/usr/share/acl2-8.0dfsg/translate.lisp is in acl2-source 8.0dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 | ; ACL2 Version 8.0 -- A Computational Logic for Applicative Common Lisp
; Copyright (C) 2017, Regents of the University of Texas
; This version of ACL2 is a descendent of ACL2 Version 1.9, Copyright
; (C) 1997 Computational Logic, Inc. See the documentation topic NOTE-2-0.
; This program is free software; you can redistribute it and/or modify
; it under the terms of the LICENSE file distributed with ACL2.
; This program is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
; LICENSE for more details.
; Written by: Matt Kaufmann and J Strother Moore
; email: Kaufmann@cs.utexas.edu and Moore@cs.utexas.edu
; Department of Computer Science
; University of Texas at Austin
; Austin, TX 78712 U.S.A.
(in-package "ACL2")
(mutual-recursion
(defun termp (x w)
(declare (xargs :guard (plist-worldp-with-formals w)))
(cond ((atom x) (legal-variablep x))
((eq (car x) 'quote)
(and (consp (cdr x))
(null (cddr x))))
((symbolp (car x))
(let ((arity (arity (car x) w)))
(and arity
(term-listp (cdr x) w)
(eql (length (cdr x)) arity))))
((and (consp (car x))
(true-listp (car x))
(eq (car (car x)) 'lambda)
(eql 3 (length (car x)))
(arglistp (cadr (car x)))
(termp (caddr (car x)) w)
(null (set-difference-eq
(all-vars (caddr (car x)))
(cadr (car x))))
(term-listp (cdr x) w)
(eql (length (cadr (car x)))
(length (cdr x))))
t)
(t nil)))
(defun term-listp (x w)
(declare (xargs :guard (plist-worldp-with-formals w)))
(cond ((atom x) (equal x nil))
((termp (car x) w) (term-listp (cdr x) w))
(t nil)))
)
(defun term-list-listp (l w)
(declare (xargs :guard (plist-worldp-with-formals w)))
(if (atom l)
(equal l nil)
(and (term-listp (car l) w)
(term-list-listp (cdr l) w))))
(defun computed-hint-tuple-listp (x wrld)
(cond
((consp x)
(let ((tuple (car x)))
(and (true-listp tuple)
(eq (car tuple) 'EVAL-AND-TRANSLATE-HINT-EXPRESSION)
(booleanp (caddr tuple))
(termp (cadddr tuple) wrld)
(computed-hint-tuple-listp (cdr x) wrld))))
(t (null x))))
(table default-hints-table nil nil
:guard
(case key
((t) (true-listp val))
(:override (computed-hint-tuple-listp val world))
(t nil)))
(table default-hints-table nil nil :clear)
(defun macro-args (x w)
(declare (xargs :guard (and (symbolp x) (plist-worldp w))))
(getpropc x 'macro-args
'(:error "We thought macro-args was only called if there were ~
(zero or more) macro-args.")
w))
(defconst *macro-expansion-ctx* "macro expansion")
(defun error-trace-suggestion (two-leading-spaces)
; Warning: Do not eliminate the message about print-gv without first reading
; the comment about it in ev-fncall-guard-er-msg.
(declare (xargs :mode :program))
(msg "~s0To debug see :DOC print-gv, see :DOC trace, and see :DOC wet."
(if two-leading-spaces
" "
"")))
(defun ignored-attachment-msg (ignored-attachment)
(cond (ignored-attachment (msg "~|~%Note that because of logical ~
considerations, attachments (including ~x0) ~
must not be called in this context. See ~
:DOC ignored-attachment."
ignored-attachment))
(t "")))
(defun ev-fncall-null-body-er-msg (ignored-attachment fn args)
(cond
((eq fn :non-exec)
; This is a special case for calls of (non-exec form), where in this case, args
; is form.
(assert$
(null ignored-attachment) ; This case has nothing to do with attachments.
(msg "ACL2 has been instructed to cause an error because of an attempt ~
to evaluate the following form (see :DOC non-exec):~|~% ~
~x0.~|~%~@1"
args ; actually, the form
(error-trace-suggestion nil))))
((consp fn)
; This is a special case for errors detected by the code that supports the
; evaluation (at the top-level of the ACL2 loop) of terms ancestrally dependent
; upon the constrained functions in apply$ development. In particular, if
; (consp fn) is true -- which only happens when we're executing the attachments
; for those constrained functions -- then fn is the msg we're supposed to
; return. The basic idea is that those attachments detect a wide variety of
; errors and rather than produce a single generic error message (as we would do
; if this clause were eliminated) we let the caller formulate the message.
; Note: We could assert (msgp fn) but it is weaker than the assertion below.
(assert$
(and (stringp (car fn))
(alistp (cdr fn))) ; character-alistp isn't defined yet...
fn))
(t (msg "ACL2 cannot ev the call of non-executable function ~x0 on ~
argument list:~|~%~x1~@2~|~%~@3"
fn
args
(ignored-attachment-msg ignored-attachment)
(error-trace-suggestion nil)))))
(defun ev-fncall-null-body-er (ignored-attachment fn args latches)
(mv t
(ev-fncall-null-body-er-msg ignored-attachment fn args)
latches))
(defun ev-fncall-creator-er-msg (fn)
(msg
"An attempt has been made to call the stobj creator function ~x0. This ~
error is being reported even though guard-checking may have been turned ~
off, because ACL2 does not support non-compliant live stobj manipulation. ~
~ If you did not explicitly call ~x0 then this error is probably due to ~
an attempt to evaluate a with-local-stobj form directly in the top-level ~
loop. Such forms are only allowed in the bodies of functions and in ~
theorems. Also see :DOC with-local-stobj.~@1"
fn
(error-trace-suggestion t)))
(defun unknown-pkg-error-msg (fn pkg-name)
(msg
"The call ~x0 is illegal because the argument is not the name of a package ~
currently known to ACL2."
(list fn pkg-name)))
(defun illegal-msg ()
(msg "Evaluation aborted.~@0"
(error-trace-suggestion t)))
(defun program-only-er-msg (fn args safe-mode)
(msg
"The call ~x0~|is an illegal call of a function that has been marked as ~
``program-only,'' presumably because it has special raw Lisp code~@1. ~
See :DOC program-only for further explanation and a link to possible ~
workarounds."
(cons fn args)
(if safe-mode
" and safe-mode is active"
"")))
(defconst *safe-mode-guard-er-addendum*
; We could add, as a reason for using safe-mode, the application of
; magic-ev-fncall to :program-mode functions. But that might scare off
; beginners, and is sufficiently covered by "another operation">
" The guard is being checked because this function is a primitive and a ~
\"safe\" mode is being used for defconst, defpkg, macroexpansion, or ~
another operation where safe mode is required.")
(defun find-first-non-nil (lst)
(cond ((endp lst) nil)
(t (or (car lst)
(find-first-non-nil (cdr lst))))))
; For a discussion of stobj latching, see Stobj Latching below.
(defun latch-stobjs1 (stobjs-out vals latches)
(cond ((endp stobjs-out) latches)
((car stobjs-out)
(let ((temp (assoc-eq (car stobjs-out) latches)))
(cond
; Suppose (car stobjs-out) is some stobj, $st, and (car vals) is the
; new value, val. We wish to bind '$st in latches to val. It is an
; error if we can't find a binding for '$st. Otherwise, put-assoc-eq
; will do the job. But in the special, live, case, val is EQ to the
; current binding of '$st in latches, because all the objects are
; live. In this case, we can avoid the put-assoc-eq and just leave
; latches unchanged. The clause below is safe whether val is a live
; object or not: if it's the same thing as what is there, the
; put-assoc-eq won't change latches anyway. But the real intent of
; this clause is make the final value of latches, in general, EQ to
; the original value of latches.
((not temp)
(er hard! 'latch-stobjs
"We are trying to latch a value for the single-threaded ~
object named ~x0, but there is no entry for that name in ~
the stobj latches provided. The possible latch names are ~
~&1.~#2~[~/ This error most likely is caused by the ~
attempt to ev a form that is not ``supposed'' to mention ~
stobjs but does. Often when dealing with forms that are ~
not supposed to mention stobjs we call ev with last ~
argument NIL and then ignore the resulting latches.~]"
(car stobjs-out)
(strip-cars latches)
(if latches 0 1)))
#-acl2-loop-only
((eq (cdr temp) (car vals))
(latch-stobjs1 (cdr stobjs-out)
(cdr vals)
latches))
(t
#-acl2-loop-only
(er hard! 'latch-stobjs1
"We had thought that the values in user-stobj-alist match up ~
with the values of corresponding stobjs. Please contact ~
the ACL2 implementors.")
#+acl2-loop-only
(latch-stobjs1 (cdr stobjs-out)
(cdr vals)
(put-assoc-eq (car stobjs-out)
(car vals)
latches))))))
(t (latch-stobjs1 (cdr stobjs-out)
(cdr vals)
latches))))
(defun latch-stobjs (stobjs-out vals latches)
; Update the latches so that it contains the stobj objects returned in
; val. Val is either a single value or a list of 2 or more values, as
; indicated by stobjs-out. If stobjs-out is nil it is treated as a
; list of as many nils as necessary and no change is made to val. If
; latches is nil, we do nothing. This means that we are not recording
; the ``current'' stobjs and one must be careful to obey the
; restrictions in the Essay on EV.
(cond ((null latches) latches)
((null stobjs-out) latches)
((null (cdr stobjs-out))
(cond ((car stobjs-out)
; We call latch-stobjs1 rather than put-assoc-eq to get the error check.
(latch-stobjs1 stobjs-out (list vals) latches))
(t latches)))
(t (latch-stobjs1 stobjs-out vals latches))))
(defun actual-stobjs-out1 (stobjs-in args user-stobj-alist)
(cond ((endp stobjs-in)
(assert$ (null args) nil))
(t (let ((rest (actual-stobjs-out1 (cdr stobjs-in) (cdr args)
user-stobj-alist)))
(cond ((or (null (car stobjs-in))
(eq (car stobjs-in) 'state))
rest)
(t (let ((pair (rassoc-equal (car args) user-stobj-alist)))
(assert$ pair
(cond ((eq (car stobjs-in) (car pair))
rest)
(t (acons (car stobjs-in)
(car pair)
rest)))))))))))
(defun apply-symbol-alist (alist lst acc)
; Alist represents a function to apply to each element of lst, a list of
; symbols. (This function is the identity on elements not in the domain of
; alist.) The resulting list is accumulated into acc and reversed.
(cond ((endp lst) (reverse acc))
(t (apply-symbol-alist alist
(cdr lst)
(cons (let ((pair (assoc-eq (car lst) alist)))
(cond (pair (cdr pair))
(t (car lst))))
acc)))))
(defun apply-inverse-symbol-alist (alist lst acc)
; See apply-symbol-alist. Here, though, we apply the inverse of the mapping
; represented by alist. We assume that the cdrs of alist are suitable for
; testing with eq (i.e., symbols or stobjs).
(cond ((endp lst) (reverse acc))
(t (apply-inverse-symbol-alist
alist
(cdr lst)
(cons (let ((pair (rassoc-eq (car lst) alist)))
(cond (pair (car pair))
(t (car lst))))
acc)))))
(defun actual-stobjs-out (fn args wrld user-stobj-alist)
(let ((stobjs-out (stobjs-out fn wrld)))
(cond ((all-nils stobjs-out) ; optimization for common case
stobjs-out)
(t (let ((stobjs-in (stobjs-in fn wrld)))
(let ((alist
(actual-stobjs-out1 stobjs-in args user-stobj-alist)))
(cond (alist (apply-symbol-alist alist stobjs-out nil))
(t stobjs-out))))))))
#-acl2-loop-only
(defvar **1*-as-raw*
; When a *1* function is called and this variable is true, that function should
; behave as its corresponding raw Lisp function, except that critical guards
; for stobj updaters are checked. We can live with that rather vague
; specification because this variable is nil unless we are under the call of a
; program mode function.
; For the sake of simplicity in the discussion below, we ignore the possibility
; that guard-checking is set to :none or :all and we ignore safe-mode. Also,
; we assume that the value of state global 'check-invariant-risk is non-nil, as
; should always be the case unless someone is hacking; otherwise, the effect of
; this variable is defeated.
; Oneify-cltl-code uses this variable, **1*-as-raw*, to arrange that when a
; *1* :logic-mode function that calls mbe is itself called under a *1*
; :program-mode function, then the :exec code of that mbe call is evaluated,
; not the :logic code. Our approach is basically as follows. Globally,
; **1*-as-raw* is nil. But we arrange the following, and explain below.
;
; (a) The *1* code for an invariant-risk :program mode function binds
; **1*-as-raw* to t.
;
; (b) The *1* code for an mbe call reduces to its *1* :exec code when
; **1*-as-raw* is true.
;
; (c) Raw-ev-fncall binds **1*-as-raw* to nil for :logic mode functions.
;
; (d) Oneify binds **1*-as-raw* to nil when ec-call is applied to a :logic
; mode function.
; Without invariant-risk, none of this would be necessary: a :program mode
; function call would lead to raw Lisp evaluation, where each mbe call
; macroexpands to its :exec code. But with invariant-risk, we need to stick
; with *1* execution in order to avoid making ill-guarded stobj updater calls,
; in which case (a) and (b) save us from execution of :logic code from an mbe
; call. Note that the use of :exec code from mbe calls can be important for
; performance, as pointed out by Jared Davis.
; To see why we need (c), consider the following example.
; (defstobj st (fld :type integer :initially 0))
;
; (defun lgc (st)
; (declare (xargs :mode :logic
; :stobjs st
; :verify-guards nil))
; (mbe :logic (prog2$ (cw "@@@LOGIC@@@~%")
; (update-fld 3 st))
; :exec (prog2$ (cw "@@@EXEC@@@~%")
; (update-fld 4 st))))
;
; (defun foo (state st)
; (declare (xargs :mode :program :stobjs (state st)))
; (let ((st (update-fld 7 st)))
; (mv-let (erp val state)
; (trans-eval
; '(thm (equal (with-local-stobj
; st
; (mv-let (val st)
; (let ((st (lgc st)))
; (mv (fld st) st))
; val))
; 4)) 'top state t)
; (mv erp val state st))))
; The proof should fail when calling (foo state st), since logically, the value
; of the with-local-stobj form is 3, not 4. But since foo has invariant-risk,
; **1*-as-raw* is bound to t when calling *1*foo, so we might expect that
; evaluation of the mbe form under (lgc st) would use the :exec form, leading
; erroneously to a successful proof! However, we bind **1*-as-raw* to nil in
; raw-ev-fncall precisely to avoid such a problem.
; To see why we need (d), see the example in a comment in oneify that starts
; with "(defun f-log".
nil)
(defun translated-acl2-unwind-protectp4 (term)
; This hideous looking function recognizes those terms that are the
; translations of (acl2-unwind-protect "expl" body cleanup1 cleanup2). The
; acl2-unwind-protect macro expands into an MV-LET and that MV-LET is
; translated in one of two ways, depending on whether or not the two cleanup
; forms are equal. We look for both translations. We return 4 results. The
; first is t or nil according to whether term is of one of the two forms. If
; nil, the other results are nil. If term is of either form, we return in the
; other three results: body, cleanup1 and cleanup2 such that term is equivalent
; to (acl2-unwind-protect "expl" body cleanup1 cleanup2).
; WARNING: This function must be kept in sync with the defmacro of
; acl2-unwind-protect, the translate1 clauses dealing with mv-let and let, and
; the defmacro of mv-let.
(case-match
term
((('LAMBDA (mv . vars)
(('LAMBDA ('ACL2-UNWIND-PROTECT-ERP
'ACL2-UNWIND-PROTECT-VAL 'STATE . vars)
('IF 'ACL2-UNWIND-PROTECT-ERP
('(LAMBDA (STATE ACL2-UNWIND-PROTECT-VAL
ACL2-UNWIND-PROTECT-ERP)
(CONS ACL2-UNWIND-PROTECT-ERP
(CONS ACL2-UNWIND-PROTECT-VAL
(CONS STATE 'NIL))))
cleanup1 'ACL2-UNWIND-PROTECT-VAL 'ACL2-UNWIND-PROTECT-ERP)
('(LAMBDA (STATE ACL2-UNWIND-PROTECT-VAL
ACL2-UNWIND-PROTECT-ERP)
(CONS ACL2-UNWIND-PROTECT-ERP
(CONS ACL2-UNWIND-PROTECT-VAL
(CONS STATE 'NIL))))
cleanup2 'ACL2-UNWIND-PROTECT-VAL 'ACL2-UNWIND-PROTECT-ERP)))
'(MV-NTH '0 mv)
'(MV-NTH '1 mv)
'(MV-NTH '2 mv)
. vars))
body . vars)
(declare (ignore mv vars))
; Does it matter what mv is? In principle it surely does: if mv is some
; screwy variable then it might be that this term doesn't actually have the
; semantics we are about to ascribe to it. We know mv is not in vars since
; this is a termp and mv and vars are used in the same lambda arglist. But
; what if mv is, say, ACL2-UNWIND-PROTECT-ERP? Is the semantics affected?
; No: mv's binding, no matter what name we chose outside of vars, is
; unaffected. Similarly, the names in vars are irrelevant, given that we know
; they don't include ACL2-UNWIND-PROTECT-ERP, etc., which is assured by the
; same observation that term is a termp.
(mv t body cleanup1 cleanup2))
((('LAMBDA (mv . vars)
(('LAMBDA ('ACL2-UNWIND-PROTECT-ERP
'ACL2-UNWIND-PROTECT-VAL 'STATE . vars)
('(LAMBDA (STATE ACL2-UNWIND-PROTECT-VAL
ACL2-UNWIND-PROTECT-ERP)
(CONS ACL2-UNWIND-PROTECT-ERP
(CONS ACL2-UNWIND-PROTECT-VAL
(CONS STATE 'NIL))))
cleanup1 'ACL2-UNWIND-PROTECT-VAL 'ACL2-UNWIND-PROTECT-ERP))
'(MV-NTH '0 mv)
'(MV-NTH '1 mv)
'(MV-NTH '2 mv)
. vars))
body . vars)
(declare (ignore mv vars))
; See comment above.
(mv t body cleanup1 cleanup1))
(& (mv nil nil nil nil))))
(defun translated-acl2-unwind-protectp (term)
; Just for convenience we define the predicate version of translated-acl2-
; unwind-protectp4 to return t or nil according to whether term is the
; translation of an acl2-unwind-protect expression.
(mv-let (ans body cleanup1 cleanup2)
(translated-acl2-unwind-protectp4 term)
(declare (ignore body cleanup1 cleanup2))
ans))
; Essay on EV
; Ev, below, will take the following arguments:
; (ev form alist state latches hard-error-returns-nilp aok)
; It returns (mv erp val latches').
; Ev is actually defined in terms of ev-rec, an analogous function that
; takes the ACL2 world rather than state.
; Hard-error-returns-nil is explained in the comment in hard-error.
; We do not deal with it further below.
; Aok is short for "Attachments are OK", and as the name suggests,
; allows the use of attachments when non-nil. This parameter is discussed at
; some length near the end of this Essay. Till then, we assume that its value
; is nil.
; Imprecise Spec: If erp is t, some evaluation error occurred (e.g.,
; an unbound variable was encountered). Otherwise, erp is nil, val is
; the value of form under alist, and latches' is the final value of
; all the single-threaded objects after the evaluation of form.
; But there are many subtle issues here having to do with the handling
; of single-threaded objects. In the following discussion we use
; (bump state) as a generic function that changes state, as by
; incrementing a global variable in state and returning the modified
; state.
; Assumptions on the input to EV:
; (0) If latches is nil, then either form is known not to modify any
; stobjs (in which case it really doesn't matter what latches is) or
; else there are no live stobjs in alist. In short, if latches is
; nil, we don't keep track of the current values of the stobjs but you
; better not ev a form on a live object (because it will actually
; change the object but not record the new current value on latches).
; (1) If latches is non-nil, then if a stobj name, such as STATE, is bound
; in alist to some value s then
; (1a) s is of the correct shape for that stobj and
; (1b) that stobj name is bound in latches to s.
; Informally, the initial values of the stobjs in alist are identical
; to their initial current values and consistent with the stobj
; definitions.
; (2) If alist binds a stobj name to a live object, then form must be
; single-threaded.
; Clarification of the output spec:
; If no stobj names are bound in alist to live objects, then the
; latches on input may be nil and the final latches may
; be ignored.
; If form is not single-threaded, the meaning of the final latches
; is essentially random.
; In the most common case (where we are using ev to evaluate a form
; typed by the user at the top-level), state is *the-live-state*, all
; the stobj names are bound in alist to their current live objects
; (including 'state to *the-live-state*), and form is single-threaded.
; Observations about the Assumptions
; The only way alist can bind a stobj name to a live object is if we
; did that in our own source code. In particular, a user cannot write
; (list (cons 'state state) (cons '$s $s)), unless the user has access to
; something like coerce-state-to-object. These comments assume such
; magic functions have been made untouchable.
; No live object can be in the final latches unless they were
; there to begin with. If a live object is in the final current
; stobjs, then it was put there by a stobj producing fncall. But that
; would mean there was a live stobj in alist. That, in turn, means
; the same live object was originally in the initial current stobjs.
; Thus, the only time live objects appear in the final latches
; is if we're in our own source code.
; We guarantee, via functions like trans-eval, that assumptions (1)
; and (2) are met in all our calls of ev.
; Further Discussion of the Assumptions:
; Suppose that the symbol 'state is bound in alist to s. Suppose the
; value of the formal parameter state is d. Both s and d are
; state-ps. We call the latter state d because it is the state from
; which ev obtains the definitions of the functions. We also use d to
; determine whether guards should be checked. D is not changed in ev,
; except to decrement the big clock in it to ensure termination.
; By assumption (1), we know that the binding of state in
; latches is s, initially. But in general, the two bindings
; can differ: the binding of state in alist is the initial value of
; state and the binding in the final latches is the final value
; of state.
; Generally speaking, d is *the-live-state*. Indeed, at one point we
; believed:
; The Bogus Live State Claim for :Program Mode Functions: If a
; :program mode function takes STATE as an argument then the function
; can only be evaluated on the live state.
