it is not allowed to provide arguments other ~
than :NORMALIZE T. The argument list ~x0 ~
violates this requirement."
(list (cons #\0 args))))
(t
(mv-let
(key-alist new-rst)
(pair-keywords '(:in-theory :hands-off :expand) rst)
(declare (ignore key-alist))
(cond
(new-rst
(print-no-change2
"The arguments to the S command must all be &KEY ~
arguments, which should be among ~&0. Your argument list ~
~x1 violates this requirement."
(list (cons #\0 '(:rewrite :normalize :backchain-limit
:repeat :in-theory :hands-off
:expand))
(cons #\1 args))))
(t
(mv-let
(erp hint-settings state)
(translate-hint-settings
comm "Goal" rst
(if args (cons comm (car args)) comm)
w state)
(cond
(erp (print-no-change2 "S failed."))
(t
(let ((base-rcnst
(and rewrite
(change
rewrite-constant
*empty-rewrite-constant*
:current-enabled-structure pc-ens
:force-info t))))
(mv-let
(flg hyps-type-alist pot-lst ttree)
(hyps-type-alist-and-pot-lst assumptions
(and linear base-rcnst)
pc-ens w state)
(cond
(flg
(cond
((or (null current-addr) ; optimization
(equal assumptions hyps)
(mv-let (flg hyps-type-alist ttree)
(hyps-type-alist hyps pc-ens w state)
(declare (ignore hyps-type-alist
ttree))
flg))
(pprogn
(io? proof-builder nil state
nil
(fms0 "~|Goal proved: Contradiction in ~
the hypotheses!~|"))
(mv (change-pc-state
pc-state
:goals
(cond ((tagged-objects 'assumption ttree)
; See the comment in define-pc-primitive about leaving the top goal on the top
; of the :goals stack.
(cons (change goal (car goals)
:conc *t*)
(cdr goals)))
(t (cdr goals)))
:local-tag-tree ttree)
state)))
(t
(print-no-change2
"A contradiction was found in the current ~
context using both the top-level hypotheses ~
and the IF tests governing the current term, ~
but not using the top-level hypotheses alone. ~
~ You may want to issue the TOP command and ~
then issue s-prop to prune some branches of ~
the conclusion."))))
(t
(mv-let
(erp local-rcnst state)
(if rewrite
(load-hint-settings-into-rcnst
hint-settings
base-rcnst
nil w 'acl2-pc::s state)
(value nil))
(pprogn
(if erp
(io? proof-builder nil state
nil
(fms0 "~|Note: Ignoring the above ~
theory invariant error. ~
Proceeding...~|"))
state)
(if rewrite
(maybe-warn-about-theory-from-rcnsts
base-rcnst local-rcnst :s pc-ens w state)
state)
(sl-let
(new-term new-ttree state)
(pc-rewrite*
current-term
hyps-type-alist
(geneqv-at-subterm-top conc current-addr
pc-ens w)
(term-id-iff conc current-addr t)
w local-rcnst nil
pot-lst normalize rewrite
pc-ens state repeat local-backchain-limit
(initial-step-limit w state))
(pprogn
(f-put-global 'last-step-limit step-limit state)
(if (equal new-term current-term)
(print-no-change2
"No simplification took place.")
(pprogn
(mv-let
(new-goal state)
(deposit-term-in-goal
(car goals)
conc current-addr new-term state)
(mv (change-pc-state
pc-state
:goals
(cons new-goal (cdr goals))
:local-tag-tree new-ttree)
state)))))))))))))))))))))))))))
;; The proof-builder's enabled state will be either the global enabled
;; state or else a local one. The proof-builder command :IN-THEORY
;; takes zero or one arguments, the former specifying ``use the global
;; enabled state'' and the latter specifying ``create a local enabled
;; state from the current proof-builder enabled state by evaluating
;; the theory form that is given.'' This is an easy design to
;; implement: we'll use NIL in the pc-ens component of the pc-state
;; to mean that we should use the global state, and otherwise we'll
;; store an enabled structure with a root name particular to Pc-ACL2.
;; A subtlety is that (in-theory (current-theory :here)) is not quite
;; equivalent to (in-theory). The difference is that the former
;; stores a copy of the current global enabled state in the current
;; proof-builder state, and that's what will stay there even if the
;; global state is changed, while the latter stores NIL in the current
;; proof-builder state, which means that we'll use whatever is the
;; current global enabled state at the time.
;; I expect that this design will be pretty robust, in the sense that
;; it won't cause hard errors even when the user makes global changes
;; to the ACL2 world and then re-enters an interactive verification.
;; That's because the index-of-last-enabling component of an enabled
;; structure always protects it against inappropriate AREF1 calls
;; in ENABLED-NUMEP.
(defun build-pc-enabled-structure-from-ens (new-suffix ens)
(let* ((new-name-root
'(#\P #\C #\- #\E #\N #\A #\B
#\L #\E #\D #\- #\A #\R #\R #\A #\Y #\-))
(new-name (intern (coerce
(append new-name-root
(explode-nonnegative-integer new-suffix
10
nil))
'string)
"ACL2"))
(old-name (access enabled-structure ens :array-name))
(old-alist (access enabled-structure ens :theory-array)))
(change enabled-structure
ens
:theory-array
(cons (list :header
:dimensions (dimensions old-name old-alist)
:maximum-length (maximum-length old-name old-alist)
:default (default old-name old-alist)
:name new-name)
(cdr old-alist))
:array-name new-name
:array-length (access enabled-structure ens :array-length)
:array-name-root new-name-root
:array-name-suffix new-suffix)))
(define-pc-primitive in-theory (&optional theory-expr)
(let ((w (w state))
(ens (ens state)))
(if args
(mv-let
(erp hint-setting state)
(translate-in-theory-hint theory-expr t 'acl2-pc::in-theory w
state)
(if erp
(print-no-change2 "bad theory expression.")
(let* ((new-suffix (pc-value next-pc-enabled-array-suffix))
(new-pc-ens1
(build-pc-enabled-structure-from-ens new-suffix ens)))
(mv-let
(erp new-pc-ens2 state)
(load-theory-into-enabled-structure
;; this call compresses the appropriate array
theory-expr hint-setting nil new-pc-ens1 nil nil w
'acl2-pc::in-theory state)
(cond
(erp (print-no-change2 "bad theory expression."))
(t
(pprogn
(pc-assign next-pc-enabled-array-suffix (1+ new-suffix))
(maybe-warn-about-theory-simple
ens new-pc-ens2 :in-theory w state)
(mv (change-pc-state pc-state :pc-ens new-pc-ens2)
state))))))))
(if (null pc-ens)
(print-no-change2 "The proof-builder enabled/disabled state is ~
already set to agree with the global state, so ~
your IN-THEORY command is redundant.")
(mv (change-pc-state pc-state :pc-ens nil)
state)))))
(define-pc-atomic-macro s-prop (&rest names)
(value `(s :in-theory ,(if names
`(union-theories ',names
(theory 'minimal-theory))
'(theory 'minimal-theory)))))
(define-pc-atomic-macro x (&rest args)
(value `(do-strict (expand t) (succeed (s ,@args)))))
;; It was tempting to use the rewrite command to implement expand, but
;; this didn't really allow for expanding to keep lambdas or for the
;; issue of how to deal with guards. So I'll keep :definition rules
;; separate from :rewrite rules.
(define-pc-primitive expand (&optional
;; nil means eliminate the lambda:
do-not-expand-lambda-flg)
(let ((w (w state))
(term (fetch-term conc current-addr)))
(cond
((or (variablep term)
(fquotep term))
(print-no-change2
"It is impossible to expand a variable or a constant."))
((and do-not-expand-lambda-flg
(flambdap (ffn-symb term)))
(print-no-change2
"Expansion of lambda terms is disabled when do-not-expand-lambda-flg = ~
t; see :DOC acl2-pc::expand."))
(t
(let* ((fn (ffn-symb term))
(def-body (and (not (flambdap fn))
(def-body fn w)))
(formals (and def-body (access def-body def-body :formals)))
(equiv (and def-body (access def-body def-body :equiv)))
(body (if (flambdap fn)
(lambda-body fn)
(and def-body
(latest-body (fcons-term fn formals)
(access def-body def-body
:hyp)
(access def-body def-body
:concl))))))
(cond
((null body)
(assert$ (not (flambdap fn)) ; else surprising null body for lambda
(print-no-change2
"Expansion failed. Apparently function ~x0 is ~
constrained, not defined."
(list (cons #\0 fn)))))
((and (not (eq equiv 'equal)) ; optimization
(not (flambdap fn))
(not (geneqv-refinementp
equiv
(geneqv-at-subterm-top conc
current-addr
(make-pc-ens pc-ens state)
w)
w)))
(print-no-change2
"Expansion failed: the equivalence relation for the definition ~
rule ~x0 is ~x1, which is not sufficient to maintain in the ~
current context."
(list (cons #\0 (base-symbol (access def-body def-body :rune)))
(cons #\1 equiv))))
(t
(let ((new-term
(cond
(do-not-expand-lambda-flg ; hence not (flambdap fn)
(fcons-term (make-lambda formals body)
(fargs term)))
(t
(subcor-var (if (flambdap fn)
(lambda-formals fn)
formals)
(fargs term)
body)))))
(mv-let (new-goal state)
(deposit-term-in-goal
(car goals) conc current-addr
new-term
state)
(mv (change-pc-state
pc-state
:goals
(cons new-goal (cdr goals))
:local-tag-tree
(if (flambdap fn)
nil
(push-lemma? (access def-body def-body
:rune)
nil)))
state))))))))))
(define-pc-atomic-macro x-dumb ()
(value `(expand t)))
;; **** consider unwinding the effect if there is no change
(define-pc-macro bookmark (tag &rest instr-list)
(value `(do-all (comment :begin ,tag)
,@instr-list
(comment :end ,tag))))
(defun change-last (lst val)
(if (consp lst)
(if (consp (cdr lst))
(cons (car lst)
(change-last (cdr lst) val))
(list val))
lst))
(defun assign-event-name-and-rule-classes (event-name rule-classes state)
(let* ((state-stack (state-stack))
(triple (event-name-and-types-and-raw-term state-stack))
(old-event-name (car triple))
(old-rule-classes (cadr triple))
(old-raw-term (caddr triple)))
(pc-assign state-stack
(change-last state-stack
(change pc-state
(car (last state-stack))
:instruction
(list :start
(list (or event-name old-event-name)
(or rule-classes old-rule-classes)
old-raw-term)))))))
(defun save-fn (name ss-alist state)
(pprogn
(assign-event-name-and-rule-classes name nil state)
(pc-assign
ss-alist
(put-assoc-eq name
(cons (state-stack) (old-ss))
ss-alist))))
(define-pc-macro save (&optional name do-it-flg)
(cond
((not (symbolp name))
(pprogn
(print-no-change
"The first argument supplied to ~x0 must be a symbol, but ~x1 is not a ~
symbol.~@2"
(list (cons #\0 :save)
(cons #\1 name)
(cons #\2
(cond ((and (consp name)
(eq (car name) 'quote)
(consp (cdr name))
(symbolp (cadr name))
(null (cddr name)))
(msg " Perhaps you intended to submit the form ~x0."