; Below I give a ``proof'' of this claim, for a call of ev stemming
; from a legal form typed by the user to the top-level ACL2 loop.
; Then I give a counterexample!
; ``PROOF:'' The call was translated. Since ev is a :program mode
; function, the call cannot appear in a theorem or other context in
; which the stobj restrictions were not enforced. Hence, the only
; allowable term in the state slot is state itself. Hence, state must
; be *the-live-state*, as it is at the top of LP.
; Now here is a way to run ev from within the loop on a state other
; than the live state: Ev a call of ev. Here is a concrete form.
; First, go outside the loop and call (build-state) to obtain a dummy
; state. I will write that '(NIL ... NIL). At present, it has 15
; components, most of which are nil, but some, like the initial global
; table, are non-trivial. Then inside the loop execute:
; (let ((st (build-state)))
; (ev `(ev 'a '((a . 1)) ',st 'nil 'nil 't) nil state nil nil t))
; The outermost state above is indeed the live one, but the inner ev is
; executed on a dummy state. The computation above produces the result
; (NIL (NIL 1 NIL) NIL).
; The inner state object has to pass the state-p predicate if guard
; checking is enabled in the outer state. If guard checking is turned
; off in the live state, the following example shows the inner ev
; running on something that is not even a state-p. To make this
; example work, first evaluate :set-guard-checking nil.
; (ev '(ev 'a '((a . 1)) '(nil nil nil nil nil 0) 'nil 'nil 't)
; nil state nil nil t)
; The 0, above, is the big-clock-entry and must be a non-negative
; integer. The result is (NIL (NIL 1 NIL) NIL).
; Finally, the example below shows the inner ev running a function,
; foo, defined in the dummy world. It doesn't matter if foo is
; defined in the live state or not. The example below shows the state
; returned by build-state at the time of this writing, but modified to
; have a non-trivial CURRENT-ACL2-WORLD setting giving FORMALS and a
; BODY to the symbol FOO.
; (ev '(ev '(foo a)
; '((a . 1))
; '(NIL NIL
; ((ACCUMULATED-TTREE)
; (AXIOMSP)
; (BDDNOTES)
; (CERTIFY-BOOK-FILE)
; (CONNECTED-BOOK-DIRECTORY)
; (CURRENT-ACL2-WORLD
; . ((foo formals . (x)) (foo body . (cons 'dummy-foo x))))
; (CURRENT-PACKAGE . "ACL2")
; (EVISCERATE-HIDE-TERMS)
; (FMT-HARD-RIGHT-MARGIN . 77)
; (FMT-SOFT-RIGHT-MARGIN . 65)
; (GSTACKP)
; (GUARD-CHECKING-ON . T)
; #+acl2-infix (INFIXP)
; (INHIBIT-OUTPUT-LST SUMMARY)
; (IN-LOCAL-FLG . NIL)
; (LD-LEVEL . 0)
; (LD-REDEFINITION-ACTION)
; (LD-SKIP-PROOFSP)
; (PROMPT-FUNCTION . DEFAULT-PRINT-PROMPT)
; (PROOF-TREE-CTX)
; (PROOFS-CO
; . ACL2-OUTPUT-CHANNEL::STANDARD-CHARACTER-OUTPUT-0)
; (SKIPPED-PROOFSP)
; (STANDARD-CO
; . ACL2-OUTPUT-CHANNEL::STANDARD-CHARACTER-OUTPUT-0)
; (STANDARD-OI
; . ACL2-OUTPUT-CHANNEL::STANDARD-OBJECT-INPUT-0)
; (TIMER-ALIST)
; (TRIPLE-PRINT-PREFIX . " ")
; (UNDONE-WORLDS-KILL-RING NIL NIL NIL)
; (UNTOUCHABLE-FNS)
; (UNTOUCHABLE-VARS)
; (WINDOW-INTERFACEP)
; (WORMHOLE-NAME))
; NIL NIL 4000000
; NIL NIL 1 NIL NIL NIL NIL NIL NIL)
; 'nil 'nil 't) nil state nil nil t)
; The output of the ev above is (NIL (NIL (DUMMY-FOO . 1) NIL) NIL).
; The above example can be made slightly more interesting by replacing
; the three occurrences of FOO by EV. It still produces the same
; thing and illustrate the fact that EV doesn't mean what you might
; think it means once you get into an EV!
; The intuition that ``d must be *the-live-state*'' is only true at
; the outermost call of EV. But things take care of themselves inside
; subsequent calls because, if d is not *the-live-state*, EV just runs
; as defined, whatever that means.
; Stobj Latching: How Do We Compute the Final Latches?
; This is simpler than it at first appears: First, we map over the
; term in evaluation order. Every time we apply a function symbol to
; a list of (evaluated) terms, we ``latch'' into latches each of
; the stobj values indicated by the symbol's stobjs-out.
; The order of the sweep is controlled by ev and ev-lst. But all the
; latching is done by ev-fncall. This is surprising because ev-fncall
; does not handle LAMBDAs and translation has entirely eliminated all
; MV-LETs and MVs.
; Let us consider some examples to see why this works -- and to drive
; home some points it took me a while to see. In the following,
; (defun bump (state) (f-put-global 'bump (@ bump) state))
; (defun bump3 (x state) (let ((state (bump state))) (mv nil x state)))
; Consider the translate (==>) of
; :trans (let ((state (bump state)))
; (mv a state b))
; ==>
; ((LAMBDA (STATE B A)
; (CONS A (CONS STATE (CONS B 'NIL))))
; (BUMP STATE)
; B A)
; Sweep order is (BUMP STATE), B, A, and then the CONS nest. Of these, only
; the BUMP has a non-trivial stobjs-out. We latch the state coming out of
; (BUMP STATE).
; :trans (mv-let (erp val state)
; (bump3 x state)
; (mv (and erp val) (cons erp val) state))
; ==>
; ((LAMBDA (MV)
; ((LAMBDA (ERP VAL STATE)
; (CONS (IF ERP VAL 'NIL)
; (CONS (CONS ERP VAL)
; (CONS STATE 'NIL))))
; (MV-NTH '0 MV)
; (MV-NTH '1 MV)
; (MV-NTH '2 MV)))
; (BUMP3 X STATE))
; We latch the third value of (BUMP3 X STATE), when we ev-fncall
; BUMP3. No other function causes us to latch, so that is the final
; latches.
; :trans (mv-let (erp val state)
; (bump3 x state)
; (let ((state (bump state)))
; (mv erp val state)))
; ==>
; ((LAMBDA (MV)
; ((LAMBDA (ERP VAL STATE)
; ((LAMBDA (STATE VAL ERP)
; (CONS ERP (CONS VAL (CONS STATE 'NIL))))
; (BUMP STATE)
; VAL ERP))
; (MV-NTH '0 MV)
; (MV-NTH '1 MV)
; (MV-NTH '2 MV)))
; (BUMP3 X STATE))
; We latch the third value of (BUMP3 X STATE), when we ev-fncall BUMP3.
; The next non-trivial stobjs-out function we ev-fncall is the BUMP.
; We latch its result, which gives us the final latches.
; The restrictions imposed by translate ensure that we will never
; encounter terms like (fn a (bump state) b (bump state) c) where
; there is more than one latched stobj coming out of an arglist. But
; we do not exploit this fact. We just latch every stobj-out as we go
; across the args. Similarly, the translate restrictions ensure that
; if a stobj is returned by some function, then it gets out. So we
; can latch it when it is returned by the function, even though it
; apparently goes into a CONS nest, say, from which it may not, a
; priori, get out.
; We close with a discussion of the final argument of ev and many other
; evaluator functions, aok. In short: The safe value for aok is nil, but it is
; more powerful (fewer aborts) to use t rather than nil for aok, if that is
; sound. Unless you are writing ACL2 system code, it probably is sound to use
; t. But now we discuss in more depth the question of assigning a value to
; aok.
; Most or all of the evaluator functions (ev, ev-fncall, trans-eval,
; simple-translate-and-eval, etc.) have a final argument called aok, which is
; mnemonic for "attachments OK". The conservative value to use is nil, which
; means that no attachments (in the sense of defattach) will be used by the
; evaluator. But if you want attachments to be allowed by the evaluator, then
; use aok = t.
; In ACL2's own source code, aok is usually t, but it is (and must of course,
; be) nil whenever we are simplifying terms during a proof. See the Essay on
; Defattach for related discussion.
; Here, in brief, is the logical story (which is important to understand when
; deciding to use aok=t). The evaluator functions can all be thought of as
; producing a result that is provably equal to a given term. But the question
; is: Provably equal in what formal theory? The "official" theory of the
; current ACL2 world has nothing to do with attachments, and is the theory for
; which we have a prover. So if the rewriter, say, wants to use ev-fncall to
; replace one term by another, the input and output terms should be provably
; equal without attachments, which is why we use aok=nil in the call of
; ev-fncall under rewrite. On the other hand, in the top-level loop we
; presumably want to use all attachments -- the whole point of (defattach f g)
; for an encapsulated f and defined g is to evaluate under the equation (equal
; (f x) (g x)). So the call of trans-eval under ld-read-eval-print has aok=t.
; Thus, if you are calling simple-translate-and-eval for something like hints,
; then probably it's fine to use aok=t -- hints don't affect soundness and one
; might want to take advantage of attachments. As ACL2 evolves, many of its
; system functions may be encapsulated with default attachments, so one will
; want to use aok=t whenever possible in order to avoid an "undefined function"
; error when such a system function is called.
(defun acl2-system-namep (name wrld)
; Warning: keep this in sync with acl2-system-namep-state.
; Name is a name defined in wrld. We determine whether it is one of ours or is
; user-defined.
; If name is not defined -- more precisely, if we have not yet laid down an
; 'absolute-event-number property for it -- then we return nil except in the
; boot-strap world.
(declare (xargs :guard (and (symbolp name) (plist-worldp wrld))))
(cond ((global-val 'boot-strap-flg wrld) t)
(t (getpropc name 'predefined nil wrld))))
(defun acl2-system-namep-state (name state)
; Warning: keep this in sync with acl2-system-namep. See comments there.
(cond ((f-get-global 'boot-strap-flg state) t)
(t (getpropc name 'predefined))))
#+acl2-loop-only
(encapsulate
; We introduce big-n and decrement-big-n with no axioms. We could certainly
; add axioms, namely that (big-n) is a positive integer and decrement-big-n
; decrements, but we choose not to do so. Instead, we keep these axiom-free
; and introduce executable versions in program mode, just below. We imagine
; that n is a positive integer larger than the lengths of all computations that
; will ever take place with ACL2, and that decrement-big-n is 1-. We also make
; big-n untouchable, since without that we have been able to prove nil, as
; follows:
; (in-package "ACL2")
; (defun foo () (big-n))
; (defthm bad1 (equal (foo) '(nil)) :rule-classes nil)
; (defthm bad2
; (equal (big-n) '(nil))
; :hints (("Goal" :use bad1 :in-theory (disable (foo))))
; :rule-classes nil)
; (defun bar () 0)
; (defthm bad3
; (equal (bar) '(nil))
; :hints (("Goal" :by (:functional-instance bad2 (big-n bar))))
; :rule-classes nil)
; (defthm bad
; nil
; :hints (("Goal" :use bad3))
; :rule-classes nil)
; We also make decrement-big-n and zp-big-n untouchable, just because we are a
; bit paranoid here.
(((big-n) => *)
((decrement-big-n *) => *)
((zp-big-n *) => *))
(local (defun big-n ()
0))
(local (defun decrement-big-n (n)
(declare (ignore n))
0))
(local (defun zp-big-n (n)
(declare (ignore n))
nil)))
#-acl2-loop-only
(progn
; (defconstant *big-n-special-object* '(nil . nil)) has been moved to
; acl2.lisp, to avoid a CLISP compiler warning.
(defun big-n () *big-n-special-object*)
(defmacro decrement-big-n (n)
`(if (eq ,n *big-n-special-object*)
*big-n-special-object*
(1- ,n)))
(defmacro zp-big-n (n)
`(if (eq ,n *big-n-special-object*)
nil
(zp ,n))))
#-acl2-loop-only
(defparameter *ev-shortcut-okp*
; The code for ev-fncall-rec has a shortcut, calling raw-ev-fncall to execute
; using *1* functions. Because the *1* functions use (live) state globals
; guard-checking-on and safe-mode, these need to agree with the corresponding
; parameters of ev-fncall-rec in order for it to be sound to call
; raw-ev-fncall. We may bind *ev-shortcut-okp* to t when we know that this
; agreement is ensured.
; There are times where avoiding the shortcut can get us into trouble. In
; particular, we have seen a case where the logic code for an ev-nest function
; produced nil for a call of state-p or state-p1 on *the-live-state*.
nil)
(defun w-of-any-state (st)
; This returns (w state) but, unlike w, st is not (known to be)
; single-threaded, so it can be used on the binding of 'STATE in the latches of
; a call of a function in the ev nest. In the raw Lisp case, we have the same
; f-get-global code as in the definition of w. For the logic, we open up
; f-get-global and then get-global to get the body below.
#-acl2-loop-only
(cond ((live-state-p st)
(return-from w-of-any-state (f-get-global 'current-acl2-world st))))
(cdr (assoc 'current-acl2-world (global-table st))))
(defun untranslate-preprocess-fn (wrld)
(declare (xargs :guard (plist-worldp wrld)))
(cdr (assoc-eq 'untranslate-preprocess (table-alist
'user-defined-functions-table
wrld))))
(defmacro untranslate* (term iff-flg wrld)
; We need to call untranslate in ev-fncall-guard-er and ev-fncall-msg, where we
; have not yet called ev-fncall. So we define this version of untranslate now
; and defer untranslate (and untranslate-lst) until after defining the ev
; family of functions. We document in the guard below our expectation that
; wrld is a symbol, in order to avoid any overhead (e.g., from defabbrev).
(declare (xargs :guard (symbolp wrld)))
`(untranslate1 ,term
,iff-flg
(untrans-table ,wrld)
(untranslate-preprocess-fn ,wrld)
,wrld))
(defun save-ev-fncall-guard-er (fn guard stobjs-in args)
(wormhole-eval 'ev-fncall-guard-er-wormhole
'(lambda (whs)
(make-wormhole-status
whs
:ENTER
(list fn guard stobjs-in args)))
nil))
(defrec attachment
; See the Essay on Merging Attachment Records.
((g . ext-succ) . (components . pairs))
nil)
(defrec attachment-component
; See the Essay on Merging Attachment Records.
((ext-anc . ord-anc) . path)
nil)
(defun attachment-record-pairs (records acc)
(cond ((endp records)
acc)
(t (attachment-record-pairs
(cdr records)
(append (access attachment (car records) :pairs)
acc)))))
(defun all-attachments (wrld)
(attachment-record-pairs (global-val 'attachment-records wrld)
nil))
(defun gc-off1 (guard-checking-on)
(member-eq guard-checking-on
'(nil :none)))
(defun gc-off (state)
(gc-off1 (f-get-global 'guard-checking-on state)))
#-acl2-loop-only
(progn
(defvar *return-last-arg2*)
(defvar *return-last-arg3*)
(defvar *return-last-alist*)
(defvar *return-last-fn-w*)
(defvar *return-last-fn-user-stobj-alist*)
(defvar *return-last-fn-big-n*)
(defvar *return-last-fn-safe-mode*)
(defvar *return-last-fn-gc-off*)
(defvar *return-last-fn-latches*)
(defvar *return-last-fn-hard-error-returns-nilp*)
(defvar *return-last-fn-aok*))
(defun return-last-lookup (sym wrld)
; Keep this in sync with chk-return-last-entry and with the comment about these
; macros in *initial-return-last-table*.
(assert$
(and (symbolp sym) sym) ; otherwise we shouldn't call return-last-lookup
(case sym
(progn 'prog2$)
(mbe1-raw 'mbe1)
(ec-call1-raw 'ec-call1)
(with-guard-checking1-raw 'with-guard-checking1)
(otherwise
(cdr (assoc-eq sym (table-alist 'return-last-table wrld)))))))
(defun make-let-or-let* (bindings body)
(declare (xargs :guard (doublet-listp bindings)))
(cond ((and bindings (null (cdr bindings)))
(case-match body
(('let ((& &)) x)
`(let* (,@bindings
,@(cadr body))
,x))
(('let* rest-bindings x)
`(let* ,(cons (car bindings) rest-bindings)
,x))
(& (make-let bindings body))))
(t (make-let bindings body))))
(defmacro untranslate*-lst (lst iff-flg wrld)
; See untranslate*.
(declare (xargs :guard (symbolp wrld)))
`(untranslate1-lst ,lst
,iff-flg
(untrans-table ,wrld)
(untranslate-preprocess-fn ,wrld)
,wrld))
(defun live-state-symbolp (x)
(declare (xargs :guard t))
(and (symbolp x)
(equal (symbol-package-name x)
"ACL2_INVISIBLE")
(equal (symbol-name x)
"The Live State Itself")))
(defun apply-user-stobj-alist-or-kwote (user-stobj-alist lst acc)
; This function accumulates into acc (eventually reversing the accumulation)
; the result of replacing each element of lst with:
; - state, if it is *the-live-state*;
; - with its reverse lookup in user-stobj-alist, if it is
; a bad-atom (i.e., a stobj); else,
; - with the result of quoting that element.
; We considered using rassoc-eq in place of rassoc-equal below, but that would
; prevent guard verification down the road (unless we change to guard of eq to
; allow bad-atoms in place of symbols). So we are content to use rassoc-equal,
; which may be quite fast on bad atoms, and since (as of this writing) we only
; use this function for occasional user-level error and debug messages.
(cond ((endp lst) (reverse acc))
(t (apply-user-stobj-alist-or-kwote
user-stobj-alist
(cdr lst)
(cons (cond ((live-state-symbolp (car lst))
'state)
((bad-atom (car lst))
(let ((pair (rassoc-equal (car lst)
user-stobj-alist)))
(cond (pair (car pair))
(t
; We are looking at a local stobj or a stobj bound by stobj-let.
'|<some-stobj>|))))
(t (kwote (car lst))))
acc)))))
; Next, we introduce many events to support the definition of
; ev-fncall-rec-logical -- specifically, the definition of function guard-raw,
; which is called by ev-fncall-guard-er, which in turn is called by
; ev-fncall-rec-logical. Most of these events were previously located in file
; history-management.lisp.
; Event Tuples
; Every time an event occurs we store a new 'global-value for the
; variable 'event-landmark in stop-event. The value of
; 'event-landmark is an "event tuple." Abstractly, an event tuple
; contains the following fields:
; n: the absolute event number
; d: the embedded event depth (the number of events containing the event)
; form: the form evaluated that created the event. (This is often a form
; typed by the user but might have been a form generated by a macro.
; The form may be a call of a primitive event macro, e.g., defthm,
; or may be itself a macro call, e.g., prove-lemma.)
; type: the name of the primitive event macro we normally use, e.g.,
; defthm, defuns, etc.
; namex: the name or names of the functions, rules, etc., introduced by
; the event. This may be a single object, e.g., 'APP, or "MY-PKG",
; or may be a true list of objects, e.g., '(F1 F2 F3) as in the case
; of a mutually recursive clique. 0 (zero) denotes the empty list of
; names. The unusual event enter-boot-strap-mode has a namex containing
; both symbols and strings.
; symbol-class:
; One of nil, :program, :ideal, or :compliant-common-lisp, indicating
; the symbol-class of the namex. (All names in the namex have the same
; symbol-class.)
; All event tuples are constructed by make-event-tuple, below. By searching
; for all calls of that function you will ascertain all possible event types
; and namex combinations. You will find the main call in add-event-landmark,
; which is used to store an event landmark in the world. There is another call
; in primordial-world-globals, where the bogus initial value of the
; 'event-landmark 'global-value is created with namex 0 and event type nil.
; Add-event-landmark is called in install-event, which is the standard (only)
; way to finish off an ACL2 event. If you search for calls of install-event
; you will find the normal combinations of event types and namex. There are
; two other calls of add-event-landmark. One, in in primordial-world where it
; is called to create the enter-boot-strap-mode event type landmark with namex
; consisting of the primitive functions and known packages. The other, in
; end-prehistoric-world, creates the exit-boot-strap-mode event type landmark
; with namex 0.
; As of this writing the complete list of type and namex pairs
; is shown below, but the algorithm described above will generate
; it for you if you wish to verify this.
; type namex
; enter-boot-strap-mode *see below
; verify-guards 0 (no names introduced)
; defun fn
; defuns (fn1 ... fnk)
; defaxiom name
; defthm name
; defconst name
; defstobj (name the-live-var fn1 ... fnk)
; [Note: defstobj is the type used for both defstobj and
; defabsstobj events.]
; defmacro name
; defpkg "name"
; deflabel name
; deftheory name
; in-theory 0 (no name introduced)
; in-arithmetic-theory 0 (no name introduced)
; push-untouchable 0
; regenerate-tau-database 0 (no name introduced)
; remove-untouchable 0
; reset-prehistory 0
; set-body 0 (no name introduced)
; table 0 (no name introduced)
; encapsulate (fn1 ... fnk) - constrained fns
; include-book "name"
; exit-boot-strap-mode 0
; *Enter-boot-strap-mode introduces the names in *primitive-formals-and-guards*
; and *initial-known-package-alist*. So its namex is a proper list containing
; both symbols and strings.
; To save space we do not actually represent each event tuple as a 6-tuple but
; have several different forms. The design of our forms makes the following
; assumptions, aimed at minimizing the number of conses in average usage. (1)
; Most events are not inside other events, i.e., d is often 0. (2) Most events
; use the standard ACL2 event macros, e.g., defun and defthm rather than user
; macros, e.g., DEFN and PROVE-LEMMA. (3) Most events are introduced with the
; :program symbol-class. This last assumption is just the simple observation
; that until ACL2 is reclassified from :program to :logic, the ACL2
; system code will outweigh any application.
(defun signature-fns (signatures)
; Assuming that signatures has been approved by chk-signatures, we
; return a list of the functions signed. Before we added signatures
; of the form ((fn * * STATE) => *) this was just strip-cars.