`(:save ,(cadr name)
,@(and do-it-flg
(list do-it-flg)))))
(t "")))))
(value :fail)))
(t
(let ((name (or name (car (event-name-and-types-and-raw-term state-stack))))
(ss-alist (ss-alist)))
(if name
(mv-let
(erp reply state)
(if (and (assoc-eq name ss-alist)
(null do-it-flg))
(acl2-query 'acl2-pc::save
'("The name ~x0 is already associated with a ~
state-stack. Do you really want to overwrite ~
that existing value?"
:y t :n nil)
(list (cons #\0 name))
state)
(mv nil t state))
(declare (ignore erp))
(if reply
(pprogn (save-fn name ss-alist state)
(value :succeed))
(pprogn (print-no-change "save aborted.")
(value :fail))))
(pprogn (print-no-change
"You can't SAVE with no argument, because you didn't ~
originally enter VERIFY using an event name. Try (SAVE ~
<event_name>) instead.")
(value :fail)))))))
(defmacro retrieve (&optional name)
`(retrieve-fn ',name state))
(define-pc-macro retrieve ()
(pprogn (print-no-change "RETRIEVE can only be used ouside the ~
interactive loop. Please exit first. To ~
save your state upon exit, use EX rather than EXIT.")
(value :fail)))
(defun unsave-fn (name state)
(pc-assign ss-alist
(delete-assoc-eq name (ss-alist))))
(defmacro unsave (name)
`(unsave-fn ',name state))
(define-pc-help unsave (&optional name)
(let ((name (or name (car (event-name-and-types-and-raw-term state-stack)))))
(if (null name)
(print-no-change "You must specify a name to UNSAVE, because you didn't ~
originally enter VERIFY using an event name.")
(if (assoc-eq name (ss-alist))
(pprogn (unsave-fn name state)
(io? proof-builder nil state
(name)
(fms0 "~|~x0 removed from saved state-stack alist.~%"
(list (cons #\0 name)))))
(print-no-change "~|~x0 is does not have a value on the saved ~
state-stack alist.~%"
(list (cons #\0 name)))))))
(defun show-retrieved-goal (state-stack state)
(let ((raw-term (caddr (event-name-and-types-and-raw-term state-stack))))
(assert$ raw-term
(fmt-abbrev "~|~%Resuming proof attempt for~|~y0."
(list (cons #\0 raw-term))
0
(proofs-co state)
state
"~%"))))
(defun retrieve-fn (name state)
(let ((ss-alist (ss-alist)))
(cond
((f-get-global 'in-verify-flg state)
(er soft 'retrieve
"You are apparently already inside the VERIFY interactive loop. It is ~
illegal to enter such a loop recursively."))
((null ss-alist)
(pprogn (io? proof-builder nil state
nil
(fms0 "Sorry -- there is no saved interactive proof to ~
re-enter! Perhaps you meant (VERIFY) rather than ~
(RETRIEVE).~|"))
(value :invisible)))
((null name)
(if (equal (length ss-alist) 1)
(retrieve-fn (caar ss-alist) state)
(pprogn (io? proof-builder nil state
(ss-alist)
(fms0 "Please specify an interactive verification to ~
re-enter. Your options are ~&0.~%(Pick one of the ~
above:) "
(list (cons #\0 (strip-cars ss-alist)))))
(mv-let (erp val state)
(with-infixp-nil
(read-object *standard-oi* state))
(declare (ignore erp))
(retrieve-fn val state)))))
((not (symbolp name))
(er soft 'retrieve
"The argument supplied to ~x0 must be a symbol, but ~x1 is not a ~
symbol.~@2"
'retrieve
name
(cond ((and (consp name)
(eq (car name) 'quote)
(consp (cdr name))
(symbolp (cadr name))
(null (cddr name)))
(msg " Perhaps you intended to submit the form ~x0."
`(retrieve ,(cadr name))))
(t ""))))
(t
(let* ((ss-pair (cdr (assoc-eq name ss-alist)))
(saved-ss (car ss-pair))
(saved-old-ss (cdr ss-pair)))
(if saved-ss
(pprogn (pc-assign old-ss saved-old-ss)
(pc-assign state-stack saved-ss)
(show-retrieved-goal saved-ss state)
(verify))
(pprogn (io? proof-builder nil state
(name)
(fms0 "~|Sorry -- There is no interactive proof saved ~
under the name ~x0.~|"
(list (cons #\0 name))))
(value :invisible))))))))
(defun print-all-goals (goals state)
(if (null goals)
state
(pprogn (print-pc-goal (car goals))
(print-all-goals (cdr goals) state))))
(define-pc-help print-all-goals ()
(print-all-goals (goals t) state))
(defmacro print-conc (&optional acl2::goal)
`(let ((goal ,(or goal '(car (access pc-state (car (state-stack)) :goals)))))
(io? proof-builder nil state
(goal)
(if goal
(fms0
"~%------- ~x3 -------~|~q0~|"
(list
(cons #\0 (untranslate (access goal goal :conc) t (w state)))
(cons #\3 (access goal goal :goal-name))))
(fms0 "~%No goal in CAR of state-stack.~|")))))
(defun print-all-concs (goals state)
(declare (xargs :mode :program :stobjs state))
(if (null goals)
state
(pprogn (print-conc (car goals))
(print-all-concs (cdr goals) state))))
(define-pc-help print-all-concs ()
(print-all-concs (acl2::goals t) state))
(defun gen-var-marker (x)
(or (null x)
(and (integerp x)
(>= x 0))))
(defun translate-generalize-alist-1 (alist state-vars abbreviations state)
;; Takes an alist with doublets of the form (term var) and
;; returns an alist of the form (translated-term . var).
;; Returns an error triple. However, no attempt is made in this
;; pass to generate new variable names for "variables" that are
;; actually natural numbers or NIL. We'll wait to collect the new
;; variable names first.
;; We'll wait to check for duplicate variables till after this phase.
(cond
((null alist)
(value nil))
((and (true-listp (car alist))
(eql (length (car alist)) 2))
(er-let*
((term (translate-abb
(caar alist)
abbreviations
'translate-generalize-alist
state))
(var (if (gen-var-marker (cadar alist))
(value (cadar alist))
;; I could call translate directly here
(translate-abb
(cadar alist)
nil
'translate-generalize-alist
state))))
(cond
((member-eq var state-vars)
(er soft :generalize
"The variable ~x0 already appears in the current goals of ~
the proof-builder state, and hence is not legal as a ~
generalization variable."
var))
((or (variablep var) (gen-var-marker var))
;; The second disjunct above is actually subsumed by the first,
;; but I'll leave it in for clarity.
(mv-let
(erp val state)
(translate-generalize-alist-1 (cdr alist) state-vars abbreviations state)
(if erp
(mv erp val state)
(value (cons (cons term var) val)))))
(t
(er soft :generalize
"The second element of each doublet ~
given to the GENERALIZE command must be a variable or ~
natural number, but ~x0 is neither."
(cadar alist))))))
(t
(er soft :generalize
"Each argument to the GENERALIZE command must be a list of ~
length 2, but ~x0 is not."
(car alist)))))
(defun non-gen-var-markers (alist)
;; gets all the non-gen-var-markers from the cdrs of alist
(if (consp alist)
(if (gen-var-marker (cdar alist))
(non-gen-var-markers (cdr alist))
(cons (cdar alist)
(non-gen-var-markers (cdr alist))))
nil))
(defun find-duplicate-generalize-entries (alist var)
(declare (xargs :guard (true-listp alist)))
(if alist
(if (eq (cadar alist) var)
(cons (car alist)
(find-duplicate-generalize-entries (cdr alist) var))
(find-duplicate-generalize-entries (cdr alist) var))
nil))
(defun translate-generalize-alist-2 (alist avoid-list)
(declare (xargs :guard (true-listp alist)))
(if alist
(if (gen-var-marker (cdar alist))
(let ((new-var (genvar 'genvar "_" (cdar alist) avoid-list)))
(cons (cons (caar alist) new-var)
(translate-generalize-alist-2 (cdr alist) (cons new-var avoid-list))))
(cons (car alist)
(translate-generalize-alist-2 (cdr alist) avoid-list)))
nil))
(defun translate-generalize-alist (alist state-vars abbreviations state)
(er-let*
((alist1 (translate-generalize-alist-1 alist state-vars abbreviations state)))
(let ((new-vars (non-gen-var-markers alist1)))
(if (no-duplicatesp-equal new-vars)
(value (translate-generalize-alist-2 alist1 (append new-vars state-vars)))
(let* ((bad-var (car (duplicates new-vars)))
(dup-entries
(find-duplicate-generalize-entries alist bad-var)))
(if (cdr dup-entries)
(er soft 'acl2-pc::generalize
"The pairs ~&0 have the same variable, ~x1, and hence your ~
GENERALIZE instruction is illegal."
dup-entries bad-var)
(value (er hard 'acl2-pc::generalize
"Bad call to translate-generalize-alist on ~% ~x0."
(list alist state-vars abbreviations)))))))))
(defun all-vars-goals (goals)
(if (consp goals)
(union-eq (all-vars (access goal (car goals) :conc))
(union-eq (all-vars1-lst (access goal (car goals) :hyps) nil)
(all-vars-goals (cdr goals))))
nil))
(defun pc-state-vars (pc-state)
(union-eq (all-vars1-lst (strip-cdrs (access pc-state pc-state :abbreviations)) nil)
(all-vars-goals (access pc-state pc-state :goals))))
(define-pc-primitive generalize (&rest args)
(cond
(current-addr
(print-no-change2
"Generalization may only be applied at the top of the current goal. Try TOP first."))
((null args)
(print-no-change2
"GENERALIZE requires at least one argument."))
(t
(mv-let
(erp alist state)
(translate-generalize-alist
args (pc-state-vars pc-state) abbreviations state)
(if erp
(print-no-change2 "GENERALIZE failed.")