; Signatures is a list of elements, each of which is either of the
; form ((fn ...) => val) or of the form (fn ...).
(cond ((endp signatures) nil)
((consp (car (car signatures)))
(cons (car (car (car signatures)))
(signature-fns (cdr signatures))))
(t (cons (car (car signatures))
(signature-fns (cdr signatures))))))
(defun make-event-tuple (n d form ev-type namex symbol-class skipped-proofs-p)
; An event tuple is always a cons. Except in the initial case created by
; primordial-world-globals, the car is always either a natural (denoting n and
; implying d=0) or a cons of two naturals, n and d. Its cadr is either a
; symbol, denoting its type and signaling that the cdr is the form, the
; symbol-class is :program and that the namex can be recovered from the form,
; or else the cadr is the pair (ev-type namex . symbol-class) signaling that
; the form is the cddr.
; Generally, the val encodes:
; n - absolute event number
; d - embedded event depth
; form - form that created the event
; ev-type - name of the primitive event macro we use, e.g., defun, defthm, defuns
; namex - name or names introduced (0 is none)
; symbol-class - of names (or nil)
; skipped-proofs-p - t when the symbol-class is not :program (for simplicity
; of implementation, below) and skipped-proofs-p is t; else
; nil. Note that skipped-proofs-p will be nil for certain
; events that cannot perform proofs (see install-event) and
; otherwise indicates that proofs were skipped (except by
; the system only, as for include-book).
; In what we expect is the normal case, where d is 0 and the form is one of our
; standard ACL2 event macros, this concrete representation costs one cons. If
; d is 0 but the user has his own event macros, it costs 3 conses.
; Warning: If we change the convention that n is the car of a concrete event
; tuple if the car is an integer, then change the default value given getprop
; in max-absolute-event-number.
(cons (if (= d 0) n (cons n d))
(if (and (eq symbol-class :program)
(consp form)
(or (eq (car form) ev-type)
(and (eq ev-type 'defuns)
(eq (car form) 'mutual-recursion)))
(equal namex
(case (car form)
(defuns (strip-cars (cdr form)))
(mutual-recursion (strip-cadrs (cdr form)))
((verify-guards in-theory
in-arithmetic-theory
regenerate-tau-database
push-untouchable
remove-untouchable
reset-prehistory
set-body
table)
0)
(encapsulate (signature-fns (cadr form)))
(otherwise (cadr form)))))
form
(cons (cons (cons ev-type
(and (not (eq symbol-class :program))
skipped-proofs-p))
(cons namex symbol-class))
form))))
(defun access-event-tuple-number (x)
; Warning: If we change the convention that n is (car x) when (car x)
; is an integerp, then change the default value given getprop in
; max-absolute-event-number.
(if (integerp (car x)) (car x) (caar x)))
(defun access-event-tuple-depth (x)
(if (integerp (car x)) 0 (cdar x)))
(defun access-event-tuple-type (x)
(cond ((symbolp (cdr x)) ;eviscerated event
nil)
((symbolp (cadr x))
(if (eq (cadr x) 'mutual-recursion)
'defuns
(cadr x)))
(t (caaadr x))))
(defun access-event-tuple-skipped-proofs-p (x)
(cond ((symbolp (cdr x)) ;eviscerated event
nil)
((symbolp (cadr x))
nil)
(t (cdaadr x))))
(defun access-event-tuple-namex (x)
; Note that namex might be 0, a single name, or a list of names. Included in
; the last case is the possibility of the list being nil (as from an
; encapsulate event introducing no constrained functions).
(cond
((symbolp (cdr x)) ;eviscerated event
nil)
((symbolp (cadr x))
(case (cadr x)
(defuns (strip-cars (cddr x)))
(mutual-recursion (strip-cadrs (cddr x)))
((verify-guards in-theory
in-arithmetic-theory
regenerate-tau-database
push-untouchable remove-untouchable reset-prehistory
set-body table)
0)
(encapsulate (signature-fns (caddr x)))
(t (caddr x))))
(t (cadadr x))))
(defun access-event-tuple-form (x)
(if (symbolp (cadr x))
(cdr x)
(cddr x)))
(defun access-event-tuple-symbol-class (x)
(if (symbolp (cadr x))
:program
(cddadr x)))
; Command Tuples
; When LD has executed a world-changing form, it stores a "command tuple" as
; the new 'global-value of 'command-landmark. These landmarks divide the world
; up into "command blocks" and each command block contains one or or event
; blocks. Command blocks are important when the user queries the system about
; his current state, wishes to undo, etc. Commands are enumerated sequentially
; from 0 with "absolute command numbers."
; We define command tuples in a way analogous to event tuples, although
; commands are perhaps simpler because most of their characteristics are
; inherited from the event tuples in the block. We must store the current
; default-defun-mode so that we can offer to redo :program functions after ubt.
; (A function is offered for redoing if its defun-mode is :program. But the
; function is redone by executing the command that created it. The command may
; recreate many functions and specify a :mode for each. We must re-execute the
; command with the same default-defun-mode we did last to be sure that the
; functions it creates have the same defun-mode as last time.)
(defrec command-tuple
; Warning: Keep this in sync with the definitions of
; safe-access-command-tuple-number and pseudo-command-landmarkp in community
; book books/system/pseudo-good-worldp.lisp, and function
; safe-access-command-tuple-form in the ACL2 sources.
; See make-command-tuple for a discussion of defun-mode/form.
; If form is an embedded event form, then last-make-event-expansion is nil
; unless form contains a call of make-event whose :check-expansion field is not
; a cons, in which case last-make-event-expansion is the result of removing all
; make-event calls from form.
(number defun-mode/form cbd . last-make-event-expansion)
t)
(defun make-command-tuple (n defun-mode form cbd last-make-event-expansion)
; Defun-Mode is generally the default-defun-mode of the world in which this
; command is being executed. But there are two possible exceptions. See
; add-command-tuple.
; We assume that most commands are executed with defun-mode :program. So we
; optimize our representation of command tuples accordingly. No form that
; creates a function can have a keyword as its car.
(make command-tuple
:number n
:defun-mode/form (if (eq defun-mode :program)
form
(cons defun-mode form))
:cbd cbd
:last-make-event-expansion last-make-event-expansion))
(defun access-command-tuple-number (x)
(declare (xargs :guard (weak-command-tuple-p x)))
(access command-tuple x :number))
(defun access-command-tuple-defun-mode (x)
(let ((tmp (access command-tuple x :defun-mode/form)))
(if (keywordp (car tmp))
(car tmp)
:program)))
(defun access-command-tuple-form (x)
; See also safe-access-command-tuple-form for a safe version (i.e., with guard
; t).
(let ((tmp (access command-tuple x :defun-mode/form)))
(if (keywordp (car tmp))
(cdr tmp)
tmp)))
(defun safe-access-command-tuple-form (x)
; This is just a safe version of access-command-tuple-form.
(declare (xargs :guard t))
(let ((tmp (and (consp x)
(consp (cdr x))
(access command-tuple x :defun-mode/form))))
(if (and (consp tmp)
(keywordp (car tmp)))
(cdr tmp)
tmp)))
(defun access-command-tuple-last-make-event-expansion (x)
(access command-tuple x :last-make-event-expansion))
(defun access-command-tuple-cbd (x)
(access command-tuple x :cbd))
; Absolute Event and Command Numbers
(defun max-absolute-event-number (wrld)
; This is the maximum absolute event number in use at the moment. It
; is just the number found in the most recently completed event
; landmark. We initialize the event-landmark with number -1 (see
; primordial-world-globals) so that next-absolute-event-number returns
; 0 the first time.
(access-event-tuple-number (global-val 'event-landmark wrld)))
(defun next-absolute-event-number (wrld)
(1+ (max-absolute-event-number wrld)))
(defun max-absolute-command-number (wrld)
; This is the largest absolute command number in use in wrld. We
; initialize it to -1 (see primordial-world-globals) so that
; next-absolute-command-number works.
(access-command-tuple-number (global-val 'command-landmark wrld)))
(defun next-absolute-command-number (wrld)
(1+ (max-absolute-command-number wrld)))
(defun scan-to-landmark-number (flg n wrld)
; We scan down wrld looking for a binding of 'event-landmark with n as
; its number or 'command-landmark with n as its number, depending on
; whether flg is 'event-landmark or 'command-landmark.
(declare (xargs :guard (and (natp n)
(plist-worldp wrld))))
#+acl2-metering
(setq meter-maid-cnt (1+ meter-maid-cnt))
(cond ((endp wrld)
(er hard 'scan-to-landmark-number
"We have scanned the world looking for absolute ~
~#0~[event~/command~] number ~x1 and failed to find it. ~
There are two likely errors. Either ~#0~[an event~/a ~
command~] with that number was never stored or the ~
index has somehow given us a tail in the past rather ~
than the future of the target world."
(if (equal flg 'event-landmark) 0 1)
n))
((and (eq (caar wrld) flg)
(eq (cadar wrld) 'global-value)
(= n (if (eq flg 'event-landmark)
(access-event-tuple-number (cddar wrld))
(access-command-tuple-number (cddar wrld)))))
#+acl2-metering
(meter-maid 'scan-to-landmark-number 500 flg n)
wrld)
(t (scan-to-landmark-number flg n (cdr wrld)))))
; For information about the next few events, through lookup-world-index, see
; "The Event and Command Indices" in history-management.lisp. As noted above,
; events below were originally located in that file, but are needed here to
; support ev-fncall-rec-logical.
(defun add-to-zap-table (val zt)
; Given a zap table, zt, that associates values to the indices
; 0 to n, we extend the table to associate val to n+1.
(cond ((null zt) (list 0 val))
(t (cons (1+ (car zt)) (cons val (cdr zt))))))
(defun fetch-from-zap-table (n zt)
; Retrieve the value associated with n in the zap table zt, or
; nil if there is no such association.
(cond ((null zt) nil)
((> n (car zt)) nil)
(t (nth (- (car zt) n) (cdr zt)))))
; These 7 lines of code took 3 days to write -- because we first implemented
; balanced binary trees and did the experiments described in the discussion on
; "The Event and Command Indices" found in history-management.lisp.
; Using zap tables we'll keep an index mapping absolute event numbers
; to tails of world. We'll also keep such an index for commands typed
; by the user at the top-level of the ld loop. The following two
; constants determine how often we save events and commands in their
; respective indices.
(defconst *event-index-interval* 10)
(defconst *command-index-interval* 10)
(defun lookup-world-index1 (n interval index wrld)
; Let index be a zap table that maps the integers 0 to k to worlds.
; Instead of numbering those worlds 0, 1, 2, ..., number them 0,
; 1*interval, 2*interval, etc. So for example, if interval is 10 then
; the worlds are effectively numbered 0, 10, 20, ... Now n is some
; world number (but not necessarily a multiple of interval). We wish
; to find the nearest world in the index that is in the future of the
; world numbered by n.
; For example, if n is 2543 and interval is 10, then we will look for
; world 2550, which will be found in the table at 255. Of course, the
; table might not contain an entry for 255 yet, in which case we return
; wrld.
(let ((i (floor (+ n (1- interval))
interval)))
(cond ((or (null index)
(> i (car index)))
wrld)
(t (fetch-from-zap-table i index)))))
(defun lookup-world-index (flg n wrld)
; This is the general-purpose function that takes an arbitrary
; absolute command or event number (flg is 'COMMAND or 'EVENT) and
; returns the world that starts with the indicated number.
(cond ((eq flg 'event)
(let ((n (min (max-absolute-event-number wrld)
(max n 0))))
(scan-to-landmark-number 'event-landmark
n
(lookup-world-index1
n
*event-index-interval*
(global-val 'event-index wrld)
wrld))))
(t
(let ((n (min (max-absolute-command-number wrld)
(max n 0))))
(scan-to-landmark-number 'command-landmark
n
(lookup-world-index1
n
*command-index-interval*
(global-val 'command-index wrld)
wrld))))))
(defconst *unspecified-xarg-value*
; Warning: This must be a consp. See comments in functions that use this
; constant.
'(unspecified))
(defun get-unambiguous-xargs-flg1/edcls1 (key v edcls event-msg)
; V is the value specified so far for key in the XARGSs of this or previous
; edcls, or else the consp *unspecified-xarg-value* if no value has been
; specified yet. We return an error message if any non-symbol is used for the
; value of key or if a value different from that specified so far is specified.
; Otherwise, we return either *unspecified-xarg-value* or the uniformly agreed
; upon value. Event-msg is a string or message for fmt's tilde-atsign and is
; used only to indicate the event in an error message; for example, it may be
; "DEFUN" to indicate a check for a single definition, or "DEFUN event" or
; "MUTUAL-RECURSION" to indicate a check that is made for an entire clique.
(cond
((null edcls) v)
((eq (caar edcls) 'xargs)
(let ((temp (assoc-keyword key (cdar edcls))))
(cond ((null temp)
(get-unambiguous-xargs-flg1/edcls1 key v (cdr edcls) event-msg))
((not (symbolp (cadr temp)))
(msg "It is illegal to specify ~x0 to be ~x1. The value must be ~
a symbol."
key (cadr temp)))
((or (consp v)
(eq v (cadr temp)))
(get-unambiguous-xargs-flg1/edcls1 key (cadr temp) (cdr edcls)
event-msg))
(t
(msg "It is illegal to specify ~x0 ~x1 in one place and ~x2 in ~
another within the same ~@3. The functionality controlled ~
by that flag operates on the entire ~@3."
key v (cadr temp) event-msg)))))
(t (get-unambiguous-xargs-flg1/edcls1 key v (cdr edcls) event-msg))))
(defun get-unambiguous-xargs-flg1/edcls (key v edcls event-msg ctx state)
; This is just a version of get-unambiguous-xargs-flg1/edcls1 that returns an
; error triple.
(let ((ans (get-unambiguous-xargs-flg1/edcls1 key v edcls event-msg)))
(cond ((or (equal ans *unspecified-xarg-value*)
(atom ans))
(value ans))
(t (er soft ctx "~@0" ans)))))
(defun get-unambiguous-xargs-flg1 (key lst event-msg ctx state)
; We scan the edcls of lst and either extract a single uniformly agreed upon
; value for key among the XARGS and return that value, or else no value is
; specified and we return the consp *unspecified-xarg-value*, or else two or
; more values are specified and we cause an error. We also cause an error if
; any edcls specifies a non-symbol for the value of key. Thus, if we return a
; symbol it is the uniformly agreed upon value and if we return a consp there
; was no value specified.
(cond ((null lst) (value *unspecified-xarg-value*))
(t (er-let*
((v (get-unambiguous-xargs-flg1 key (cdr lst) event-msg ctx
state))
(ans (get-unambiguous-xargs-flg1/edcls key v (fourth (car lst))
event-msg ctx state)))
(value ans)))))
(defun get-unambiguous-xargs-flg (key lst default ctx state)
; Lst is a list of mutually recursive defun tuples of the form (name args doc
; edcls body). We scan the edcls for the settings of the XARGS keyword key.
; If at least one entry specifies a setting, x, and all entries that specify a
; setting specify x, we return x. If no entry specifies a setting, we return
; default. If two or more entries specify different settings, we cause an
; error.
; See also get-unambiguous-xargs-flg-lst for a similar function that instead
; allows a different value for each defun tuple, and returns the list of these
; values instead of a single value.
; We assume every legal value of key is a symbol. If you supply a consp
; default and the default is returned, then no value was specified for key.
; Just to be concrete, suppose key is :mode and default is :logic. The
; user has the opportunity to specify :mode in each element of lst, i.e., he
; may say to make the first fn :logic and the second fn :program. But
; that is nonsense. We have to process the whole clique or none at all.
; Therefore, we have to meld all of his various :mode specs together to come
; up with a setting for the DEFUNS event. This function explores lst and
; either comes up with an unambiguous :mode or else causes an error.
(let ((event-msg (if (cdr lst) "MUTUAL-RECURSION" "DEFUN event")))
(er-let* ((x (get-unambiguous-xargs-flg1 key lst event-msg ctx state)))
(cond ((consp x) (value default))
(t (value x))))))
(defun get-unambiguous-xargs-flg-lst (key lst default ctx state)
; See get-unambiguous-xargs-flg. Unlike that function, this function allows a
; different value for each defun tuple, and returns the list of these values
; instead of a single value.
(cond ((null lst) (value nil))
(t (er-let*
((ans (get-unambiguous-xargs-flg1/edcls key
*unspecified-xarg-value*
(fourth (car lst))
"DEFUN"
ctx
state))
(rst (get-unambiguous-xargs-flg-lst key (cdr lst) default ctx
state)))
(value (cons (if (consp ans) ; ans = *unspecified-xarg-value*
default
ans)
rst))))))
(defun remove-strings (l)
(cond ((null l) nil)
((stringp (car l))
(remove-strings (cdr l)))
(t (cons (car l) (remove-strings (cdr l))))))
(defun rev-union-equal (x y)
(declare (xargs :guard (and (true-listp x)
(true-listp y))))
(cond ((endp x) y)
((member-equal (car x) y)
(rev-union-equal (cdr x) y))
(t
(rev-union-equal (cdr x) (cons (car x) y)))))
(defun translate-declaration-to-guard-var-lst (x var-lst wrld)
; It is assumed that (translate-declaration-to-guard x 'var wrld) is
; non-nil. This function translates the declaration x for each of the
; vars in var-lst and returns the list of translations.
(declare (xargs :guard (and (true-listp var-lst)
(plist-worldp wrld))))
(cond ((null var-lst) nil)
(t (cons (translate-declaration-to-guard x (car var-lst) wrld)
(translate-declaration-to-guard-var-lst x
(cdr var-lst)
wrld)))))
(defun get-guards2 (edcls targets wrld stobjs-acc guards-acc)
; Targets is a subset of (GUARDS TYPES), where we pick up expressions from
; :GUARD and :STOBJS XARGS declarations if GUARDS is in the list and we pick up
; expressions corresponding to TYPE declarations if TYPES is in the list.
; See get-guards for an example of what edcls looks like. We require that
; edcls contains only valid type declarations, as explained in the comment
; below about translate-declaration-to-guard-var-lst.
; We are careful to preserve the order, except that we consider :stobjs as
; going before :guard. (An example is (defun load-qs ...) in community book
; books/defexec/other-apps/qsort/programs.lisp.) Before Version_3.5, Jared
; Davis sent us the following example, for which guard verification failed on
; the guard of the guard, because the :guard conjuncts were unioned into the
; :type contribution to the guard, leaving a guard of (and (natp n) (= (length
; x) n) (stringp x)). It seems reasonable to accumulate the guard conjuncts in
; the order presented by the user.
; (defun f (x n)
; (declare (xargs :guard (and (stringp x)
; (natp n)
; (= (length x) n)))
; (type string x)
; (ignore x n))
; t)
(cond ((null edcls)
(revappend stobjs-acc (reverse guards-acc)))
((and (eq (caar edcls) 'xargs)
(member-eq 'guards targets))
; We know (from chk-dcl-lst) that (cdar edcls) is a "keyword list"
; and so we can assoc-keyword up it looking for :GUARD. We also know
; that there is at most one :GUARD entry.
(let* ((temp1 (assoc-keyword :GUARD (cdar edcls)))
(guard-conjuncts
(if temp1
(if (and (true-listp (cadr temp1))
(eq (car (cadr temp1)) 'AND))
(or (cdr (cadr temp1))
; The following (list t) avoids ignoring :guard (and).
(list t))
(list (cadr temp1)))
nil))
(temp2 (assoc-keyword :STOBJS (cdar edcls)))
(stobj-conjuncts
(if temp2
(stobj-recognizer-terms
(cond
((symbol-listp (cadr temp2))
(cadr temp2))
((and (cadr temp2)
(symbolp (cadr temp2)))
(list (cadr temp2)))
(t nil))
wrld)
nil)))
(get-guards2 (cdr edcls)
targets
wrld
(rev-union-equal stobj-conjuncts
stobjs-acc)
(rev-union-equal guard-conjuncts
guards-acc))))
((and (eq (caar edcls) 'type)
(member-eq 'types targets))
(get-guards2 (cdr edcls)
targets
wrld
; The call of translate-declaration-to-guard-var-lst below assumes that
; (translate-declaration-to-guard (cadr (car edcls)) 'var wrld) is non-nil.
; This is indeed the case, because edcls is as created by chk-defuns-tuples,
; which leads to a call of chk-dcl-lst to check that the type declarations are
; legal.
stobjs-acc
(rev-union-equal (translate-declaration-to-guard-var-lst
(cadr (car edcls))
(cddr (car edcls))
wrld)
guards-acc)))
(t (get-guards2 (cdr edcls) targets wrld stobjs-acc guards-acc))))
(defun get-guards1 (edcls targets args name wrld)
; We compute the guards but add (state-p name) when necessary:
; When a function definition has a state argument but does not explicitly
; include state among its :stobjs declarations (presumably because
; (set-state-ok t) has been executed), the conjuncts returned by get-guards2 do
; not include (state-p state). Thus, we add this conjunct when (1) targets
; includes the symbol, guards; (2) the formal arguments, args, include state;
; (3) (state-p state) is not already in the result of get-guards2; and (4) the
; function symbol in question, name, is not state-p itself, whose guard is
; truly t. If the (state-p state) conjunct is added, it is added in front of
; the other conjuncts, consistently with the order described in :DOC
; guard-miscellany.
; Note that we may pass in args = nil to avoid adding a state-p call, for
; example when defining a macro. In that case name is ignored, so it is safe
; to pass in name = nil.
(let ((conjuncts (get-guards2 edcls targets wrld nil nil)))
(cond ((and (member-eq 'guards targets) ; (1)
(member-eq 'state args) ; (2)
(not (member-equal '(state-p state) conjuncts)) ; (3)
(not (eq name 'state-p))) ; (4)
(cons (fcons-term* 'state-p 'state) conjuncts))
(t conjuncts))))
(defun get-guards (lst split-types-lst split-types-p wrld)
; Warning: see :DOC guard-miscellany for a specification of how conjuncts are
; ordered when forming the guard from :xargs and type declarations.