(mv (change-pc-state
pc-state
;; perhaps we should also adjust abbreviations, but I think that's
;; too complicated (for the user) -- it's simpler to tell him that
;; abbreviations are to be taken literally
:goals
(cons (change goal (car goals)
:hyps (sublis-expr-lst alist
(access goal (car goals) :hyps))
:conc (sublis-expr alist
(access goal (car goals) :conc)))
(cdr goals)))
state))))))
(define-pc-atomic-macro use (&rest args)
(value `(prove :hints
(("Goal" :use ,args
:do-not-induct proof-builder
:do-not *do-not-processes*))
:otf-flg t)))
(define-pc-atomic-macro clause-processor (&rest cl-proc-hints)
(value `(:prove :hints
(("Goal"
:clause-processor (,@cl-proc-hints)
:do-not-induct proof-builder
:do-not *do-not-processes*))
:otf-flg t)))
(define-pc-macro cl-proc (&rest cl-proc-hints)
(value `(:clause-processor ,@cl-proc-hints)))
(define-pc-atomic-macro retain (arg1 &rest rest-args)
(declare (ignore arg1 rest-args))
(when-goals-trip
(let* ((hyps (hyps t))
(bad-nums (non-bounded-nums args 1 (length hyps))))
(if bad-nums
(pprogn (print-no-change
"The following are not in-range hypothesis numbers: ~&0."
(list (cons #\0 bad-nums)))
(mv t nil state))
(let ((retained-hyps (set-difference-eq (fromto 1 (length hyps)) args)))
(if retained-hyps
(value (cons :drop retained-hyps))
(pprogn (print-no-change "All hypotheses are to be retained.")
(mv t nil state))))))))
(define-pc-atomic-macro reduce (&rest hints)
(if (alistp hints)
(value (list :prove :hints
(add-string-val-pair-to-string-val-alist!
"Goal"
:do-not-induct
'proof-builder
hints)
:otf-flg t))
(pprogn (print-no-change
"A REDUCE instruction must be of the form~%~ ~ ~
(:REDUCE (goal_name_1 ...) ... (goal_name_n ...)),~%and hence ~
your instruction,~%~ ~ ~x0,~%is not legal."
(list (cons #\0 (cons :reduce hints))))
(value :fail))))
(define-pc-macro run-instr-on-goal (instr goal-name)
(when-goals-trip
(if (equal goal-name (goal-name t))
(value instr)
(value `(protect (change-goal ,goal-name) ,instr)))))
(defun run-instr-on-goals-guts (instr goal-names)
(declare (xargs :guard (true-listp goal-names)))
(if goal-names
(cons `(run-instr-on-goal ,instr ,(car goal-names))
(run-instr-on-goals-guts instr (cdr goal-names)))
nil))
(define-pc-macro run-instr-on-new-goals (instr existing-goal-names
&optional must-succeed-flg)
(value (cons 'do-strict
(run-instr-on-goals-guts
(if must-succeed-flg instr (list :succeed instr))
(set-difference-equal (goal-names (goals t))
existing-goal-names)))))
(define-pc-macro then (instr &optional completion must-succeed-flg)
(value (list 'do-strict
instr
(list 'run-instr-on-new-goals
(or completion :reduce)
(goal-names (goals t))
must-succeed-flg))))
(define-pc-macro nil ()
(value 'exit))
;; OK, here's a plan for free variables. When the user thinks that
;; maybe he wants to introduce a free variable, he declares the
;; variable to be free at the time he wants to introduce it. What
;; this really does is to introduce an abbreviation &v for (hide x),
;; where x is that variable. Then if later in the proof he wants to
;; instantiate x with trm, then what happens is that the
;; add-abbreviation command is changed so that &v instead abbreviates
;; (hide trm). The instructions are then replayed (or not, if the
;; user wants to cheat at this point -- or perhaps there's a fast
;; heuristic test on suitability of the PUT).
(define-pc-atomic-macro free (var)
(er-let* ((var (trans0 var nil :free)))
(if (variablep var)
(value `(add-abbreviation ,var (hide ,var)))
(pprogn (print-no-change
"The FREE command requires an argument that is a variable, ~
which ~x0 is not."
(list (cons #\0 var)))
(value :fail)))))
(define-pc-macro replay (&optional n replacement-instr)
;; So that I can use instructions-of-state-stack, I'll make
;; n 1-bigger than it ought to be.
(if (or (null n) (and (integerp n) (> n 0)))
(let* ((len (length state-stack))
(n (and n (min (1+ n) len)))
(instrs (instructions-of-state-stack
(if n (take n state-stack) state-stack)
nil)))
(value `(do-strict (undo ,(1- (or n len)))
,@(if replacement-instr
(cons replacement-instr (cdr instrs))
instrs))))
(pprogn (print-no-change "The optional argument to the REPLAY command ~
must be a positive integer, but ~x0 is not!"
(list (cons #\0 n)))
(value :fail))))
(defun instr-name (instr)
;; assumes that instr is an official (stored) instruction
(if (atom instr)
instr
(car instr)))
(defun pc-free-instr-p (var pc-state)
(let ((instr (access pc-state pc-state :instruction)))
(and (eq (instr-name instr) :free)
(eq (cadr instr) var))))
(defun find-possible-put (var state-stack)
;; ***** Should beef this up sometime with heuristics for catching
;; when GENERALIZE or PROVE, for example, makes var "non-free" after all.
;; Attempts to find index (for undoing) of FREE command that introduced var, and if
;; it can't, then returns nil.
(if state-stack
(if (pc-free-instr-p var (car state-stack))
1
(let ((n (find-possible-put var (cdr state-stack))))
(and n (1+ n))))
nil))
(define-pc-macro put (var expr)
(let ((n (find-possible-put var state-stack)))
(if n
(value `(do-strict (replay ,n
(add-abbreviation ,var ,expr))
(remove-abbreviations ,var)))
(pprogn (print-no-change "There is no FREE command for ~x0."
(list (cons #\0 var)))
(value :fail)))))
(define-pc-macro reduce-by-induction (&rest hints)
(if (alistp hints)
(value (cons :reduce
(add-string-val-pair-to-string-val-alist
"Goal"
:induct
t
hints)))
(pprogn (print-no-change
"A REDUCE-BY-INDUCTION instruction must be of the form~%~ ~ ~
(:REDUCE-BY-INDUCTION (goal_name_1 ...) ... (goal_name_n ...)),~%and hence ~
your instruction,~%~ ~ ~x0,~%is not legal."
(list (cons #\0 (cons :reduce-by-induction hints))))
(value :fail))))
(define-pc-macro r (&rest args)
(value (cons :rewrite args)))
(define-pc-atomic-macro sl (&optional backchain-limit)
(value (if backchain-limit
`(s :backchain-limit ,backchain-limit
:in-theory (union-theories (theory 'minimal-theory)
(set-difference-theories
(current-theory :here)
(function-theory :here))))
`(s :in-theory (union-theories (theory 'minimal-theory)
(set-difference-theories
(current-theory :here)
(function-theory :here)))))))
(define-pc-atomic-macro elim ()
(value (list :prove :otf-flg t
:hints
'(("Goal" :do-not-induct proof-builder
:do-not (set-difference-eq *do-not-processes*
'(eliminate-destructors)))))))
(define-pc-macro ex ()
(value '(do-strict save exit)))
(defun save-fc-report-settings ()
(declare (xargs :guard t))
(wormhole-eval
'fc-wormhole
'(lambda (whs)
(let* ((data (wormhole-data whs))
(criteria (cdr (assoc-eq :CRITERIA data)))
(flyp (cdr (assoc-eq :REPORT-ON-THE-FLYP data))))
(set-wormhole-data
whs
(put-assoc-eq :CRITERIA-SAVED criteria
(put-assoc-eq :REPORT-ON-THE-FLYP-SAVED flyp
data)))))
nil))
(defun restore-fc-report-settings ()
(declare (xargs :guard t))
(wormhole-eval
'fc-wormhole
'(lambda (whs)
(let* ((data (wormhole-data whs))
(criteria-saved (cdr (assoc-eq :CRITERIA-SAVED data)))
(flyp-saved (cdr (assoc-eq :REPORT-ON-THE-FLYP-SAVED data))))
(set-wormhole-data
whs
(put-assoc-eq :CRITERIA criteria-saved
(put-assoc-eq :REPORT-ON-THE-FLYP flyp-saved
data)))))
nil))
(define-pc-help type-alist (&optional concl-flg govs-flg fc-report-flg)
(when-goals
(let ((conc (conc t))
(current-addr (current-addr t))
(w (w state))
(govs-flg (if (cdr args) govs-flg (not concl-flg))))
(prog2$
(and fc-report-flg
(prog2$ (save-fc-report-settings)
(prog2$ (wormhole-eval ; (set-fc-criteria t) without state
'fc-wormhole
'(lambda (whs)
(set-wormhole-data
whs
(put-assoc-eq :CRITERIA
'((t t t))
(wormhole-data whs))))
nil)
(set-fc-report-on-the-fly t))))
(mv-let
(flg hyps-type-alist ttree)
(hyps-type-alist
(cond (concl-flg
(union-equal (hyps t)
(cond (govs-flg
(add-to-set-equal
(dumb-negate-lit conc)
(governors conc current-addr)))
(t (list (dumb-negate-lit conc))))))
(govs-flg (union-equal (hyps t)
(governors conc current-addr)))
(t (hyps t)))
(make-pc-ens (pc-ens t) state)
w
state)
(declare (ignore ttree))
(prog2$
(and fc-report-flg (restore-fc-report-settings))
(if flg
(io? proof-builder nil state
nil
(fms0 "*** Contradiction in the hypotheses! ***~%The S ~
command should complete this goal.~|"))
(io? proof-builder nil state
(hyps-type-alist w)
(pprogn
(fms0 "~|Current type-alist, including forward chaining:~%")
(prog2$ (print-type-alist hyps-type-alist w)
state))))))))))
(define-pc-macro print-main ()
(value '(print (caddr (event-name-and-types-and-raw-term (state-stack))))))
(define-pc-macro pso ()
(value '(lisp (pso))))
(define-pc-macro psog ()
(value '(lisp (psog))))
(define-pc-macro pso! ()
(value '(lisp (pso!))))
(define-pc-macro acl2-wrap (x)
(value `(lisp ,x)))
(defmacro acl2-wrap (x)
; This is provided for compatibility with an interface of the same name,
; provided for evaluating forms in raw Lisp.
x)
(define-pc-macro check-proved-goal (goal-name cmd)
(if (member-equal goal-name (goal-names (goals)))
(er soft 'check-proved
"The command ~x0 failed to prove the goal ~x1."
cmd
goal-name)
(value 'succeed)))
(define-pc-macro check-proved (x)
(when-goals-trip
(let ((goal-name (goal-name)))
(value
`(do-all
,x
(quiet (check-proved-goal ,goal-name ,x)))))))
(define-pc-atomic-macro forwardchain (hypn &optional hints quiet-flg)
(when-goals-trip
(let* ((hyps (hyps))
(len (length hyps)))
(cond
((null hyps)
(mv-let
(erp val state)
(er soft 'forwardchain
"The are no top-level hypotheses. Hence it makes no sense to ~
forward chain here.")