; Each element of lst is a 5-tuple (name args doc edcls body), where every TYPE
; declaration in edcls is valid (see get-guards2 for an explanation of why that
; is important). We return a list in 1:1 correspondence with lst. Each
; element is the untranslated guard or type expressions extracted from the
; edcls of the corresponding element of lst. A typical value of edcls might be
; '((IGNORE X Y)
; (XARGS :GUARD g1 :MEASURE m1 :HINTS ((id :USE ... :IN-THEORY ...)))
; (TYPE ...)
; (XARGS :GUARD g2 :MEASURE m2))
; The guard extracted from such an edcls is the conjunction of all the guards
; mentioned.
; We extract only the split-types expressions if split-types-p is true.
; Otherwise, we extract the guard expressions. In both of these cases, the
; result depends on whether or not :split-types was assigned value t in the
; definition for the corresponding member of lst.
(cond ((null lst) nil)
(t (cons (let ((targets
(cond (split-types-p
; We are collecting type declarations for 'split-types-term properties. Thus,
; we only collect these when the user has specified :split-types for a
; definition.
(and (car split-types-lst) '(types)))
; Otherwise, we are collecting terms for 'guard properties. We skip type
; declarations when the user has specified :split-types for a definition.
((car split-types-lst) '(guards))
(t '(guards types)))))
(conjoin-untranslated-terms
(and targets ; optimization
(get-guards1 (fourth (car lst))
targets
(second (car lst))
(first (car lst))
wrld))))
(get-guards (cdr lst) (cdr split-types-lst) split-types-p
wrld)))))
(defun dcls-guard-raw-from-def (def wrld)
(let* ((dcls (append-lst (strip-cdrs (remove-strings
(butlast (cddr def) 1)))))
(split-types (get-unambiguous-xargs-flg1/edcls1
:split-types
*unspecified-xarg-value*
dcls
"irrelevant-error-string"))
(guards (get-guards1
dcls
(cond ((or (equal split-types
*unspecified-xarg-value*) ; default
(eq split-types nil))
'(guards types))
(t (assert$ (eq split-types t)
; By the time we get here, we have already done our checks for the defun,
; including the check that split-types above is not an error message, and is
; Boolean. So if the assertion just above fails, then something has gone
; terribly wrong!
'(guards))))
(cadr def) ; args
(car def) ; name
wrld))
(guard (cond ((null guards) t)
((null (cdr guards)) (car guards))
(t (cons 'and guards)))))
(mv dcls guard)))
(defun get-event (name wrld)
; This function returns nil when name was not introduced by an ACL2 event. For
; primitives without definitions, we believe that the absolute-event-number is
; 0 and, as laid down in primordial-world, the corresponding event-tuple is
; (list 'enter-boot-strap-mode operating-system).
(let ((index (getpropc name 'absolute-event-number nil wrld)))
(and index
(access-event-tuple-form
(cddr
(car
(lookup-world-index 'event index wrld)))))))
(defun get-skipped-proofs-p (name wrld)
; Keep this in sync with get-event.
(declare (xargs :mode :program))
(let ((index (getpropc name 'absolute-event-number nil wrld)))
(and index
(access-event-tuple-skipped-proofs-p
(cddr
(car
(lookup-world-index 'event index wrld))))
(not (getpropc name 'predefined nil wrld)))))
(defun negate-untranslated-form (x iff-flg)
(cond ((and iff-flg
(consp x)
(eq (car x) 'not))
(assert$ (consp (cdr x))
(cadr x)))
(t (list 'not x))))
(defun event-tuple-fn-names (ev-tuple)
(case (access-event-tuple-type ev-tuple)
((defun)
(list (access-event-tuple-namex ev-tuple)))
((defuns defstobj)
(access-event-tuple-namex ev-tuple))
(otherwise nil)))
#-acl2-loop-only
(progn
(defvar *fncall-cache*
'(nil))
(defun raw-ev-fncall-okp (wrld aokp &aux (w-state (w *the-live-state*)))
(when (eq wrld w-state)
(return-from raw-ev-fncall-okp :live))
(let* ((fncall-cache *fncall-cache*)
(cached-w (car fncall-cache)))
(cond ((and wrld
(eq wrld cached-w))
t)
(t
(let ((fns nil))
(loop for tail on wrld
until (eq tail w-state)
do (let ((trip (car tail)))
(cond
((member-eq (cadr trip)
'(unnormalized-body
stobjs-out
; 'Symbol-class supports the programp call in ev-fncall-guard-er-msg.
symbol-class
table-alist))
(setq fns (add-to-set-eq (car trip) fns)))
((and (eq (car trip) 'guard-msg-table)
(eq (cadr trip) 'table-alist))
; The table, guard-msg-table, is consulted in ev-fncall-guard-er-msg.
(return-from raw-ev-fncall-okp nil))
((and (eq (car trip) 'event-landmark)
(eq (cadr trip) 'global-value))
; This case is due to the get-event call in guard-raw.
(setq fns
(union-eq (event-tuple-fn-names (cddr trip))
fns)))
((and aokp
(eq (car trip) 'attachment-records)
(eq (cadr trip) 'global-value))
(return-from raw-ev-fncall-okp nil))))
finally
(cond (tail (setf (car fncall-cache) nil
(cdr fncall-cache) fns
(car fncall-cache) wrld))
(t (return-from raw-ev-fncall-okp nil)))))
t))))
(defun chk-raw-ev-fncall (fn wrld aokp)
(let ((ctx 'raw-ev-fncall)
(okp (raw-ev-fncall-okp wrld aokp)))
(cond ((eq okp :live) nil)
(okp
(when (member-eq fn (cdr *fncall-cache*))
(er hard ctx
"Implementation error: Unexpected call of raw-ev-fncall for ~
function ~x0 (the world is sufficiently close to (w state) ~
in general, but not for that function symbol)."
fn)))
(t
(er hard ctx
"Implementation error: Unexpected call of raw-ev-fncall (the ~
world is not sufficiently close to (w state)).")))))
(defun raw-ev-fncall (fn args latches w user-stobj-alist
hard-error-returns-nilp aok)
; Warning: Keep this in sync with raw-ev-fncall-simple.
; Here we assume that w is "close to" (w *the-live-state*), as implemented by
; chk-raw-ev-fncall.
(the #+acl2-mv-as-values (values t t t)
#-acl2-mv-as-values t
(let* ((*aokp*
; We expect the parameter aok, here and in all functions in the "ev family"
; that take aok as an argument, to be Boolean. If it's not, then there is no
; real harm done: *aokp* would be bound here to a non-Boolean value, suggesting
; that an attachment has been used when that isn't necessarily the case; see
; *aokp*.
aok)
(pair (assoc-eq 'state latches))
(w (if pair (w (cdr pair)) w)) ; (cdr pair) = *the-live-state*
(throw-raw-ev-fncall-flg t)
(**1*-as-raw*
; We defeat the **1*-as-raw* optimization so that when we use raw-ev-fncall to
; evaluate a call of a :logic mode term, all of the evaluation will take place
; in the logic. Note that we don't restrict this special treatment to
; :common-lisp-compliant functions, because such a function might call an
; :ideal mode function wrapped in ec-call. But we do restrict to :logic mode
; functions, since they cannot call :program mode functions and hence there
; cannot be a subsidiary rebinding of **1*-as-raw* to t.
(if (logicp fn w)
nil
**1*-as-raw*))
(*1*fn (*1*-symbol fn))
(applied-fn (cond
((fboundp *1*fn) *1*fn)
((and (global-val 'boot-strap-flg w)
(not (global-val 'boot-strap-pass-2 w)))
fn)
(t
(er hard 'raw-ev-fncall
"We had thought that *1* functions were ~
always defined outside the first pass of ~
initialization, but the *1* function for ~
~x0, which should be ~x1, is not."
fn *1*fn))))
(stobjs-out
(cond ((eq fn 'return-last)
; Things can work out fine if we imagine that return-last returns a single
; value: in the case of (return-last ... (mv ...)), the mv returns a list and
; we just pass that along.
'(nil))
; The next form was originally conditionalized with #+acl2-extra-checks, but we
; want to do this unconditionally.
(latches ; optimization
(actual-stobjs-out fn args w user-stobj-alist))
(t (stobjs-out fn w))))
(val (catch 'raw-ev-fncall
(chk-raw-ev-fncall fn w aok)
(cond ((not (fboundp fn))
(er hard 'raw-ev-fncall
"A function, ~x0, that was supposed to be ~
defined is not. Supposedly, this can only ~
arise because of aborts during undoing. ~
There is no recovery from this erroneous ~
state."
fn)))
(prog1
(let ((*hard-error-returns-nilp*
hard-error-returns-nilp))
#-acl2-mv-as-values
(apply applied-fn args)
#+acl2-mv-as-values
(cond ((null (cdr stobjs-out))
(apply applied-fn args))
(t (multiple-value-list
(apply applied-fn args)))))
(setq throw-raw-ev-fncall-flg nil))))
; It is important to rebind w here, since we may have updated state since the
; last binding of w.
(w (if pair
; We use the live state now if and only if we used it above, in which case (cdr
; pair) = *the-live-state*.
(w (cdr pair))
w)))
; Observe that if a throw to 'raw-ev-fncall occurred during the
; (apply fn args) then the local variable throw-raw-ev-fncall-flg
; is t and otherwise it is nil. If a throw did occur, val is the
; value thrown.
(cond
(throw-raw-ev-fncall-flg
(mv t (ev-fncall-msg val w user-stobj-alist) latches))
(t #-acl2-mv-as-values ; adjust val for the multiple value case
(let ((val
(cond
((null (cdr stobjs-out)) val)
(t (cons val
(mv-refs (1- (length stobjs-out))))))))
(mv nil
val
; The next form was originally conditionalized with #+acl2-extra-checks, with
; value latches when #-acl2-extra-checks; but we want this unconditionally.
(latch-stobjs stobjs-out ; adjusted to actual-stobjs-out
val
latches)))
#+acl2-mv-as-values ; val already adjusted for multiple value case
(mv nil
val
; The next form was originally conditionalized with #+acl2-extra-checks, with
; value latches when #-acl2-extra-checks; but we want this unconditionally.
(latch-stobjs stobjs-out ; adjusted to actual-stobjs-out
val
latches)))))))
)
(mutual-recursion
; These functions assume that the input world is "close to" the installed
; world, (w *the-live-state*), since ultimately they typically lead to calls of
; the check chk-raw-ev-fncall within raw-ev-fncall.
; Here we combine what may naturally be thought of as two separate
; mutual-recursion nests: One for evaluation and one for untranslate. However,
; functions in the ev nest call untranslate1 for error messages, and
; untranslate1 calls ev-fncall-w. We are tempted to place the definitions of
; the untranslate functions first, but Allegro CL (6.2 and 7.0) produces a
; bogus warning in that case (which goes away if the char-code case is
; eliminated from ev-fncall-rec-logical!).
(defun guard-raw (fn wrld)
; Fn is a function symbol of wrld that is a primitive or is defined, hence is
; not merely constrained. This function is responsible for returning a guard
; expression, g, suitable to print in messages reporting guard violations for
; calls of fn.
(let ((trip (assoc-eq fn *primitive-formals-and-guards*)))
(cond
(trip (untranslate* (caddr trip) t wrld))
(t (let ((ev (get-event fn wrld)))
(cond
((atom ev)
(er hard! 'guard-raw
"Unable to find defining event for ~x0."
fn))
(t (let ((def ; strip off leading defun
(case (car ev)
(defun (cdr ev))
(mutual-recursion (assoc-eq fn (strip-cdrs (cdr ev))))
(otherwise (er hard! 'guard-raw
"Implementation error for ~x0: ~
Unexpected event type, ~x1"
`(guard-raw ',fn <wrld>)
(car ev))))))
(mv-let
(dcls guard)
(dcls-guard-raw-from-def def wrld)
(declare (ignore dcls))
guard)))))))))
(defun ev-fncall-guard-er (fn args w user-stobj-alist latches extra)
; This function is called only by ev-fncall-rec-logical, which do not expect to
; be executed.
; Note that user-stobj-alist is only used for error messages, so this function
; may be called in the presence of local stobjs.
(mv t
(ev-fncall-guard-er-msg fn
; We call guard-raw both here and in oneify-cltl-code (more precisely, the
; subroutine dcls-guard-raw-from-def of guard-raw is called in
; oneify-cltl-code), so that the logical behavior for guard violations agrees
; with what is actually executed.
(guard-raw fn w)
(stobjs-in fn w) args w user-stobj-alist extra)
latches))
(defun ev-fncall-rec-logical (fn args w user-stobj-alist big-n safe-mode gc-off
latches hard-error-returns-nilp aok)
; This is the "slow" code for ev-fncall-rec, for when raw-ev-fncall is not
; called.
; The following guard is simply a way to trick ACL2 into not objecting
; to the otherwise irrelevant hard-error-returns-nilp. See the comment
; in ev, below, for a brief explanation. See hard-error for a more
; elaborate one.
; Keep this function in sync with *primitive-formals-and-guards*.
(declare (xargs :guard (and (plist-worldp w)
(equal hard-error-returns-nilp
hard-error-returns-nilp))))
(cond
((zp-big-n big-n)
(mv t
(cons "Evaluation ran out of time." nil)
latches))
(t
(let* ((x (car args))
(y (cadr args))
(pair (assoc-eq 'state latches))
(w (if pair (w-of-any-state (cdr pair)) w))
(safe-mode-requires-check
(and safe-mode
(acl2-system-namep fn w)
(not (equal (symbol-package-name fn) "ACL2"))))
(stobj-primitive-p
(let ((st (getpropc fn 'stobj-function nil w)))
(and st
(member-eq st (stobjs-in fn w)))))
(guard-checking-off
(and gc-off
; Safe-mode defeats the turning-off of guard-checking, as does calling a stobj
; primitive that takes its live stobj as an argument. If the latter changes,
; consider also changing oneify-cltl-code.
(not safe-mode-requires-check)
(not stobj-primitive-p)))
(extra (if gc-off
(cond (safe-mode-requires-check t)
((not guard-checking-off)
:live-stobj)
(t nil))
(and stobj-primitive-p
:live-stobj-gc-on))))
; Keep this in sync with *primitive-formals-and-guards*.
(case fn
(ACL2-NUMBERP
(mv nil (acl2-numberp x) latches))
(BAD-ATOM<=
(cond ((or guard-checking-off
(and (bad-atom x)
(bad-atom y)))
(mv nil (bad-atom<= x y) latches))
(t (ev-fncall-guard-er fn args w user-stobj-alist latches
extra))))
(BINARY-*
(cond ((or guard-checking-off
(and (acl2-numberp x)
(acl2-numberp y)))
(mv nil
(* x y)
latches))
(t (ev-fncall-guard-er fn args w user-stobj-alist latches
extra))))
(BINARY-+
(cond ((or guard-checking-off
(and (acl2-numberp x)
(acl2-numberp y)))
(mv nil (+ x y) latches))
(t (ev-fncall-guard-er fn args w user-stobj-alist latches
extra))))
(UNARY--
(cond ((or guard-checking-off
(acl2-numberp x))
(mv nil (- x) latches))
(t (ev-fncall-guard-er fn args w user-stobj-alist latches
extra))))
(UNARY-/
(cond ((or guard-checking-off
(and (acl2-numberp x)
(not (= x 0))))
(mv nil (/ x) latches))
(t (ev-fncall-guard-er fn args w user-stobj-alist latches
extra))))
(<
(cond ((or guard-checking-off
(and (real/rationalp x)
(real/rationalp y)))
(mv nil (< x y) latches))
(t (ev-fncall-guard-er fn args w user-stobj-alist latches
extra))))
(CAR
(cond ((or guard-checking-off
(or (consp x)
(eq x nil)))
(mv nil (car x) latches))
(t (ev-fncall-guard-er fn args w user-stobj-alist latches
extra))))
(CDR
(cond ((or guard-checking-off
(or (consp x)
(eq x nil)))
(mv nil (cdr x) latches))
(t (ev-fncall-guard-er fn args w user-stobj-alist latches
extra))))
(CHAR-CODE
(cond ((or guard-checking-off
(characterp x))
(mv nil (char-code x) latches))
(t (ev-fncall-guard-er fn args w user-stobj-alist latches
extra))))
(CHARACTERP
(mv nil (characterp x) latches))
(CODE-CHAR
(cond ((or guard-checking-off
(and (integerp x)
(<= 0 x)
(< x 256)))
(mv nil (code-char x) latches))
(t (ev-fncall-guard-er fn args w user-stobj-alist latches
extra))))
(COMPLEX
(cond ((or guard-checking-off
(and (real/rationalp x)
(real/rationalp y)))
(mv nil (complex x y) latches))
(t (ev-fncall-guard-er fn args w user-stobj-alist latches
extra))))
(COMPLEX-RATIONALP
(mv nil (complex-rationalp x) latches))
#+:non-standard-analysis
(COMPLEXP
(mv nil (complexp x) latches))
(COERCE
(cond ((or guard-checking-off
(or (and (stringp x)
(eq y 'list))
(and (character-listp x)
(eq y 'string))))
(mv nil (coerce x y) latches))
(t (ev-fncall-guard-er fn args w user-stobj-alist latches
extra))))
(CONS
(mv nil (cons x y) latches))
(CONSP
(mv nil (consp x) latches))
(DENOMINATOR
(cond ((or guard-checking-off
(rationalp x))
(mv nil (denominator x) latches))
(t (ev-fncall-guard-er fn args w user-stobj-alist latches
extra))))
(EQUAL
(mv nil (equal x y) latches))
#+:non-standard-analysis
(FLOOR1
(cond ((or guard-checking-off
(realp x))
(mv nil (floor x 1) latches))
(t (ev-fncall-guard-er fn args w user-stobj-alist latches
extra))))
(IF
(mv nil
(er hard 'ev-fncall-rec
"This function should not be called with fn = 'IF!")
latches))
(IMAGPART
(cond ((or guard-checking-off
(acl2-numberp x))
(mv nil (imagpart x) latches))
(t (ev-fncall-guard-er fn args w user-stobj-alist latches
extra))))
(INTEGERP
(mv nil (integerp x) latches))
(INTERN-IN-PACKAGE-OF-SYMBOL
(cond ((or guard-checking-off
(and (stringp x)
(symbolp y)))
(mv nil (intern-in-package-of-symbol x y) latches))
(t (ev-fncall-guard-er fn args w user-stobj-alist latches
extra))))
(NUMERATOR
(cond ((or guard-checking-off
(rationalp x))
(mv nil (numerator x) latches))
(t (ev-fncall-guard-er fn args w user-stobj-alist latches
extra))))
(PKG-IMPORTS
(cond ((or guard-checking-off
(stringp x))
(mv nil (pkg-imports x) latches))
(t (ev-fncall-guard-er fn args w user-stobj-alist latches
extra))))
(PKG-WITNESS
(cond ((or guard-checking-off
(and (stringp x) (not (equal x ""))))
(mv nil (pkg-witness x) latches))
(t (ev-fncall-guard-er fn args w user-stobj-alist latches
extra))))
(RATIONALP
(mv nil (rationalp x) latches))
#+:non-standard-analysis
(REALP
(mv nil (realp x) latches))
(REALPART
(cond ((or guard-checking-off
(acl2-numberp x))
(mv nil (realpart x) latches))
(t (ev-fncall-guard-er fn args w user-stobj-alist latches
extra))))
(STRINGP
(mv nil (stringp x) latches))
(SYMBOL-NAME
(cond ((or guard-checking-off
(symbolp x))
(mv nil (symbol-name x) latches))
(t (ev-fncall-guard-er fn args w user-stobj-alist latches
extra))))
(SYMBOL-PACKAGE-NAME
(cond ((or guard-checking-off
(symbolp x))
(mv nil (symbol-package-name x) latches))
(t (ev-fncall-guard-er fn args w user-stobj-alist latches
extra))))
(SYMBOLP
(mv nil (symbolp x) latches))
; The next two functions have the obvious behavior on standard objects, which
; are the only ones ever present inside ACL2.
#+:non-standard-analysis
(STANDARDP
(mv nil t latches))
#+:non-standard-analysis
(STANDARD-PART
(mv nil x latches))
#+:non-standard-analysis
(I-LARGE-INTEGER ; We could omit this case, allowing a fall-through.
(ev-fncall-null-body-er nil fn nil latches))
(otherwise
(cond
((and (null args)
(car (stobjs-out fn w)))
(mv t
(ev-fncall-creator-er-msg fn)
latches))
(t
(let ((alist (pairlis$ (formals fn w) args))
(body (body fn nil w))
(attachment (and aok
(cdr (assoc-eq fn (all-attachments w))))))
(mv-let
(er val latches)
(ev-rec (if guard-checking-off
''t
(guard fn nil w))
alist w user-stobj-alist
(decrement-big-n big-n) (eq extra t) guard-checking-off
latches
hard-error-returns-nilp
aok)
(cond
(er (mv er val latches))
((null val)
(ev-fncall-guard-er fn args w user-stobj-alist latches extra))
((and (eq fn 'hard-error)
(not hard-error-returns-nilp))
; Before we added this case, the following returned nil even though the result
; was t if we replaced ev-fncall-rec-logical by ev-fncall-rec. That wasn't
; quite a soundness bug, event though the latter is defined to be the former,
; because ev-fncall-rec is untouchable; nevertheless the discrepancy was
; troubling.
; (mv-let (erp val ign)
; (ev-fncall-rec-logical 'hard-error '(top "ouch" nil) (w state)
; (user-stobj-alist state)
; 100000 nil nil nil nil t)
; (declare (ignore ign val))
; erp)
(mv t (illegal-msg) latches))
((eq fn 'throw-nonexec-error)
(ev-fncall-null-body-er nil
(car args) ; fn
(cadr args) ; args
latches))
((member-eq fn '(pkg-witness pkg-imports))
(mv t (unknown-pkg-error-msg fn (car args)) latches))
(attachment
(ev-fncall-rec-logical attachment args w user-stobj-alist
(decrement-big-n big-n)
safe-mode gc-off latches
hard-error-returns-nilp aok))
((null body)
(ev-fncall-null-body-er
(and (not aok) attachment)
fn args latches))
(t
(mv-let
(er val latches)
(ev-rec body alist w user-stobj-alist
(decrement-big-n big-n) (eq extra t)
guard-checking-off
latches
hard-error-returns-nilp
aok)
(cond
(er (mv er val latches))
((eq fn 'return-last) ; avoid stobjs-out for return-last
(mv nil val latches))
(t (mv nil
val
(latch-stobjs
(actual-stobjs-out fn args w user-stobj-alist)
val
latches)))))))))))))))))
(defun ev-fncall-rec (fn args w user-stobj-alist big-n safe-mode gc-off latches
hard-error-returns-nilp aok)
(declare (xargs :guard (plist-worldp w)))
#-acl2-loop-only
(cond (*ev-shortcut-okp*
(cond ((fboundp fn)
; If fn is unbound and we used the logical code below, we'd get a
; hard error as caused by (formals fn w).