(declare (ignore erp val))
(value 'fail)))
((and (integerp hypn)
(< 0 hypn)
(<= hypn len))
(let ((hyp (nth (1- hypn) hyps)))
(case-match hyp
(('implies ant consequent)
(let ((instr
`(protect
(claim ,consequent 0 :do-not-flatten t)
(drop ,hypn)
;; Now prove the consequent, leaving the original goal
;; unproved (as the new hypothesis is not necessarily
;; expected to match the conclusion).
change-goal
(demote ,hypn)
(claim ,ant
,@(if hints
'(:hints hints)
nil))
(demote ,len)
(check-proved
(s :backchain-limit 0
:in-theory (theory 'minimal-theory))))))
(if quiet-flg
(value (list 'quiet instr))
(value instr))))
(& (mv-let
(erp val state)
(er soft 'forwardchain
"The ~n0 hypothesis~| ~x1~|is not of the form (implies x ~
y)."
(list hypn)
(untrans0 (nth (1- hypn) hyps) t (abbreviations)))
(declare (ignore erp val))
(value 'fail))))))
(t (mv-let
(erp val state)
(er soft 'forwardchain
"The index ~x0 is not a valid index into the hypothesis list. ~
The valid indices are the integers from 1 to ~x1."
hypn len)
(declare (ignore erp val))
(value 'fail)))))))
(define-pc-atomic-macro bdd (&rest kw-listp)
(let ((bdd-hint (if (assoc-keyword :vars kw-listp)
kw-listp
(list* :vars nil kw-listp))))
(value `(:prove :hints
(("Goal" :bdd ,bdd-hint))))))
(define-pc-macro runes (&optional flg)
(value `(print (merge-sort-runes
(all-runes-in-ttree (,(if flg 'tag-tree 'local-tag-tree))
nil)))))
(define-pc-macro lemmas-used (&optional flg)
(value `(runes ,flg)))
(defun goal-terms (goals)
; Initially terms is empty, and we return the list of terms represented by
; goals.
(if (endp goals)
nil
(cons (make-implication (access goal (car goals) :hyps)
(access goal (car goals) :conc))
(goal-terms (cdr goals)))))
(defun wrap1-aux1 (kept-goal-names all-goals kept-goals removed-goals)
; Initially, accumulators removed-goals and kept-goals are empty. We partition
; all-goals into those goals whose names are in kept-goal-names and the rest,
; returning (mv kept-goals1 removed-goals1) where removed-goals1 and
; kept-goals1 extend removed-goals and kept-goals, respectively. The goals in
; all-goals are returned in the same order as they appear in all-goals.
(cond
((endp all-goals)
(mv (reverse kept-goals) (reverse removed-goals)))
((member-equal (access goal (car all-goals) :goal-name)
kept-goal-names)
(wrap1-aux1 kept-goal-names (cdr all-goals)
(cons (car all-goals) kept-goals)
removed-goals))
(t
(wrap1-aux1 kept-goal-names (cdr all-goals)
kept-goals
(cons (car all-goals) removed-goals)))))
(defun wrap1-aux2 (sym index goals kept-goals removed-goals)
(if (endp goals)
(mv (reverse kept-goals) (reverse removed-goals))
(let* ((goal (car goals))
(goal-name (access goal goal :goal-name)))
(if (and (consp goal-name)
(eq sym (car goal-name))
(<= index (cdr goal-name)))
(wrap1-aux2 sym index (cdr goals)
kept-goals
(cons (car goals) removed-goals))
(wrap1-aux2 sym index (cdr goals)
(cons (car goals) kept-goals)
removed-goals)))))
(define-pc-primitive wrap1 (&optional kept-goal-names)
(let* ((current-goal (car goals))
(current-goal-name (access goal current-goal :goal-name)))
(cond
((not (true-listp kept-goal-names))
(print-no-change2
"The (optional) argument to wrap1 must be a true list of goal names. ~
~x0 is thus illegal."
(list (cons #\0 kept-goal-names))))
((and (null kept-goal-names)
(not (and (consp current-goal-name)
(symbolp (car current-goal-name))
(integerp (cdr current-goal-name)))))
(print-no-change2
"The current goal's name, ~x0, is not of the form (SYMBOL . N) for ~
integer N."
(list (cons #\0 current-goal-name))))
(t
(mv-let (kept-goals removed-goals)
(if kept-goal-names
(wrap1-aux1 kept-goal-names (cdr goals) nil nil)
(wrap1-aux2 (car current-goal-name)
(cdr current-goal-name)
(cdr goals) nil nil))
(pprogn
(io? proof-builder nil state
(current-goal-name removed-goals)
(if removed-goals
(fms0 "~|Conjoining the following goals into the current ~
goal, ~x0:~| ~X1n~%"
(list (cons #\0 current-goal-name)
(cons #\1 (goal-names removed-goals))
(cons #\n nil)))
(fms0 "~|NOTE (wrap1): There are no goals to conjoin into the ~
current goal, but we proceed anyhow.~%")))
(mv (change-pc-state
pc-state
:goals
(cons (change goal current-goal
:conc (conjoin
(goal-terms
(cons current-goal removed-goals)))
:hyps nil
:current-addr nil)
kept-goals))
state)))))))
(define-pc-atomic-macro wrap (&rest instrs)
(cond
((null instrs)
(pprogn (print-no-change
"Wrap takes at least one argument.")