(return-from ev-fncall-rec
(raw-ev-fncall fn args latches w user-stobj-alist
hard-error-returns-nilp aok)))))
(t
(let ((pair (assoc-eq 'state latches)))
(if (and pair
(eq (cdr pair) *the-live-state*))
(progn
(er hard 'ev-fncall-rec
"ACL2 implementation error: An attempt is being made to ~
evaluate a form involving the live state when ~
*ev-shortcut-okp* is nil. Please contact the ACL2 ~
implementors.")
(return-from ev-fncall-rec
(mv t
(cons "Implementation error" nil)
latches)))))))
(ev-fncall-rec-logical fn args w user-stobj-alist big-n safe-mode gc-off
latches hard-error-returns-nilp aok))
#-acl2-loop-only
(progn
(defvar *return-last-arg2*)
(defvar *return-last-arg3*)
(defvar *return-last-alist*)
(defvar *return-last-fn-w*)
(defvar *return-last-fn-user-stobj-alist*)
(defvar *return-last-fn-big-n*)
(defvar *return-last-fn-safe-mode*)
(defvar *return-last-fn-gc-off*)
(defvar *return-last-fn-latches*)
(defvar *return-last-fn-hard-error-returns-nilp*)
(defvar *return-last-fn-aok*))
(defun ev-rec-return-last (fn arg2 arg3 alist w user-stobj-alist big-n
safe-mode gc-off latches hard-error-returns-nilp
aok)
; This function should only be called when fn is a key of return-last-table,
; and is not mbe1-raw (which is handled directly in ev-rec, to avoid executing
; the :exec code). Moreover, we get here only when the original return-last
; form is given a quoted first argument, so that ev-rec evaluation will treat
; return-last similarly to how it is treated in raw Lisp. See the comment in
; ev-rec about how we leave it to the user not to remove a key from
; return-last-table before passing quotation of that key as the first argument
; of a return-last call.
(assert$
(not (eq fn 'mbe1-raw))
(mv-let
(er arg2-val latches)
(let (#-acl2-loop-only (*aokp*
; See the #-acl2-loop-only definition of return-last and the comment just
; below. Note that fn is not mbe1-raw, so this binding is appropriate.
; We are being a bit more generous here in our binding of *aokp*, but it seems
; fine to keep it simple here, and for since evaluation of arg2 does not affect
; the logical result, there is no soundness issue here.
t))
(ev-rec arg2 alist w user-stobj-alist
(decrement-big-n big-n)
safe-mode gc-off latches hard-error-returns-nilp
; There is no logical problem with using attachments when evaluating the second
; argument of return-last, because logically the third argument provides the
; value(s) of a return-last call. See related treatment of aokp in the
; #-acl2-loop-only definition of return-last.
t))
(cond (er (mv er arg2-val latches))
(t (case fn
; We provide efficient handling for some common primitive cases. Keep these
; cases in sync with corresponding cases in the #-acl2-loop-only definition of
; return-last. Note however that mbe1-raw is already handled in ev-rec; we
; thus know that fn is not mbe1-raw.
; In the case of ec-call1 we expect ev-rec to call the appropriate *1* function
; anyhow, so we can treat it as a progn.
((progn ec-call1-raw)
(ev-rec arg3 alist w user-stobj-alist
(decrement-big-n big-n)
safe-mode gc-off latches hard-error-returns-nilp aok))
(with-guard-checking1-raw
(return-last
'with-guard-checking1-raw
arg2-val
(ev-rec arg3 alist w user-stobj-alist
(decrement-big-n big-n)
safe-mode
(gc-off1 arg2-val)
latches hard-error-returns-nilp aok)))
(otherwise
#+acl2-loop-only
(ev-rec arg3 alist w user-stobj-alist
(decrement-big-n big-n)
safe-mode gc-off latches hard-error-returns-nilp aok)
; The following raw Lisp code is a bit odd in its use of special variables.
; Our original motivation was to work around problems that SBCL had with large
; quoted constants in terms passed to eval (SBCL bug 654289). While this issue
; was fixed in SBCL 1.0.43.19, nevertheless we believe that it is still an
; issue for CMUCL and, for all we know, it could be an issue for future Lisps.
; The use of special variables keeps the terms small that are passed to eval.
#-acl2-loop-only
(let ((*return-last-arg2* arg2-val)
(*return-last-arg3* arg3)
(*return-last-alist* alist)
(*return-last-fn-w* w)
(*return-last-fn-user-stobj-alist* user-stobj-alist)
(*return-last-fn-big-n* big-n)
(*return-last-fn-safe-mode* safe-mode)
(*return-last-fn-gc-off* gc-off)
(*return-last-fn-latches* latches)
(*return-last-fn-hard-error-returns-nilp*
hard-error-returns-nilp)
(*return-last-fn-aok* aok))
(eval `(,fn *return-last-arg2*
(ev-rec *return-last-arg3*
*return-last-alist*
*return-last-fn-w*
*return-last-fn-user-stobj-alist*
*return-last-fn-big-n*
*return-last-fn-safe-mode*
*return-last-fn-gc-off*
*return-last-fn-latches*
*return-last-fn-hard-error-returns-nilp*
*return-last-fn-aok*)))))))))))
(defun ev-rec (form alist w user-stobj-alist big-n safe-mode gc-off latches
hard-error-returns-nilp aok)
; See also ev-respecting-ens.
; Note: Latches includes a binding of 'state. See the Essay on EV.
; If you provide no latches and form changes some stobj, a hard error
; occurs. Thus, if you provide no latches and no error occurs, you
; may ignore the output latches.
; Hard-error-returns-nilp is explained in the comment in hard-error.
; Essentially, two behaviors of (hard-error ...) are possible: return
; nil or signal an error. Both are sound. If hard-error-returns-nilp
; is t then hard-error just returns nil; this is desirable setting if
; you are evaluating a form in a conjecture being proved: its logical
; meaning really is nil. But if you are evaluating a form for other
; reasons, e.g., to compute something, then hard-error should probably
; signal an error, because something is wrong. In that case,
; hard-error-returns-nilp should be set to nil. Nil is the
; conservative setting.
(declare (xargs :guard (and (plist-worldp w)
(termp form w)
(symbol-alistp alist))))
(cond ((zp-big-n big-n)
(mv t (cons "Evaluation ran out of time." nil) latches))
((variablep form)
(let ((pair (assoc-eq form alist)))
(cond (pair (mv nil (cdr pair) latches))
(t (mv t
(msg "Unbound var ~x0."
form)
latches)))))
((fquotep form)
(mv nil (cadr form) latches))
((translated-acl2-unwind-protectp form)
; We relegate this special case to a separate function, even though it could be
; open-coded, because it is so distracting.
(ev-rec-acl2-unwind-protect form alist w user-stobj-alist
(decrement-big-n big-n)
safe-mode gc-off
latches
hard-error-returns-nilp
aok))
((eq (ffn-symb form) 'wormhole-eval)
; Because this form has been translated, we know it is of the form
; (wormhole-eval 'name '(lambda ...) term) where the quoted lambda is either
; (lambda (whs) body) or (lambda () body), where body has also been translated.
; Furthermore, we know that all the free variables of the lambda are bound in
; the current environment. Logically this term returns nil. Actually, it
; applies the lambda expression to the most recent output of the named wormhole
; and stores the result as the most recent output.
#+acl2-loop-only
(mv nil nil latches)
#-acl2-loop-only
(progn
(cond (*wormholep*
(setq *wormhole-status-alist*
(put-assoc-equal
(f-get-global 'wormhole-name
*the-live-state*)
(f-get-global 'wormhole-status
*the-live-state*)
*wormhole-status-alist*))))
(let* ((*wormholep* t)
(name (cadr (fargn form 1)))
(formals (lambda-formals (cadr (fargn form 2))))
(whs (car formals)) ; will be nil if formals is nil!
(body (lambda-body (cadr (fargn form 2))))
(alist (if formals
(cons (cons whs
(cdr (assoc-equal
name
*wormhole-status-alist*)))
alist)
alist)))
(mv-let (body-er body-val latches)
(ev-rec body alist w user-stobj-alist
(decrement-big-n big-n) safe-mode gc-off latches
hard-error-returns-nilp
aok)
(cond
(body-er (mv t body-val latches))
(t (setq *wormhole-status-alist*
(put-assoc-equal name body-val
*wormhole-status-alist*))
(mv nil nil latches)))))))
((eq (ffn-symb form) 'if)
(mv-let (test-er test latches)
(ev-rec (fargn form 1) alist w user-stobj-alist
(decrement-big-n big-n) safe-mode gc-off
latches
hard-error-returns-nilp
aok)
(cond
(test-er (mv t test latches))
(test
(ev-rec (fargn form 2) alist w user-stobj-alist
(decrement-big-n big-n) safe-mode gc-off
latches
hard-error-returns-nilp
aok))
(t (ev-rec (fargn form 3) alist w user-stobj-alist
(decrement-big-n big-n) safe-mode gc-off
latches
hard-error-returns-nilp
aok)))))
((eq (ffn-symb form) 'mv-list)
(ev-rec (fargn form 2) alist w user-stobj-alist
(decrement-big-n big-n) safe-mode gc-off
latches hard-error-returns-nilp aok))
((and (eq (ffn-symb form) 'return-last)
(not (and (equal (fargn form 1) ''mbe1-raw)
; We generally avoid running the :exec code for an mbe call. But in safe-mode,
; it is critical to run the exec code and check its equality to the logic code
; (respecting the guard of return-last in the case that the first argument is
; 'mbe1-raw). See the comments in note-4-3 for an example showing why it is
; unsound to avoid this check in safe-mode, and see (defun-*1* return-last ...)
; for a discussion of why we do not consider the case (not gc-off) here.
safe-mode)))
(let ((fn (and (quotep (fargn form 1))
(unquote (fargn form 1)))))
(cond
((and fn (symbolp fn))
; Translate11 will generally ensure that the value of (return-last-lookup fn w)
; is not nil. What happens if the user (with an active trust tag) removes the
; association of a key in return-last-table with a non-nil value? The
; resulting state will be a weird one, in which a direct evaluation of the
; return-last form in raw Lisp will continue to take effect. So we match that
; behavior here, rather than requiring (return-last-lookup fn w) to be non-nil.
; We leave it to translate11 to enforce this requirement on return-last calls,
; and we leave it to the user not to remove a key from return-last-table before
; passing quotation of that key as the first argument of a return-last call.
(cond
((eq fn 'mbe1-raw)
; We avoid running the exec code (see comment above).
(ev-rec (fargn form 3) ; optimization: avoid exec argument
alist w user-stobj-alist
(decrement-big-n big-n) safe-mode gc-off latches
hard-error-returns-nilp aok))
(t (ev-rec-return-last fn (fargn form 2) (fargn form 3)
alist w user-stobj-alist
big-n safe-mode gc-off latches
hard-error-returns-nilp aok))))
(t ; first arg is not quotep with special behavior; treat as progn
(mv-let (args-er args latches)
(ev-rec-lst (fargs form) alist w user-stobj-alist
(decrement-big-n big-n) safe-mode gc-off
latches
hard-error-returns-nilp
aok)
(cond (args-er (mv t args latches))
(t (mv nil (car (last args)) latches))))))))
(t (mv-let (args-er args latches)
(ev-rec-lst (fargs form) alist w user-stobj-alist
(decrement-big-n big-n) safe-mode gc-off
latches
hard-error-returns-nilp
aok)
(cond
(args-er (mv t args latches))
((flambda-applicationp form)
(ev-rec (lambda-body (ffn-symb form))
(pairlis$ (lambda-formals (ffn-symb form)) args)
w user-stobj-alist
(decrement-big-n big-n) safe-mode gc-off
latches
hard-error-returns-nilp
aok))
(t (ev-fncall-rec (ffn-symb form) args w user-stobj-alist
(decrement-big-n big-n)
safe-mode gc-off latches
hard-error-returns-nilp aok)))))))
(defun ev-rec-lst (lst alist w user-stobj-alist big-n safe-mode gc-off latches
hard-error-returns-nilp aok)
(declare (xargs :guard (and (plist-worldp w)
(term-listp lst w)
(symbol-alistp alist))))
(cond
((zp-big-n big-n)
(mv t (cons "Evaluation ran out of time." nil) latches))
((null lst) (mv nil nil latches))
(t (mv-let (first-er first-val first-latches)
(ev-rec (car lst) alist w user-stobj-alist
(decrement-big-n big-n) safe-mode gc-off
latches
hard-error-returns-nilp
aok)
(cond
(first-er (mv first-er first-val first-latches))
(t
(mv-let (rest-er rest-val rest-latches)
(ev-rec-lst (cdr lst) alist w user-stobj-alist
(decrement-big-n big-n) safe-mode gc-off
first-latches
hard-error-returns-nilp
aok)
(cond
(rest-er (mv rest-er rest-val rest-latches))
(t (mv nil
(cons first-val rest-val)
rest-latches))))))))))
(defun ev-rec-acl2-unwind-protect (form alist w user-stobj-alist big-n
safe-mode gc-off latches
hard-error-returns-nilp aok)
; Sketch: We know that form is a termp wrt w and that it is recognized by
; translated-acl2-unwind-protectp. We therefore unpack it into its body and
; two cleanup forms and give it special attention. If the body evaluates
; without either an abort or any kind of "evaluation error" (e.g., ubv, udf, or
; guard error) then we return exactly what we would have returned had we
; evaluated form without special treatment. But if body causes an evaluation
; error we run the cleanup1 code, just as Common Lisp would had the body been
; compiled and caused a hard lisp error. Furthermore, if the evaluation of
; body is aborted, we ensure that the cleanup1 code is EV'd upon unwinding.
; See the Essay on Unwind-Protect in axioms.lisp.
(declare (xargs :guard (and (plist-worldp w)
(termp form w)
(symbol-alistp alist))))
(let ((temp nil))
#+acl2-loop-only
(declare (ignore temp))
(mv-let
(ans body cleanup1 cleanup2)
(translated-acl2-unwind-protectp4 form)
(declare (ignore ans))
#-acl2-loop-only
(cond ((live-state-p (cdr (assoc-eq 'STATE alist)))
; This code implements our unwind-protection from aborts. Intuitively, we wish
; to push the cleanup form onto the unwind-protect stack provided the STATE
; being modified is the live state. It is possible that STATE is not bound in
; alist. If this happens then it is certainly not the live state and we do not
; push anything.
; The next problem, however, is what do we push? In normal circumstances --
; i.e., body terminating without an evaluation error but signaling an error --
; cleanup1 is evaluated by ev. But cleanup1 is evaluated in w, which may or
; may not be the installed world. Hence, the meaning in w of the function
; symbol in the car of cleanup1 may be different from the raw lisp definition
; (if any) of that symbol. So we can't do the usual and just push the car of
; cleanup1 and the values (in alist) of the arguments. Furthermore, there is
; delicacy concerning the possibility that not all of the argument variables
; are bound in alist. To make matters slightly worse, we can't cause any
; errors right now, no matter how screwed up cleanup1 might be, because no
; abort has happened and we are obliged to respect the semantics unless an
; abort happens. To make a long story short, we do what is pretty obvious: we
; push onto the undo stack a form that calls EV to do the cleanup! We use
; FUNCTION to capture the local environment, e.g., alist, which contains the
; values of all the variables occurring in the cleanup form.
(setq temp
(cons "ev-rec-acl2-unwind-protect"
#'(lambda nil
; The Essay on Unwind-Protect says that we have the freedom to give arbitrary
; semantics to acl2-unwind-protect in the face of an abort. So in this raw
; Lisp code, we take the liberty of binding *ev-shortcut-okp* to t even though
; when this cleanup code is executed, we may violate the requirement that the
; values of state globals guard-checking-on and safe-mode are respected in the
; arguments to ev-rec when *ev-shortcut-okp* is t. This seems like quite a
; minor violation when doing cleanup.
(let ((*ev-shortcut-okp* t))
(mv-let (erp val latches)
(ev-rec cleanup1 alist
w user-stobj-alist
big-n safe-mode gc-off
latches
hard-error-returns-nilp
aok)
(declare (ignore latches))
; Since 'STATE in alist is the live state, latches must be too.
(cond
(erp
(let ((state *the-live-state*))
(er soft 'acl2-unwind-protect "~@0" val))))))
*the-live-state*)))
(push-car temp
*acl2-unwind-protect-stack*
'ev-rec-acl2-unwind-protect)))
(mv-let
(body-erp body-val body-latches)
(ev-rec body alist w user-stobj-alist big-n safe-mode gc-off latches
hard-error-returns-nilp aok)
(cond
(body-erp ; "hard error", e.g., guard error in body
; It is possible that the evaluation of body pushed some additional
; cleanup forms before the abort occurred. We must get back down to
; the form we pushed. This is analogous to the similar situation in
; acl2-unwind-protect itself.
#-acl2-loop-only
(cond (temp (acl2-unwind -1 temp)))
(mv-let
(clean-erp clean-val clean-latches)
(ev-rec cleanup1
(put-assoc-eq 'state
(cdr (assoc-eq 'state body-latches))
alist)
w user-stobj-alist big-n safe-mode gc-off
body-latches hard-error-returns-nilp aok)
#-acl2-loop-only
(cond (temp
(pop (car *acl2-unwind-protect-stack*))))
(cond
(clean-erp ; "hard error," e.g., guard error in cleanup!
(mv t
(msg "An evaluation error, ``~@0'', occurred while ~
evaluating the body of an acl2-unwind-protect ~
form. While evaluating the first cleanup form a ~
second evaluation error occurred, ``~@1''. The ~
body of the acl2-unwind-protect is ~p2 and the ~
first cleanup form is ~p3. Because the cleanup ~
form failed, the state being returned may not be ~
fully cleaned up."
body-val
clean-val
(untranslate* body nil w)
(untranslate* cleanup1 nil w))
clean-latches))
(t
; In this case, clean-val is the binding of 'state in
; clean-latches because the cleanup form produces a state.
(mv body-erp body-val clean-latches)))))
((car body-val) ; "soft error," i.e., body signaled error
; We think this call of acl2-unwind is unnecessary. It is here in
; case the evaluation of body pushed some additional forms onto the
; unwind protect stack and it removes those forms down to the one we
; pushed. But if a soft error has arisen, any forms pushed would have
; been popped on the way back to here. But this code is safer.
#-acl2-loop-only
(cond (temp (acl2-unwind -1 temp)))
; Because body is known to produce an error triple we know its car is
; the error flag, the cadr is the value, and the caddr is a state
; The test above therefore detects that the body signaled an error.
(mv-let
(clean-erp clean-val clean-latches)
(ev-rec cleanup1
(put-assoc-eq 'state
(cdr (assoc-eq 'state body-latches))
alist)
w user-stobj-alist big-n safe-mode gc-off
body-latches hard-error-returns-nilp aok)
#-acl2-loop-only
(cond (temp
(pop (car *acl2-unwind-protect-stack*))))
(cond
(clean-erp ; "hard error," e.g., guard error in cleanup!
(mv t
(msg "An evaluation error, ``~@0'', occurred while ~
evaluating the first cleanup form of an ~
acl2-unwind-protect. The body of the ~
acl2-unwind-protect is ~p1 and the first cleanup ~
form is ~p2. Because the cleanup form failed, ~
the state being returned may not be fully cleaned ~
up."
clean-val
(untranslate* body nil w)
(untranslate* cleanup1 nil w))
clean-latches))
(t
; We pass a SOFT error up, containing the cleaned up state.
(mv nil
(list (car body-val)
(cadr body-val)
(cdr (assoc-eq 'state clean-latches)))
clean-latches)))))
(t ; no hard or soft error
; Same safety check described above.
#-acl2-loop-only
(cond (temp (acl2-unwind -1 temp)))
(mv-let
(clean-erp clean-val clean-latches)
(ev-rec cleanup2
(put-assoc-eq 'state
(cdr (assoc-eq 'state body-latches))
alist)
w user-stobj-alist big-n safe-mode gc-off
body-latches hard-error-returns-nilp aok)
#-acl2-loop-only
(cond (temp
(pop (car *acl2-unwind-protect-stack*))))
(cond
(clean-erp ; "hard error," e.g., guard error in cleanup!
(mv t
(msg "An evaluation error, ``~@0'', occurred while ~
evaluating the second cleanup form of an ~
acl2-unwind-protect. The body of the ~
acl2-unwind-protect is ~p1 and the second cleanup ~
form is ~p2. Because the cleanup form failed, ~
the state being returned may not be fully cleaned ~
up."
clean-val
(untranslate* body nil w)
(untranslate* cleanup2 nil w))
clean-latches))
(t
(mv nil
(list (car body-val)
(cadr body-val)
(cdr (assoc-eq 'state clean-latches)))
clean-latches))))))))))
(defun ev-fncall-w-body (fn args w user-stobj-alist safe-mode gc-off
hard-error-returns-nilp aok)
; There is no guard specified for this :program mode function.
; WARNING: Do not call this function if args contains the live state
; or any other live stobjs and evaluation of form could modify any of
; those stobjs. Otherwise, the calls of ev-fncall-rec below violate
; requirement (1) in The Essay on EV, which is stated explicitly for
; ev but, in support of ev, is applicable to ev-fncall-rec as well.
; Note that users cannot make such a call because they cannot put live
; stobjs into args.