(value :fail)))
(t (let ((goal-names (goal-names (goals t))))
(value
`(sequence
((do-all ,@instrs)
(quiet (wrap1 ,goal-names))
(lisp (io? proof-builder nil state
()
(let ((new-current-goal-name
(access goal (car (goals)) :goal-name))
(state-stack (state-stack)))
(when-goals
(fms0 (if (member-equal new-current-goal-name
',goal-names)
"~|~%NOTE: Created no new goals. Current ~
goal:~% ~X0n~|"
"~|~%NOTE: Created ONLY one new goal, which ~
is the current goal:~% ~X0n~|")
(list (cons #\0 new-current-goal-name)
(cons #\n nil))))))))
t nil nil t))))))
(define-pc-atomic-macro wrap-induct (&optional raw-term)
(value (if raw-term
`(wrap (induct ,raw-term))
`(wrap induct))))
(define-pc-macro finish-error (instrs)
(er soft 'finish
"~%The following instruction list created at least one subgoal:~|~x0~|"
instrs))
(define-pc-macro finish (&rest instrs)
(value `(then (check-proved (do-strict ,@instrs))
(finish-error ,instrs)
t)))
(defun show-geneqv (x with-runes-p)
(cond ((endp x) nil)
(t (cons (if with-runes-p
(list (access congruence-rule (car x) :equiv)
(access congruence-rule (car x) :rune))
(access congruence-rule (car x) :equiv))
(show-geneqv (cdr x) with-runes-p)))))
(define-pc-macro geneqv (&optional with-runes-p)
(value `(print (show-geneqv
(geneqv-at-subterm-top (conc)
(current-addr)
(pc-ens)
(w state))
',with-runes-p))))
; Support for :instructions as hints
(defun goals-to-clause-list (goals)
(if (endp goals)
nil
(cons (append (dumb-negate-lit-lst (access goal (car goals) :hyps))
(list (access goal (car goals) :conc)))
(goals-to-clause-list (cdr goals)))))
(defun proof-builder-clause-list (state)
(goals-to-clause-list (goals)))
(defun proof-builder-cl-proc (cl instr-list state)
(let ((ctx 'proof-builder-cl-proc))
(cond
((null cl)
(er soft ctx
"There is no legal way to prove a goal of NIL!"))
(t
(let ((term (make-implication (dumb-negate-lit-lst (butlast cl 1))
(car (last cl))))
(wrld (w state))
(new-pc-depth (1+ (pc-value pc-depth))))
(er-let* ((new-inhibit-output-lst
(cond
((and (consp instr-list)
(true-listp (car instr-list))
(eq (make-pretty-pc-command (caar instr-list))
:COMMENT)
(eq (cadar instr-list) 'inhibit-output-lst))
(cond ((eq (caddar instr-list) :same)
(value (f-get-global 'inhibit-output-lst state)))
(t (chk-inhibit-output-lst (caddar instr-list)
:instructions
state))))
(t (value (union-eq '(prove proof-tree proof-builder)
(f-get-global 'inhibit-output-lst
state))))))
(outputp (value (not (subsetp-eq
'(prove proof-builder proof-tree)
new-inhibit-output-lst)))))
(state-global-let*
((inhibit-output-lst new-inhibit-output-lst)
(pc-output (f-get-global 'pc-output state)))
(mv-let
(erp clause-list state)
(pprogn (pc-assign pc-depth new-pc-depth)
(cond (outputp
(io? prove nil state
(new-pc-depth)
(fms0 "~|~%[[~x0> Executing ~
proof-builder instructions]]~%~%"
(list (cons #\0 new-pc-depth)))))
(t state))
(pc-assign next-pc-enabled-array-suffix
(1+ (pc-value
next-pc-enabled-array-suffix)))
(mv-let
(erp pc-val state)
(pc-main term
(untranslate term t wrld)
nil ; event-name
nil ; rule-classes
instr-list
'(signal value) ; quit-conditions
t ; pc-print-prompt-and-instr-flg, suitable for :pso
nil ; in-verify-flg
state)
(pprogn
(cond (outputp (io? prove nil state
(new-pc-depth)
(fms0 "~|~%[[<~x0 Completed ~
proof-builder ~
instructions]]~%"
(list (cons #\0 new-pc-depth)))))
(t state))
(cond ((or erp (null pc-val))
(let ((name (intern
(concatenate
'string
"ERROR"
(coerce (explode-atom new-pc-depth
10)
'string))
"KEYWORD")))
(pprogn
(io? error nil state
(name)
(fms0 "~%Saving proof-builder error ~
state; see :DOC instructions. To ~
retrieve:~|~x0"
(list (cons #\0 `(retrieve ,name)))))
(save-fn name (ss-alist) state)
(er soft ctx
"The above :INSTRUCTIONS hint failed. ~
For a discussion of ``failed'', follow ~
the link to the SEQUENCE command under ~
:DOC proof-builder-commands."))))
(t (value (proof-builder-clause-list
state)))))))
(cond (erp (silent-error state))
(t (value clause-list)))))))))))
#+acl2-loop-only
(define-trusted-clause-processor
proof-builder-cl-proc
nil)
#+acl2-loop-only
(add-custom-keyword-hint :instructions
(splice-keyword-alist
:instructions
(list :clause-processor
(list :function
'proof-builder-cl-proc
:hint
(kwote val)))
keyword-alist))
|