; It may see inappropriate that we temporarily modify state in a
; function that does not take state. But what we are really doing is
; writing a function that has nothing to do with state, yet handles
; guards in a way appropriate to the current world. We need to modify
; the state to match the inputs safe-mode and gc-off.
; Keep the two ev-fncall-rec calls below in sync.
#-acl2-loop-only
(let ((*ev-shortcut-okp* t))
(state-free-global-let*
((safe-mode safe-mode)
(guard-checking-on
; Guard-checking-on will be t or nil -- not :nowarn, :all, or :none, but it
; doesn't seem that this would be a problem.
(not gc-off)))
(mv-let
(erp val latches)
(ev-fncall-rec fn args w user-stobj-alist (big-n) safe-mode gc-off
nil ; latches
hard-error-returns-nilp
aok)
(progn (when latches
(er hard 'ev-fncall-w
"The call ~x0 returned non-nil latches."
(list 'ev-fncall-w
fn
args
'<wrld>
(if user-stobj-alist
'<user-stobj-alist>
nil)
safe-mode gc-off hard-error-returns-nilp aok)))
(mv erp val)))))
#+acl2-loop-only
(mv-let
(erp val latches)
(ev-fncall-rec fn args w user-stobj-alist (big-n) safe-mode gc-off
nil ; latches
hard-error-returns-nilp
aok)
(declare (ignore latches))
(mv erp val)))
(defun ev-fncall-w (fn args w user-stobj-alist safe-mode gc-off
hard-error-returns-nilp aok)
; See the warning in ev-fncall-w-body.
(declare (xargs :guard (ev-fncall-w-guard fn args w nil)))
(ev-fncall-w-body fn args w user-stobj-alist safe-mode gc-off
hard-error-returns-nilp aok))
(defun ev-fncall-w! (fn args w user-stobj-alist safe-mode gc-off
hard-error-returns-nilp aok)
; See the warning in ev-fncall-w-body.
(declare (xargs :guard t))
(if (ev-fncall-w-guard fn args w nil)
(ev-fncall-w-body fn args w user-stobj-alist safe-mode gc-off
hard-error-returns-nilp aok)
(mv t (msg "Guard failure for ~x0 in a call of ~x1: fn = ~x2, args = ~X34"
'ev-fncall-w-guard
'ev-fncall-w!
fn args
(evisc-tuple 5 ; print-level
7 ; print-length
(list (cons w *evisceration-world-mark*)) ; alist
nil ; hiding-cars
)))))
(defun ev-w (form alist w user-stobj-alist safe-mode gc-off
hard-error-returns-nilp aok)
; WARNING: Do not call this function if alist contains the live state or any
; other live stobjs and evaluation of form could modify any of those stobjs.
; Otherwise, the calls of ev-rec below violate requirement (1) in The Essay on
; EV, which is stated explicitly for ev but, in support of ev, is applicable to
; ev-rec as well. Note that users cannot make such a call because they cannot
; put live stobjs into alist.
; Also see related functions ev-fncall-w and magic-ev-fncall, which pay
; attention to avoiding calls of untouchable functions, and hence are not
; themselves untouchable. But ev-w is untouchable because we don't make any
; such check, even in the guard.
; Note that user-stobj-alist is only used for error messages, so this function
; may be called in the presence of local stobjs. Probably user-stobj-alist
; could be replaced as nil because of the stobj restriction on alist.
(declare (xargs :guard (and (plist-worldp w)
(termp form w)
(symbol-alistp alist))))
; See the comment in ev for why we don't check the time limit here.
#-acl2-loop-only
(let ((*ev-shortcut-okp* t))
(state-free-global-let*
((safe-mode safe-mode)
(guard-checking-on
; Guard-checking-on will be t or nil -- not :nowarn, :all, or :none -- but it
; doesn't seem that this would be a problem, provided the call is made with
; gc-off set to t if guard-checking-on is either nil or :none (don't forget
; :none!).
(not gc-off)))
(mv-let
(erp val latches)
(ev-rec form alist w user-stobj-alist (big-n) safe-mode gc-off
nil ; latches
hard-error-returns-nilp
aok)
(progn (when latches
(er hard! 'ev-w
"The call ~x0 returned non-nil latches."
(list 'ev-w form alist '<wrld>
(if user-stobj-alist '<user-stobj-alist> nil)
safe-mode gc-off
hard-error-returns-nilp aok)))
(mv erp val)))))
#+acl2-loop-only
(mv-let (erp val latches)
(ev-rec form alist w user-stobj-alist (big-n) safe-mode gc-off
nil ; latches
hard-error-returns-nilp
aok)
(declare (ignore latches))
(mv erp val)))
(defun guard-er-message-coda (fn stobjs-in args w extra erp)
(msg "~@0~@1~@2~@3"
(cond ((and (eq fn 'return-last)
(eq (car args) 'mbe1-raw))
(msg " This offending call is equivalent to the more common ~
form, ~x0."
`(mbe :logic
,(untranslate* (kwote (caddr args)) nil w)
:exec
,(untranslate* (kwote (cadr args)) nil w))))
(t ""))
(cond ((eq extra :live-stobj)
; This case occurs if we attempt to execute the call of a "oneified" function
; on a live stobj (including state) when the guard of the fn is not satisfied,
; where the function is either a primitive listed in *super-defun-wart-table*
; or is defined by defstobj or defabsstobj.
; Warning: Before removing this error, consider that in general guard-checking
; may be defeated by :set-guard-checking :none, so we may be relying on this
; error for built-in functions like aset-t-stack that rely on guard-checking to
; validate their arguments.
(msg "~|This error is being reported even though guard-checking ~
has been turned off, because a stobj argument of ~x0 is ~
the ``live'' ~p1 and ACL2 does not support non-compliant ~
live stobj manipulation."
fn
(find-first-non-nil stobjs-in)))
((eq extra :live-stobj-gc-on)
(msg "~|This error will be reported even if guard-checking is ~
turned off, because a stobj argument of ~x0 is the ~
``live'' ~p1 and ACL2 does not support non-compliant live ~
stobj manipulation."
fn
(find-first-non-nil stobjs-in)))
((eq extra :no-extra) "") ; :no-extra is unused as of late 10/2013
(extra *safe-mode-guard-er-addendum*)
(t "~|See :DOC set-guard-checking for information about ~
suppressing this check with (set-guard-checking :none), as ~
recommended for new users."))
(error-trace-suggestion t)
(if erp
(msg "~|~%Note: Evaluation has resulted in an error for the form ~
associated with ~x0 in the table, ~x1, to obtain a custom ~
guard error message. Consider modifying that table entry; ~
see :doc set-guard-msg."
fn
'guard-msg-table)
"")))
(defun ev-fncall-guard-er-msg (fn guard stobjs-in args w user-stobj-alist
extra)
; Guard is printed directly, so should generally be in untranslated form.
; Note that user-stobj-alist is only used for error messages, so this function
; may be called in the presence of local stobjs.
(prog2$
(save-ev-fncall-guard-er fn guard stobjs-in args)
(let ((form (cdr (assoc-eq fn (table-alist 'guard-msg-table w)))))
(mv-let
(erp msg)
(cond (form (ev-w form
(list (cons 'world w)
(cons 'args args)
(cons 'coda
(guard-er-message-coda
fn
stobjs-in
args
w
extra
nil ; erp [no error yet!]
)))
w
user-stobj-alist
nil ; safe-mode
t ; gc-off
t ; hard-error-returns-nilp
t ; aok
))
(t (mv nil nil)))
(or msg
(msg
"The guard for the~#0~[ :program~/~] function call ~x1, which is ~
~P23, is violated by the arguments in the call ~P45.~@6"
(if (programp fn w) 0 1)
(cons fn (formals fn w))
guard
nil ; might prefer (term-evisc-tuple nil state) if we had state here
(cons fn
(untranslate*-lst
(apply-user-stobj-alist-or-kwote user-stobj-alist args nil)
nil
w))
(evisc-tuple 3 4 nil nil)
(guard-er-message-coda fn stobjs-in args w extra erp)))))))
(defun ev-fncall-msg (val wrld user-stobj-alist)
; Warning: Keep this in sync with ev-fncall-rec-logical.
; Note that user-stobj-alist is only used for error messages, so this function
; may be called in the presence of local stobjs.
(cond
((and (consp val)
(eq (car val) 'ev-fncall-null-body-er))
(ev-fncall-null-body-er-msg (cadr val) (caddr val) (cdddr val)))
((and (consp val)
(eq (car val) 'ev-fncall-guard-er))
; We get here if val is of the form (ev-fncall-guard-er fn args guard
; stobjs-in safep). This happens if a :program function finds its
; guard violated or a :logic function finds its guard violated while
; guard-checking is on.
(ev-fncall-guard-er-msg (cadr val) (cadddr val) (car (cddddr val))
(caddr val) wrld user-stobj-alist
(cadr (cddddr val))))
((and (consp val)
(eq (car val) 'ev-fncall-creator-er))
; This is similar to the preceding case, except that there are no stobjs-in.
(ev-fncall-creator-er-msg
(cadr val)))
((and (consp val)
(member-eq (car val) '(pkg-witness pkg-imports)))
(unknown-pkg-error-msg (car val) (cadr val)))
; At one time we had the following case:
; ((and (consp val)
; (eq (car val) 'program-only-er))
; In this case we (essentially) returned (program-only-er-msg (cadr val) (caddr
; val) (cadr (cddddr val))). But we get here by catching a throw of val, which
; no longer is of the form (program-only-er ...); see the comment about the
; call of oneify-fail-form on 'program-only-er (and other arguments) in
; oneify-cltl-code.
((eq val 'illegal)
(illegal-msg))
(t (er hard 'raw-ev-fncall
"An unrecognized value, ~x0, was thrown to 'raw-ev-fncall.~@1"
val
(error-trace-suggestion t)))))
(defun untranslate1 (term iff-flg untrans-tbl preprocess-fn wrld)
; Warning: It would be best to keep this in sync with
; obviously-iff-equiv-terms, specifically, giving similar attention in both to
; functions like implies, iff, and not, which depend only on the propositional
; equivalence class of each argument.
; Warning: Consider keeping in sync with community book
; books/misc/rtl-untranslate.lisp.
; We return a Lisp form that translates to term if iff-flg is nil and
; that translates to a term iff-equivalent to term if iff-flg is t.
; Wrld is an ACL2 logical world, which may be used to improve the
; appearance of the result, in particular to allow (nth k st) to be
; printed as (nth *field-name* st) if st is a stobj name and
; field-name is the kth field name of st; similarly for update-nth.
; It is perfectly appropriate for wrld to be nil if such extra
; information is not important.
; Note: The only reason we need the iff-flg is to let us translate (if
; x1 t x2) into (or x1 x2) when we are in an iff situation. We could
; ask type-set to check that x1 is Boolean, but that would require
; passing wrld into untranslate. That, in turn, would require passing
; wrld into such syntactic places as prettyify-clause and any other
; function that might want to print a term.
; Warning: This function may not terminate. We should consider making it
; primitive recursive by adding a natural number ("count") parameter.
(let ((term (if preprocess-fn
(mv-let (erp term1)
(ev-fncall-w preprocess-fn
(list term wrld)
wrld
nil ; user-stobj-alist
nil ; safe-mode
nil ; gc-off
nil ; hard-error-returns-nilp
t ; aok
)
(or (and (null erp) term1)
term))
term)))
(cond ((variablep term) term)
((fquotep term)
(cond ((or (acl2-numberp (cadr term))
(stringp (cadr term))
(characterp (cadr term))
(eq (cadr term) nil)
(eq (cadr term) t)
(keywordp (cadr term)))
(cadr term))
(t term)))
((flambda-applicationp term)
(make-let-or-let*
(collect-non-trivial-bindings (lambda-formals (ffn-symb term))
(untranslate1-lst (fargs term)
nil
untrans-tbl
preprocess-fn
wrld))
(untranslate1 (lambda-body (ffn-symb term)) iff-flg untrans-tbl
preprocess-fn wrld)))
((eq (ffn-symb term) 'if)
(case-match term
(('if x1 *nil* *t*)
(negate-untranslated-form
(untranslate1 x1 t untrans-tbl preprocess-fn wrld)
iff-flg))
(('if x1 x2 *nil*)
(untranslate-and (untranslate1 x1 t untrans-tbl preprocess-fn wrld)
(untranslate1 x2 iff-flg untrans-tbl preprocess-fn
wrld)
iff-flg))
(('if x1 *nil* x2) ; (thm (equal (and (not (not x)) y) (and x y)))
(untranslate-and (negate-untranslated-form
(untranslate1 x1 t untrans-tbl preprocess-fn
wrld)
t)
(untranslate1 x2 iff-flg untrans-tbl preprocess-fn
wrld)
iff-flg))
(('if x1 x1 x2)
(untranslate-or (untranslate1 x1 iff-flg untrans-tbl preprocess-fn
wrld)
(untranslate1 x2 iff-flg untrans-tbl preprocess-fn
wrld)))
(('if x1 x2 *t*)
; Observe that (if x1 x2 t) = (if x1 x2 (not nil)) = (if x1 x2 (not x1)) =
; (if (not x1) (not x1) x2) = (or (not x1) x2).
(untranslate-or (negate-untranslated-form
(untranslate1 x1 t untrans-tbl preprocess-fn
wrld)
iff-flg)
(untranslate1 x2 iff-flg untrans-tbl preprocess-fn
wrld)))
(('if x1 *t* x2)
(cond
((or iff-flg
(and (nvariablep x1)
(not (fquotep x1))
(member-eq (ffn-symb x1)
*untranslate-boolean-primitives*)))
(untranslate-or (untranslate1 x1 t untrans-tbl
preprocess-fn wrld)
(untranslate1 x2 iff-flg untrans-tbl
preprocess-fn wrld)))
(t (untranslate-if term iff-flg untrans-tbl preprocess-fn wrld))))
(& (untranslate-if term iff-flg untrans-tbl preprocess-fn wrld))))
((and (eq (ffn-symb term) 'not)
(nvariablep (fargn term 1))
(not (fquotep (fargn term 1)))
(member-eq (ffn-symb (fargn term 1)) '(< o<)))
(list (if (eq (ffn-symb (fargn term 1)) '<) '<= 'o<=)
(untranslate1 (fargn (fargn term 1) 2) nil untrans-tbl
preprocess-fn wrld)
(untranslate1 (fargn (fargn term 1) 1) nil untrans-tbl
preprocess-fn wrld)))
((member-eq (ffn-symb term) '(implies iff))
(fcons-term* (ffn-symb term)
(untranslate1 (fargn term 1) t untrans-tbl preprocess-fn
wrld)
(untranslate1 (fargn term 2) t untrans-tbl preprocess-fn
wrld)))
((eq (ffn-symb term) 'cons) (untranslate-cons term untrans-tbl
preprocess-fn wrld))
((and (eq (ffn-symb term) 'synp)
; Even though translate insists that the second argument of synp is quoted, can
; we really guarantee that every termp given to untranslate came through
; translate? Not necessarily; for example, maybe substitution was performed
; for some reason (say, in the proof-builder one replaces the quoted argument
; by a variable known to be equal to it).
(quotep (fargn term 2)))
; We store the quotation of the original form of a syntaxp or bind-free
; hypothesis in the second arg of its expansion. We do this so that we
; can use it here and output something that the user will recognize.
(cadr (fargn term 2)))
((and (eq (ffn-symb term) 'return-last)
(quotep (fargn term 1))
(let* ((key (unquote (fargn term 1)))
(fn (and (symbolp key)
key
(let ((tmp (return-last-lookup key
wrld)))
(if (consp tmp) (car tmp) tmp)))))
(and fn
(cons fn
(untranslate1-lst (cdr (fargs term)) nil
untrans-tbl preprocess-fn
wrld))))))
(t (let* ((pair (cdr (assoc-eq (ffn-symb term)
untrans-tbl)))
(op (car pair))
(flg (cdr pair))
(const
(and (member-eq (ffn-symb term)
'(nth update-nth update-nth-array))
(quotep (fargn term 1))
(integerp (cadr (fargn term 1)))
(<= 0 (cadr (fargn term 1)))
(accessor-root (cadr (fargn term 1))
(case (ffn-symb term)
(nth (fargn term 2))
(update-nth (fargn term 3))
(t ; update-nth-array
(fargn term 4)))
wrld))))
(cond
(op (cons op
(cond
(const ; ignoring flg, which is presumably nil
(cons const
(untranslate1-lst
(cdr (fargs term))
nil untrans-tbl preprocess-fn wrld)))
(t
(untranslate1-lst
(cond
((and flg
(cdr (fargs term))
(null (cddr (fargs term))))
(right-associated-args (ffn-symb term)
term))
(t (fargs term)))
nil untrans-tbl preprocess-fn wrld)))))
(const
(list* (ffn-symb term)
const
(untranslate1-lst (cdr (fargs term)) nil
untrans-tbl
preprocess-fn
wrld)))
(t
(mv-let
(ad-list base)
(make-reversed-ad-list term nil)
(cond (ad-list
(pretty-parse-ad-list
ad-list '(#\R) 1
(untranslate1 base nil untrans-tbl preprocess-fn
wrld)))
(t (cons (ffn-symb term)
(untranslate1-lst (fargs term) nil
untrans-tbl
preprocess-fn
wrld))))))))))))
(defun untranslate-cons1 (term untrans-tbl preprocess-fn wrld)
; This function digs through a 'cons nest, untranslating each of the
; elements and the final non-cons cdr. It returns two results: the
; list of untranslated elements and the untranslated final term.
(cond ((variablep term) (mv nil (untranslate1 term nil untrans-tbl
preprocess-fn wrld)))
((fquotep term) (mv nil (untranslate1 term nil untrans-tbl preprocess-fn
wrld)))
((eq (ffn-symb term) 'cons)
(mv-let (elements x)
(untranslate-cons1 (fargn term 2) untrans-tbl preprocess-fn
wrld)
(mv (cons (untranslate1 (fargn term 1) nil untrans-tbl
preprocess-fn wrld)
elements)
x)))
(t (mv nil (untranslate1 term nil untrans-tbl preprocess-fn wrld)))))
(defun untranslate-cons (term untrans-tbl preprocess-fn wrld)
; Term is a non-quote term whose ffn-symb is 'cons. We untranslate
; it into a CONS, a LIST, or a LIST*.
(mv-let (elements x)
(untranslate-cons1 term untrans-tbl preprocess-fn wrld)
(cond ((eq x nil) (cons 'list elements))
((null (cdr elements)) (list 'cons (car elements) x))
(t (cons 'list* (append elements (list x)))))))
(defun untranslate-if (term iff-flg untrans-tbl preprocess-fn wrld)
(cond ((> (case-length nil term) 2)
(case-match term
(('if (& key &) & &)
(list* 'case key
(untranslate-into-case-clauses
key term iff-flg untrans-tbl preprocess-fn
wrld)))))
((> (cond-length term) 2)
(cons 'cond (untranslate-into-cond-clauses term iff-flg untrans-tbl
preprocess-fn
wrld)))
(t (list 'if
(untranslate1 (fargn term 1) t untrans-tbl preprocess-fn wrld)
(untranslate1 (fargn term 2) iff-flg untrans-tbl preprocess-fn
wrld)
(untranslate1 (fargn term 3) iff-flg untrans-tbl preprocess-fn
wrld)))))
(defun untranslate-into-case-clauses (key term iff-flg untrans-tbl preprocess-fn
wrld)
; We generate the clauses of a (case key ...) stmt equivalent to term.
; We only call this function when the case-length of term is greater
; than 1. If we called it when case-length were 1, it would not
; terminate.
(case-match term
(('if (pred !key ('quote val)) x y)
(cond ((and (or (eq pred 'equal)
(eq pred 'eql))
(eqlablep val))
(cond ((or (eq val t)
(eq val nil)
(eq val 'otherwise))
(cons (list (list val)
(untranslate1 x iff-flg untrans-tbl
preprocess-fn wrld))
(untranslate-into-case-clauses
key y iff-flg untrans-tbl preprocess-fn wrld)
))
(t (cons (list val (untranslate1 x iff-flg
untrans-tbl
preprocess-fn
wrld))
(untranslate-into-case-clauses
key y iff-flg untrans-tbl preprocess-fn
wrld)))))
((and (eq pred 'member)
(eqlable-listp val))
(cons (list val (untranslate1 x iff-flg untrans-tbl
preprocess-fn wrld))
(untranslate-into-case-clauses
key y iff-flg untrans-tbl preprocess-fn wrld)))
(t (list (list 'otherwise
(untranslate1 term iff-flg untrans-tbl
preprocess-fn wrld))))))
(& (list (list 'otherwise
(untranslate1 term iff-flg untrans-tbl preprocess-fn
wrld))))))
(defun untranslate-into-cond-clauses (term iff-flg untrans-tbl preprocess-fn
wrld)
; We know cond-length is greater than 1; else this doesn't terminate.
(case-match term
(('if x1 x2 x3)
(cons (list (untranslate1 x1 t untrans-tbl preprocess-fn wrld)
(untranslate1 x2 iff-flg untrans-tbl preprocess-fn
wrld))
(untranslate-into-cond-clauses x3 iff-flg untrans-tbl
preprocess-fn wrld)))
(& (list (list t (untranslate1 term iff-flg untrans-tbl
preprocess-fn wrld))))))
(defun untranslate1-lst (lst iff-flg untrans-tbl preprocess-fn wrld)
(cond ((null lst) nil)
(t (cons (untranslate1 (car lst) iff-flg untrans-tbl preprocess-fn wrld)
(untranslate1-lst (cdr lst) iff-flg untrans-tbl preprocess-fn
wrld)))))
;; Historical Comment from Ruben Gamboa:
;; I relaxed the guards for < and complex to use realp instead
;; of rationalp. I also added complexp, realp, and floor1.
)
(defun ev-fncall (fn args state latches hard-error-returns-nilp aok)
(declare (xargs :guard (state-p state)))
(let #-acl2-loop-only ((*ev-shortcut-okp* (live-state-p state)))
#+acl2-loop-only ()
; See the comment in ev for why we don't check the time limit here.
(ev-fncall-rec fn args (w state) (user-stobj-alist state) (big-n)
(f-get-global 'safe-mode state)
(gc-off state)
latches hard-error-returns-nilp aok)))
(defun ev (form alist state latches hard-error-returns-nilp aok)
; WARNING: This function must never be in :logic mode, because it can violate
; single-threadedness! See :doc user-stobjs-modified-warnings. Fortunately, t
; has raw Lisp code and is thus (as of this writing) prevented from being
; promoted to :logic mode.
(declare (xargs :guard (and (state-p state)
(termp form (w state))
(symbol-alistp alist))))
(let #-acl2-loop-only ((*ev-shortcut-okp* (live-state-p state)))
#+acl2-loop-only ()
; At one time we called time-limit5-reached-p here so that we can quit if we
; are out of time. But we were then able to get into an infinite loop as
; follows:
; (defun foo (x) (cons x x))
; :brr t
; :monitor (:definition foo) t
; (ld '((thm (equal (foo x) (cons x x)))))
; [Hit control-c repeatedly.]
; We didn't analyze this issue completely (presumably has something to do with
; cleaning up), but a simple solution is to avoid this time-limit check.
; (cond
; ((time-limit5-reached-p
; "Out of time in the evaluator (ev).") ; nil, or throws
; (mv t ; value shouldn't matter
; (cons "Implementation error" nil)
; latches))
; (t
(ev-rec form alist
(w state) (user-stobj-alist state) (big-n)
(f-get-global 'safe-mode state)
(gc-off state)
latches hard-error-returns-nilp aok)))
(defun ev-lst (lst alist state latches hard-error-returns-nilp aok)
(declare (xargs :guard (and (state-p state)
(term-listp lst (w state))
(symbol-alistp alist))))
(let #-acl2-loop-only ((*ev-shortcut-okp* (live-state-p state)))
#+acl2-loop-only ()
; See the comment in ev for why we don't check the time limit here.
(ev-rec-lst lst alist
(w state)
(user-stobj-alist state)
(big-n)
(f-get-global 'safe-mode state)
(gc-off state)
latches hard-error-returns-nilp aok)))
(defun untranslate (term iff-flg wrld)
(let ((user-untranslate
(cdr (assoc-eq 'untranslate (table-alist 'user-defined-functions-table
wrld)))))
(if user-untranslate
(mv-let
(erp val)
(ev-fncall-w user-untranslate
(list term iff-flg wrld)
wrld
nil ; user-stobj-alist
nil ; safe-mode
nil ; gc-off
nil ; hard-error-returns-nilp
t)
(cond
(erp #-acl2-loop-only
(progn (error-fms t user-untranslate (car val) (cdr val)
*the-live-state*)
(er hard 'untranslate
"Please fix ~x0 (see message above and see :doc ~
user-defined-functions-table)."
user-untranslate))
(untranslate* term iff-flg wrld))
(t val)))
(untranslate* term iff-flg wrld))))
(defun untranslate-lst (lst iff-flg wrld)
(let ((user-untranslate-lst
(cdr (assoc-eq 'untranslate-lst (table-alist
'user-defined-functions-table
wrld)))))
(if user-untranslate-lst
(mv-let
(erp val)
(ev-fncall-w user-untranslate-lst
(list lst iff-flg wrld)
wrld
nil ; user-stobj-alist
nil ; safe-mode
nil ; gc-off
nil ; hard-error-returns-nilp
t)
(cond
(erp #-acl2-loop-only
(progn (error-fms t user-untranslate-lst (car val) (cdr val)
*the-live-state*)
(er hard 'untranslate-lst
"Please fix ~x0 (see message above and see :doc ~
user-defined-functions-table)."
user-untranslate-lst
#+acl2-loop-only
nil))
(untranslate1-lst lst
iff-flg
(untrans-table wrld)
(untranslate-preprocess-fn wrld)
wrld))
(t val)))
(untranslate1-lst lst
iff-flg
(untrans-table wrld)
(untranslate-preprocess-fn wrld)
wrld))))
(defun ev-w-lst (lst alist w user-stobj-alist safe-mode gc-off
hard-error-returns-nilp aok)
; WARNING: See the warning in ev-w, which explains that live stobjs must not
; occur in alist.
; Note that user-stobj-alist is only used for error messages, so this function
; may be called in the presence of local stobjs. Probably user-stobj-alist
; could be replaced as nil because of the stobj restriction on alist.
; See the comment in ev-w about untouchables.
(declare (xargs :guard (and (plist-worldp w)
(term-listp lst w)
(symbol-alistp alist))))
; See the comment in ev for why we don't check the time limit here.
#-acl2-loop-only
(let ((*ev-shortcut-okp* t))
(state-free-global-let*
((safe-mode safe-mode)
(guard-checking-on
; Guard-checking-on will be t or nil -- not :nowarn, :all, or :none -- but it
; doesn't seem that this would be a problem, provided the call is made with
; gc-off set to t if guard-checking-on is either nil or :none (don't forget
; :none!).
(not gc-off)))
(mv-let
(erp val latches)
(ev-rec-lst lst alist w user-stobj-alist (big-n) safe-mode gc-off
nil ; latches
hard-error-returns-nilp
aok)
(progn (when latches
(er hard 'ev-w-lst
"The call ~x0 returned non-nil latches."
(list 'ev-w-lst lst alist '<wrld>
(if user-stobj-alist '<user-stobj-alist> nil)
safe-mode gc-off
hard-error-returns-nilp aok)))
(mv erp val)))))
#+acl2-loop-only
(mv-let (erp val latches)
(ev-rec-lst lst alist w user-stobj-alist (big-n) safe-mode gc-off
nil ; latches
hard-error-returns-nilp
aok)
(declare (ignore latches))
(mv erp val)))
; Essay on Other Worlds
; In Version 1.7 and earlier, ev and its supporters were coded so that
; they took both a world and a state as input. The world supplied the
; definitions of the functions. The state was used for nothing but a
; termination argument -- but we did slip into raw Lisp when that was
; thought appropriate. The code was was (supposed to be) sound when
; evaluated on states other than the live state. This was imagined to
; be possible if ground calls of ev-fncall arose in terms being
; proved. The raw lisp counterpart of ev verified that the world in
; the given state is properly related to the world in the live state.
; The following pre-Version 1.8 comment addresses concerns related to
; the evaluation of a fn in a world other than the one installed in
; state. These comments are now outdated, but are left here because
; we gave the issue some careful thought at the time.
; We wish to jump into Common Lisp to compute the value of fn on
; args. We know that fn is a function symbol in w because the guard
; for ev requires that we only evaluate terms. But the Common Lisp
; state reflects the definitions of the currently installed world,
; inst-w, while we have to compute fn by the definitions in world w.
; In addition, we can use the Common Lisp code only if the guards
; have been verified. So we need to know two things: (a) that the
; two worlds w and inst-w are in an appropriate relationship, and
; (b) that the guards for fn are all satisfied.
; We address (a) first. It is clear that inst-w can be used to
; compute fn in w if every function ancestral to fn in w is defined
; exactly the same way in inst-w. When this condition holds, we say
; "inst-w is sufficient to compute fn in w." This sufficiency
; condition is too expensive to check explicitly. Note, however,
; that if inst-w is an extension of w, then inst-w is sufficient.
; Note also that if w is an extension of inst-w and fn is defined in
; inst-w, then inst-w is sufficient. Now if w is an extension of
; inst-w and fn is defined in w then it is defined in inst-w iff it
; is fboundp. Proof: Suppose fn is not defined in inst-w but is
; fboundp. Then fn is some function like RPLACA or LP. But in that
; case, fn couldn't be defined in w because to define it would
; require that we smash its symbol-function. Q.E.D. So in fact, we
; check that one of the two worlds is an extension of the other and
; that fn is fboundp.
; Now for (b). We wish to check that the guards for fn are all
; valid. Of course, all we can do efficiently is see whether the
; 'guards-checked property has been set. But it doesn't matter
; which world we check that in because if the guards have been
; checked in either then they are valid in both. So we just see if
; they have been checked in whichever of the two worlds is the
; extension.
; Essay on Context-message Pairs
; Recall that translate returns state, which might be modified. It can be
; useful to have a version of translate that does not return state, for example
; in development of a parallel version of the waterfall (Ph.D. research by
; David Rager ongoing in 2010). Starting after Version_4.1, we provide a
; version of translate that does not return state. More generally, we support
; an analogy of the "error triples" programming idiom: rather than passing
; around triples (mv erp val state), we pass around pairs (mv ctx msg), as
; described below. If foo is a function that returns an error triple, we may
; introduce foo-cmp as the analogous function that returns a message pair. We
; try to avoid code duplication, for example by using the wrapper
; cmp-to-error-triple.
; An error is indicated when the context (first) component of a context-message
; pair is non-nil. There are two possibilities in this case. The second
; component can be nil, indicating that the error does not cause a message to
; be printed. Otherwise, the first component is a context suitable for er and
; such, while the second component is a message (fmt-string . fmt-args),
; suitable as a ~@ fmt argument.
(defun silent-error (state)
(mv t nil state))
(defmacro cmp-to-error-triple (form)
; Here we convert a context-message pair (see the Essay on Context-message
; Pairs) to an error triple, printing an error message if one is called for.
; Keep in sync with cmp-to-error-triple@par.
`(mv-let (ctx msg-or-val)
,form
(cond (ctx (cond (msg-or-val
(assert$ (not (eq ctx t))
(er soft ctx "~@0" msg-or-val)))
(t (silent-error state))))
(t (value msg-or-val)))))
#+acl2-par
(defmacro cmp-to-error-triple@par (form)
; Here we convert a context-message pair (see the Essay on Context-message
; Pairs) to the #+acl2-par version of an error triple, printing an error
; message if one is called for.
; Keep in sync with cmp-to-error-triple.
`(mv-let (ctx msg-or-val)
,form
(cond (ctx (cond (msg-or-val
(assert$ (not (eq ctx t))
(er@par soft ctx "~@0" msg-or-val)))
(t (mv@par t nil state))))
(t (value@par msg-or-val)))))
(defmacro cmp-to-error-double (form)
; This is a variant of cmp-to-error-triple that returns (mv erp val) rather
; than (mv erp val state).
`(mv-let (ctx msg-or-val)
,form
(cond (ctx (prog2$ (cond (msg-or-val
(assert$ (not (eq ctx t))
(error-fms-cw
nil ctx "~@0"
(list (cons #\0 msg-or-val)))))
(t nil))
(mv t nil)))
(t (mv nil msg-or-val)))))
(defmacro cmp-and-value-to-error-quadruple (form)
; We convert a context-message pair and an extra-value (see the Essay on
; Context-message Pairs) to an error quadruple (mv t value extra-value state),
; printing an error message if one is called for.
; Keep in sync with cmp-and-value-to-error-quadruple@par.
`(mv-let (ctx msg-or-val extra-value)
,form
(cond
(ctx (cond (msg-or-val
(assert$ (not (eq ctx t))
(mv-let (erp val state)
(er soft ctx "~@0"
msg-or-val)
(declare (ignore erp val))
(mv t nil extra-value state))))
(t (mv t nil extra-value state))))
(t (mv nil msg-or-val extra-value state)))))
#+acl2-par
(defmacro cmp-and-value-to-error-quadruple@par (form)
; We convert a context-message pair and an extra value (see the Essay on
; Context-message Pairs) to the #+acl2-par version of an error quadruple,
; printing an error message if one is called for.
; Keep in sync with cmp-and-value-to-error-quadruple.
`(mv-let (ctx msg-or-val extra-value)
,form
(cond
(ctx (cond (msg-or-val
(assert$ (not (eq ctx t))
(mv-let (erp val)
(er@par soft ctx "~@0" msg-or-val)
(declare (ignore erp val))
(mv t nil extra-value))))
(t (mv t nil extra-value))))
(t (mv nil msg-or-val extra-value)))))
(defun er-cmp-fn (ctx msg)
; Warning: Keep in sync with trans-er. For an explanation, see the
; corresponding warning in trans-er.
(declare (xargs :guard t))
(mv ctx msg))
(defmacro er-cmp (ctx str &rest args)
; Warning: Keep in sync with trans-er. For an explanation, see the
; corresponding warning in trans-er.
`(er-cmp-fn ,ctx (msg ,str ,@args)))
(defmacro value-cmp (x)
`(mv nil ,x))
(defun er-progn-fn-cmp (lst)
; Warning: Keep this in sync with er-progn-fn.
(declare (xargs :guard (true-listp lst)))
(cond ((endp lst) nil)
((endp (cdr lst)) (car lst))
(t (list 'mv-let
'(er-progn-not-to-be-used-elsewhere-ctx
er-progn-not-to-be-used-elsewhere-msg)
(car lst)
; Avoid possible warning after optimized compilation:
'(declare (ignorable er-progn-not-to-be-used-elsewhere-msg))
(list 'if
'er-progn-not-to-be-used-elsewhere-ctx
'(mv er-progn-not-to-be-used-elsewhere-ctx
er-progn-not-to-be-used-elsewhere-msg)
(list 'check-vars-not-free
'(er-progn-not-to-be-used-elsewhere-ctx
er-progn-not-to-be-used-elsewhere-msg)
(er-progn-fn-cmp (cdr lst))))))))
(defmacro er-progn-cmp (&rest lst)
(declare (xargs :guard (and (true-listp lst)
lst)))
(er-progn-fn-cmp lst))
(defmacro er-let*-cmp (alist body)
; Warning: Keep this in sync with er-let*.
; This macro introduces the variable er-let-star-use-nowhere-else.
; The user who uses that variable in his forms is likely to be
; disappointed by the fact that we rebind it.
(declare (xargs :guard (and (doublet-listp alist)
(symbol-alistp alist))))
(cond ((null alist)
(list 'check-vars-not-free
'(er-let-star-use-nowhere-else)
body))
(t (list 'mv-let
(list 'er-let-star-use-nowhere-else
(caar alist))
(cadar alist)
(list 'cond
(list 'er-let-star-use-nowhere-else
(list 'mv
'er-let-star-use-nowhere-else
(caar alist)))
(list t (list 'er-let*-cmp (cdr alist) body)))))))
(defun warning1-cw (ctx summary str alist wrld state-vars)
; This function has the same effect as warning1, except that printing is in a
; wormhole and hence doesn't modify state.
(declare (xargs :guard (and (stringp summary)
(standard-string-p summary)
(alistp alist)
(plist-worldp wrld)
(standard-string-alistp
(table-alist 'inhibit-warnings-table wrld))
(weak-state-vars-p state-vars))))
(warning1-form t))
(defmacro warning$-cw1 (ctx summary str+ &rest fmt-args)
; Warning: Keep this in sync with warning$.
; This macro assumes that wrld and state-vars are bound to a world and
; state-vars record, respectively.
(list 'warning1-cw
ctx
; We seem to have seen a GCL 2.6.7 compiler bug, laying down bogus calls of
; load-time-value, when replacing (consp (cadr args)) with (and (consp (cadr
; args)) (stringp (car (cadr args)))). But it seems fine to have the semantics
; of warning$ be that conses are quoted in the second argument position.
(if (consp summary)
(kwote summary)
summary)
str+
(make-fmt-bindings '(#\0 #\1 #\2 #\3 #\4
#\5 #\6 #\7 #\8 #\9)
fmt-args)
'wrld
'state-vars))
(defmacro warning$-cw (ctx &rest args)
; This differs from warning$-cw1 only in that state-vars and wrld are bound
; here for the user, so that warnings are not suppressed merely by virtue of
; the value of state global 'ld-skip-proofsp. Thus, unlike warning$ and
; warning$-cw, there is no warning string, and a typical use of this macro
; might be:
; (warning$-cw ctx "The :REWRITE rule ~x0 loops forever." name).
`(let ((state-vars (default-state-vars nil))
(wrld nil))
(warning$-cw1 ,ctx nil ,@args)))
(defun chk-length-and-keys (actuals form wrld)
(declare (xargs :guard (and (true-listp actuals)
(true-listp form)
(symbolp (car form))
(plist-worldp wrld))
:measure (acl2-count actuals)))
(cond ((endp actuals)
(value-cmp nil))
((null (cdr actuals))
(er-cmp *macro-expansion-ctx*
"A non-even key/value arglist was encountered while macro ~
expanding ~x0. The argument list for ~x1 is ~%~F2."
form
(car form)
(macro-args (car form) wrld)))
((keywordp (car actuals))
(chk-length-and-keys (cddr actuals) form wrld))
(t (er-cmp *macro-expansion-ctx*
"A non-keyword was encountered while macro expanding ~x0 ~
where a keyword was expected. The formal parameters list ~
for ~x1 is ~%~F2."
form
(car form)
(macro-args (car form) wrld)))))
(table duplicate-keys-action-table nil nil
:guard
(and (symbolp key)
(member val '(:error :warning nil))))
(defmacro set-duplicate-keys-action! (key action)
`(with-output
:off (event summary)
(progn (table duplicate-keys-action-table ',key ',action)
(value-triple ',action))))
(defmacro set-duplicate-keys-action (key action)
`(local (set-duplicate-keys-action! ,key ,action)))
(defun duplicate-keys-action (key wrld)
(declare (xargs :guard
(and (plist-worldp wrld)
(symbol-alistp (table-alist 'duplicate-keys-action-table
wrld)))))
(let ((pair (assoc-eq key (table-alist 'duplicate-keys-action-table wrld))))
(cond (pair (cdr pair))
(t ; default
; We make :error the default in order to help users to identify quickly
; potential dumb bugs involving a duplicated keyword in a macro call.
:error))))
; We permit macros under the following constraints on the args.
; 1. No destructuring. (Maybe some day.)
; 2. No &aux. (LET* is better.)
; 3. Initforms must be quotes. (Too hard for us to do evaluation right.)
; 4. No &environment. (Just not clearly enough specified in CLTL.)
; 5. No nonstandard lambda-keywords. (Of course.)
; 6. No multiple uses of :allow-other-keys. (Implementations differ.)
; There are three nests of functions that have the same view of
; the subset of macro args that we support: macro-vars...,
; chk-macro-arglist..., and bind-macro-args... Of course, it is
; necessary to keep them all with the same view of the subset.
; The following code is a ``pseudo'' translation of the functions between
; chk-legal-init-msg and chk-macro-arglist. Those checkers cause errors when
; their requirements are violated and these functions are just predicates.
; However, they are ``pseudo'' translations because they do not check, for
; example, that alleged variable symbols really are legal variable symbols.
; They are used in the guards for the functions leading up to and including
; macro-vars, which recovers all the variable symbols used in the formals list
; of an acceptable defmacro.
(defun legal-initp (x)
(and (consp x)
(true-listp x)
(equal 2 (length x))
(eq (car x) 'quote)))
(defun macro-arglist-keysp (args keys-passed)
(declare (xargs :guard (and (true-listp args)
(true-listp keys-passed))))
(cond ((endp args) t)
((eq (car args) '&allow-other-keys)
(null (cdr args)))
((atom (car args))
(cond ((symbolp (car args))
(let ((new (intern (symbol-name (car args)) "KEYWORD")))
(and (not (member new keys-passed))
(macro-arglist-keysp (cdr args)
(cons new keys-passed)))))
(t nil)))
((or (not (true-listp (car args)))
(> (length (car args)) 3))
nil)
(t (and (or (symbolp (caar args))
(and (true-listp (caar args))
(equal (length (caar args)) 2)
(keywordp (car (caar args)))
(symbolp (cadr (caar args)))))
(implies (> (length (car args)) 1)
(legal-initp (cadr (car args))))
(implies (> (length (car args)) 2)
(symbolp (caddr (car args))))
(let ((new (cond ((symbolp (caar args))
(intern (symbol-name (caar args))
"KEYWORD"))
(t (car (caar args))))))
(and (not (member new keys-passed))
(macro-arglist-keysp (cdr args)
(cons new keys-passed))))))))
(defun macro-arglist-after-restp (args)
(declare (xargs :guard (true-listp args)))
(cond ((endp args) t)
((eq (car args) '&key)
(macro-arglist-keysp (cdr args) nil))
(t nil)))
(defun macro-arglist-optionalp (args)
(declare (xargs :guard (true-listp args)))
(cond ((endp args) t)
((member (car args) '(&rest &body))
(cond ((and (cdr args)
(symbolp (cadr args))
(not (lambda-keywordp (cadr args))))
(macro-arglist-after-restp (cddr args)))
(t nil)))
((eq (car args) '&key)
(macro-arglist-keysp (cdr args) nil))
((symbolp (car args))
(macro-arglist-optionalp (cdr args)))
((or (atom (car args))
(not (true-listp (car args)))
(not (< (length (car args)) 4)))
nil)
((not (symbolp (car (car args))))
nil)
((and (> (length (car args)) 1)
(not (legal-initp (cadr (car args)))))
nil)
((and (equal (length (car args)) 3)
(not (symbolp (caddr (car args)))))
nil)
(t (macro-arglist-optionalp (cdr args)))))
(defun macro-arglist1p (args)
(declare (xargs :guard (true-listp args)))
(cond ((endp args) t)
((not (symbolp (car args)))
nil)
((member (car args) '(&rest &body))
(cond ((and (cdr args)
(symbolp (cadr args))
(not (lambda-keywordp (cadr args))))
(macro-arglist-after-restp (cddr args)))
(t nil)))
((eq (car args) '&optional)
(macro-arglist-optionalp (cdr args)))
((eq (car args) '&key)
(macro-arglist-keysp (cdr args) nil))
(t (macro-arglist1p (cdr args)))))
(defun subsequencep (lst1 lst2)
(declare (xargs :guard (and (eqlable-listp lst1)
(true-listp lst2))))
; We return t iff lst1 is a subsequence of lst2, in the sense that
; '(a c e) is a subsequence of '(a b c d e f) but '(a c b) is not.
(cond ((endp lst1) t)
(t (let ((tl (member (car lst1) lst2)))
(cond ((endp tl) nil)
(t (subsequencep (cdr lst1) (cdr tl))))))))
(defun collect-lambda-keywordps (lst)
(declare (xargs :guard (true-listp lst)))
(cond ((endp lst) nil)
((lambda-keywordp (car lst))
(cons (car lst) (collect-lambda-keywordps (cdr lst))))
(t (collect-lambda-keywordps (cdr lst)))))
(defun macro-args-structurep (args)
(declare (xargs :guard t))
(and (true-listp args)
(let ((lambda-keywords (collect-lambda-keywordps args)))
(and
(or (subsequencep lambda-keywords
'(&whole &optional &rest &key &allow-other-keys))
(subsequencep lambda-keywords
'(&whole &optional &body &key &allow-other-keys)))
(and (not (member-eq '&whole (cdr args)))
(implies (member-eq '&allow-other-keys args)
(member-eq '&allow-other-keys
(member-eq '&key args)))
(implies (eq (car args) '&whole)
(and (consp (cdr args))
(symbolp (cadr args))
(not (lambda-keywordp (cadr args)))
(macro-arglist1p (cddr args))))
(macro-arglist1p args))))))
(defun bind-macro-args-keys1 (args actuals allow-flg alist form wrld
state-vars)
; We need parameter state-vars because of the call of warning$-cw1 below.
(declare (xargs :guard (and (true-listp args)
(macro-arglist-keysp args nil)
(keyword-value-listp actuals)
(symbol-alistp alist)
(true-listp form)
(symbolp (car form))
(plist-worldp wrld)
(symbol-alistp
(table-alist 'duplicate-keys-action-table
wrld))
(weak-state-vars-p state-vars))))
(cond ((endp args)
(cond ((or (null actuals) allow-flg)
(value-cmp alist))
(t (er-cmp *macro-expansion-ctx*
"Illegal key/value args ~x0 in macro expansion of ~
~x1. The argument list for ~x2 is ~%~F3."
actuals form
(car form)
(macro-args (car form) wrld)))))
((eq (car args) '&allow-other-keys)
(value-cmp alist))
(t (let* ((formal (cond ((atom (car args))
(car args))
((atom (caar args))
(caar args))
(t (cadr (caar args)))))
(key (cond ((atom (car args))
(intern (symbol-name (car args))
"KEYWORD"))
((atom (car (car args)))
(intern (symbol-name (caar args))
"KEYWORD"))
(t (caaar args))))
(tl (assoc-keyword key actuals))
(alist (cond ((and (consp (car args))
(= 3 (length (car args))))
(cons (cons (caddr (car args))
(not (null tl)))
alist))
(t alist)))
(name (car form))
(duplicate-keys-action
(and (assoc-keyword key (cddr tl))
(duplicate-keys-action name wrld)))
(er-or-warn-string
"The keyword argument ~x0 occurs twice in ~x1. This ~
situation is explicitly allowed in Common Lisp (see ~
CLTL2, page 80) but it often suggests a mistake was ~
made.~@2 See :DOC set-duplicate-keys-action."))
(prog2$
(and (eq duplicate-keys-action :warning)
(warning$-cw1 *macro-expansion-ctx* "Duplicate-Keys"
er-or-warn-string
key
form
" The leftmost value for ~x0 is used."))
(cond
((eq duplicate-keys-action :error)
(er-cmp *macro-expansion-ctx*
er-or-warn-string
key form ""))
(t
(bind-macro-args-keys1
(cdr args)
(remove-keyword key actuals)
allow-flg
(cons (cons formal
(cond (tl (cadr tl))
((atom (car args))
nil)
((> (length (car args)) 1)
(cadr (cadr (car args))))
(t nil)))
alist)
form wrld state-vars))))))))
(defun bind-macro-args-keys (args actuals alist form wrld state-vars)
(declare (xargs :guard (and (true-listp args)
(macro-arglist-keysp args nil)
(true-listp actuals)
(symbol-alistp alist)
(true-listp form)
(plist-worldp wrld)
(weak-state-vars-p state-vars))))
(er-progn-cmp
(chk-length-and-keys actuals form wrld)
(cond ((assoc-keyword :allow-other-keys
(cdr (assoc-keyword :allow-other-keys
actuals)))
(er-cmp *macro-expansion-ctx*
"ACL2 prohibits multiple :allow-other-keys because ~
implementations differ significantly concerning which ~
value to take."))
(t (value-cmp nil)))
(bind-macro-args-keys1
args actuals
(let ((tl
(assoc-keyword :allow-other-keys actuals)))
(and tl (cadr tl)))
alist form wrld state-vars)))
(defun bind-macro-args-after-rest (args actuals alist form wrld state-vars)
(declare (xargs :guard (and (true-listp args)
(macro-arglist-after-restp args)
(true-listp actuals)
(symbol-alistp alist)
(true-listp form)
(plist-worldp wrld)
(weak-state-vars-p state-vars))))
(cond
((endp args) (value-cmp alist))
((eq (car args) '&key)
(bind-macro-args-keys (cdr args) actuals alist form wrld state-vars))
(t (er-cmp *macro-expansion-ctx*
"Only keywords and values may follow &rest or &body; error in ~
macro expansion of ~x0."
form))))
(defun bind-macro-args-optional (args actuals alist form wrld state-vars)
(declare (xargs :guard (and (true-listp args)
(macro-arglist-optionalp args)
(true-listp actuals)
(symbol-alistp alist)
(true-listp form)
(plist-worldp wrld)
(weak-state-vars-p state-vars))))
(cond ((endp args)
(cond ((null actuals)
(value-cmp alist))
(t (er-cmp *macro-expansion-ctx*
"Wrong number of args in macro expansion of ~x0."
form))))
((eq (car args) '&key)
(bind-macro-args-keys (cdr args) actuals alist form wrld state-vars))
((member (car args) '(&rest &body))
(bind-macro-args-after-rest
(cddr args) actuals
(cons (cons (cadr args) actuals) alist)
form wrld state-vars))
((symbolp (car args))
(bind-macro-args-optional
(cdr args) (cdr actuals)
(cons (cons (car args) (car actuals))
alist)
form wrld state-vars))
(t (let ((alist (cond ((equal (length (car args)) 3)
(cons (cons (caddr (car args))
(not (null actuals)))
alist))
(t alist))))
(bind-macro-args-optional
(cdr args) (cdr actuals)
(cons (cons (car (car args))
(cond (actuals (car actuals))
((>= (length (car args)) 2)
(cadr (cadr (car args))))
(t nil)))
alist)
form wrld state-vars)))))
(defun bind-macro-args1 (args actuals alist form wrld state-vars)
(declare (xargs :guard (and (true-listp args)
(macro-arglist1p args)
(true-listp form)
(symbol-alistp alist)
(plist-worldp wrld)
(weak-state-vars-p state-vars))))
(cond ((endp args)
(cond ((null actuals)
(value-cmp alist))
(t (er-cmp *macro-expansion-ctx*
"Wrong number of args in macro expansion of ~x0."
form))))
((member-eq (car args) '(&rest &body))
(bind-macro-args-after-rest
(cddr args) actuals
(cons (cons (cadr args) actuals) alist)
form wrld state-vars))
((eq (car args) '&optional)
(bind-macro-args-optional (cdr args) actuals alist form wrld
state-vars))
((eq (car args) '&key)
(bind-macro-args-keys (cdr args) actuals alist form wrld state-vars))
((null actuals)
(er-cmp *macro-expansion-ctx*
"Wrong number of args in macro expansion of ~x0."
form))
(t (bind-macro-args1 (cdr args) (cdr actuals)
(cons (cons (car args) (car actuals))
alist)
form wrld state-vars))))
(defun bind-macro-args (args form wrld state-vars)
(declare (xargs :guard (and (macro-args-structurep args)
(true-listp form)
(plist-worldp wrld)
(weak-state-vars-p state-vars))))
(cond ((and (consp args)
(eq (car args) '&whole))
(bind-macro-args1 (cddr args) (cdr form)
(list (cons (cadr args) form))
form wrld state-vars))
(t (bind-macro-args1 args (cdr form) nil form wrld state-vars))))
(defun macro-guard-er-msg (x ctx wrld)
(let* ((name (car x))
(args (cdr x))
(form (cdr (assoc-eq name (table-alist 'guard-msg-table wrld)))))
(mv-let
(erp msg)
(cond (form (ev-w form
(list (cons 'world wrld)
(cons 'args args)
(cons 'coda
(msg "(Note: The custom guard message for ~
~x0 references the variable ~x1, ~
which is essentially ignored for ~
macros. Consider modifying the ~
entry for ~x0 in ~x2.)"
name 'coda 'guard-msg-table)))
wrld
nil ; user-stobj-alist
nil ; safe-mode
t ; gc-off
t ; hard-error-returns-nilp
t ; aok
))
(t (mv nil nil)))
(cond
(erp
(er-cmp ctx
"~|~%Note: Evaluation has resulted in an error for the form ~
associated with ~x0 in the table, ~x1, to obtain a custom ~
guard error message. Consider modifying that table entry; ~
see :doc set-guard-msg."
name
'guard-msg-table))
(msg (er-cmp ctx "~@0" msg))
(t (er-cmp ctx
"In the attempt to macroexpand the form ~x0 the guard, ~x1, ~
for ~x2 failed."
x
(guard name nil wrld)
name))))))
(defun macroexpand1-cmp (x ctx wrld state-vars)
(let ((gc-off (gc-off1 (access state-vars state-vars :guard-checking-on))))
(er-let*-cmp
((alist (bind-macro-args
(macro-args (car x) wrld)
x wrld state-vars)))
(mv-let (erp guard-val)
(ev-w (guard (car x) nil wrld) alist wrld
nil ; user-stobj-alist
t
gc-off
nil
; It is probably critical to use nil for the aok argument of this call.
; Otherwise, one can imagine a book with sequence of events
; (local EVENT0)
; (defattach ...)
; EVENT0
; such that a change in macroexpansion, due to the defattach, causes a
; different event to be exported from the book, for EVENT0, than the local one
; originally admitted.
nil)
(cond
(erp (er-cmp ctx
"In the attempt to macroexpand the form ~x0 ~
evaluation of the guard for ~x2 caused the ~
error below.~|~%~@1"
x
guard-val
(car x)))
((null guard-val)
(macro-guard-er-msg x ctx wrld))
(t (mv-let (erp expansion)
(ev-w
(getpropc (car x) 'macro-body
'(:error "Apparently macroexpand1 was ~
called where there was no ~
macro-body.")
wrld)
alist wrld
nil ; user-stobj-alist
(not (access state-vars state-vars
; Note that if state-vars comes from (default-state-vars nil), then this flag
; is nil so safe-mode is t, which is acceptable, merely being needlessly
; conservative when the actual state global 'boot-strap-flg is t and hence
; safe-mode could have been nil here.
:boot-strap-flg)) ; safe-mode
gc-off nil nil)
(cond (erp
(er-cmp ctx
"In the attempt to macroexpand the ~
form ~x0, evaluation of the macro ~
body caused the error below.~|~%~@1"
x
expansion))
(t (value-cmp expansion))))))))))
(defun macroexpand1 (x ctx state)
(cmp-to-error-triple (macroexpand1-cmp x ctx (w state)
(default-state-vars t))))
(defun chk-declare (form ctx)
(let ((msg
"An expression has occurred where we expect a form whose car is ~
DECLARE; yet, that expression is ~x0. This problem generally is ~
caused by (a) a parenthesis mistake, (b) the use of an ``implicit ~
PROGN'' so that a term that you intended to be part of the body was ~
taken as a declaration, or (c) the incorrect belief that ~
macroexpansion is applied to declarations. See :DOC declare."))
(cond ((or (not (consp form))
(not (symbolp (car form))))
(er-cmp ctx msg form))
((eq (car form) 'declare)
(cond ((not (true-listp form))
(er-cmp ctx
"A declaration must be a true-list but ~x0 is not. ~
See :DOC declare."
form))
(t (value-cmp form))))
(t (er-cmp ctx msg form)))))
(defun collect-dcls (l ctx)
(cond ((null l) (value-cmp nil))
(t (er-let*-cmp
((expansion
(chk-declare (car l) ctx))
(rst (collect-dcls (cdr l) ctx)))
(value-cmp (append (cdr expansion) rst))))))
; The following alist maps "binders" to the permitted types of
; declarations at the top-level of the binding environment.
(defconst *acceptable-dcls-alist*
; Warning: Keep this in sync with :DOC declare.
; The declarations dynamic-extent, inline, and notinline were found useful by
; Bob Boyer in early development of hons-enabled ACL2, but we do not see a way
; to support such declarations soundly, so we do not support them. Note that
; inline and notinline declarations are supported adequately (though
; indirectly) by defun-inline and defun-notinline.
`((let ignore ignorable type)
(mv-let ignore ignorable type)
(flet ignore ignorable type) ; for each individual definition in the flet
(defmacro ignore ignorable type xargs)
(defuns ignore ignorable irrelevant type optimize xargs)))
; The following list gives the names of binders that permit at most
; one documentation string among their declarations. If this list is
; changed, visit all calls of collect-declarations because its answer
; is known NOT to have a doc string in it if the binder on which it
; was called is not in this list.
(defconst *documentation-strings-permitted*
'(defmacro defuns))
; For each type of declaration the following alist offers an explanatory
; string.
(defconst *dcl-explanation-alist*
'((ignore "(IGNORE v1 ... vn) and (IGNORABLE v1 ... vn), where the vi are ~
introduced in the immediately superior lexical environment")
(irrelevant "(IRRELEVANT v1 ... vn)")
(type "(TYPE type v1 ... vn), as described on pg 158 of CLTL")
(xargs "(XARGS :key1 :val1 ... :keyn :valn), where each :keyi is a ~
keyword (e.g., :GUARD or :HINTS)")))
; The following two functions are used to create an appropriate error
; message explaining what kinds of declarations are permitted by a binder.
(defun tilde-*-conjunction-phrase1 (syms alist)
(cond ((null syms) nil)
(t (let ((temp (assoc-eq (car syms) alist)))
(cons
(cond (temp (cdr temp))
(t (coerce (cons #\(
(append (explode-atom (car syms) 10)
(coerce " ...)" 'list)))
'string)))
(tilde-*-conjunction-phrase1 (cdr syms) alist))))))
(defun tilde-*-conjunction-phrase (syms alist)
; Syms is a list of symbols. Alist maps symbols to strings, called
; the "explanation" of each symbol. We create an object that when
; given to the tilde-* fmt directive will print out the conjunction of
; the explanations for each of the symbols.
(let ((syms ; accommodate a single phrase for ignore and ignorable
(cond ((member-eq 'ignorable syms)
(let ((syms (remove1-eq 'ignorable syms)))
(if (member-eq 'ignore syms)
syms
(cons 'ignore syms))))
(t syms))))
(list "" "~@*" "~@* and " "~@*, "
(tilde-*-conjunction-phrase1 syms alist))))
(defun collect-non-legal-variableps (lst)
(cond ((null lst) nil)
((legal-variablep (car lst))
(collect-non-legal-variableps (cdr lst)))
(t (cons (car lst) (collect-non-legal-variableps (cdr lst))))))
(defun optimize-alistp (lst)
(cond ((atom lst) (null lst))
((consp (car lst))
(and (consp (cdar lst))
(null (cddar lst))
(symbolp (caar lst))
(integerp (cadar lst))
(<= 0 (cadar lst))
(<= (cadar lst) 3)
(optimize-alistp (cdr lst))))
(t (and (symbolp (car lst))
(optimize-alistp (cdr lst))))))
(defun chk-dcl-lst (l vars binder ctx wrld)
; L is the list of expanded declares. Vars is a list of variables
; bound in the immediately superior lexical environment. Binder is
; a binder, as listed in *acceptable-dcls-alist*.
(cond
((null l) (value-cmp nil))
(t (er-progn-cmp
(let ((entry (car l)))
(cond
((not (consp entry))
(er-cmp ctx
"Each element of a declaration must be a cons, but ~x0 is ~
not. See :DOC declare."
entry))
(t (let ((dcl (car entry))
(temp (cdr (assoc-eq binder *acceptable-dcls-alist*))))
(cond
((not (member-eq dcl temp))
(er-cmp ctx
"The only acceptable declaration~#0~[~/s~] at the ~
top-level of ~#1~[an FLET binding~/a ~x2 form~] ~
~#0~[is~/are~] ~*3. The declaration ~x4 is thus ~
unacceptable here. See :DOC declare."
temp
(if (eq binder 'flet) 0 1)
binder
(tilde-*-conjunction-phrase temp
*dcl-explanation-alist*)
entry))
((not (true-listp entry))
(er-cmp ctx
"Each element of a declaration must end in NIL but ~
~x0 does not. See :DOC declare." entry))
(t
(case
dcl
(optimize
(cond ((optimize-alistp (cdr entry)) (value-cmp nil))
(t (er-cmp ctx
"Each element in the list following an ~
OPTIMIZE declaration must be either a ~
symbol or a pair of the form (quality ~
value), where quality is a symbol and ~
value is an integer between 0 and 3. ~
Your OPTIMIZE declaration, ~x0, does not ~
meet this requirement."
entry))))
((ignore ignorable irrelevant)
(cond ((subsetp (cdr entry) vars)
(value-cmp nil))
(t (er-cmp ctx
"The variables of an ~x0 declaration must ~
be introduced in the ~#1~[immediately ~
superior lexical ~
environment~/surrounding DEFUN form~]; ~
but ~&2, which ~#2~[is~/are~] said to be ~
~#3~[ignored~/ignorable~/irrelevant~] in ~
~x4, ~#2~[is~/are~] not. See :DOC ~
declare."
dcl
(if (eq dcl 'irrelevant) 1 0)
(set-difference-equal (cdr entry) vars)
(if (eq dcl 'ignore) 0
(if (eq dcl 'ignorable) 1 2))
entry))))
(type
(cond
((not (>= (length entry) 3))
(er-cmp ctx
"The length of a type declaration must be at ~
least 3, but ~x0 does not satisfy this ~
condition. See :DOC declare."
entry))
((collect-non-legal-variableps (cddr entry))
(er-cmp ctx
"Only the types of variables can be declared by ~
TYPE declarations such as ~x0. But ~&1 ~#1~[is ~
not a legal ACL2 variable symbol~/are not legal ~
ACL2 variable symbols~]. See :DOC declare."
entry
(collect-non-legal-variableps (cddr entry))))
((not (subsetp (cddr entry) vars))
(er-cmp ctx
"The variables declared in a type declaration, ~
such as ~x0, must be bound immediately above, ~
but ~&1 ~#1~[is~/are~] not bound. See :DOC ~
declare."
entry
(set-difference-equal (cddr entry) vars)))
((not (translate-declaration-to-guard (cadr entry)
'var
wrld))
; We use the variable var because we are not interested in the
; particular value returned, only whether (cadr entry) stands for some
; type.
(cond
((and (true-listp (cadr entry))
(int= (length (cadr entry)) 3)
(eq (car (cadr entry)) 'or)
(eq (cadr (cadr entry)) t))
; The type-spec is (or t x). There is an excellent chance that this comes from
; (the type-spec ...); see the-fn. So we change the error message a bit for
; this case. Note that the error message is accurate, since (or t x) is
; illegal as a type-spec iff x is illegal. And the message is reasonable
; because it is not misleading and it is likely to be only for THE, where the
; user did not use an explicit declaration (which was generated by us).
(er-cmp ctx
"~x0 fails to be a legal type-spec. See :DOC ~
type-spec."
(caddr (cadr entry))))
((weak-satisfies-type-spec-p (cadr entry))
(er-cmp ctx
"In the declaration ~x0, ~x1 fails to be a ~
legal type-spec because the symbol ~x2 is not ~
a known function symbol~@3. See :DOC ~
type-spec."
entry (cadr entry) (cadr (cadr entry))
(if (eq (getpropc (cadr (cadr entry))
'macro-args t wrld)
t)
""
"; rather, it is the name of a macro")))
(t
(er-cmp ctx
"In the declaration ~x0, ~x1 fails to be a ~
legal type-spec. See :DOC type-spec."
entry (cadr entry)))))
(t (value-cmp nil))))
(xargs
(cond
((not (keyword-value-listp (cdr entry)))
(er-cmp ctx
"The proper form of the ACL2 declaration is ~
(XARGS :key1 val1 ... :keyn valn), where each ~
:keyi is a keyword and no key occurs twice. ~
Your ACL2 declaration, ~x0, is not of this ~
form. See :DOC xargs."
entry))
((not (no-duplicatesp-equal (evens (cdr entry))))
(er-cmp ctx
"Even though Common Lisp permits duplicate ~
occurrences of keywords in keyword/actual ~
lists, all but the left-most occurrence are ~
ignored. You have duplicate occurrences of the ~
keyword~#0~[~/s~] ~&0 in your declaration ~x1. ~
This suggests a mistake has been made."
(duplicates (evens (cdr entry)))
entry))
((and (eq binder 'defmacro)
(assoc-keyword :stobjs (cdr entry)))
(er-cmp ctx
"The use of the :stobjs keyword is prohibited ~
for an xargs declaration in a call of defmacro."))
(t (value-cmp nil))))
(otherwise
(mv t
(er hard! 'chk-dcl-lst
"Implementation error: A declaration, ~x0, is ~
mentioned in *acceptable-dcls-alist* but not in ~
chk-dcl-lst."
dcl))))))))))
(chk-dcl-lst (cdr l) vars binder ctx wrld)))))
(defun number-of-strings (l)
(cond ((null l) 0)
((stringp (car l))
(1+ (number-of-strings (cdr l))))
(t (number-of-strings (cdr l)))))
(defun get-string (l)
(cond ((null l) nil)
((stringp (car l)) (list (car l)))
(t (get-string (cdr l)))))
(defun collect-declarations-cmp (lst vars binder ctx wrld)
; Lst is a list of (DECLARE ...) forms, and/or documentation strings.
; We check that the elements are declarations of the types appropriate
; for binder, which is one of the names bound in
; *acceptable-dcls-alist*. For IGNORE and TYPE declarations, which
; are seen as part of term translation (e.g., in LETs), we check that
; the variables mentioned are bound in the immediately superior
; lexical scope (i.e., are among the vars (as supplied) bound by
; binder). But for all other declarations, e.g., GUARD, we merely
; check the most routine syntactic conditions. WE DO NOT TRANSLATE
; the XARGS. We return a list of the checked declarations. I.e., if
; given ((DECLARE a b)(DECLARE c d)) we return (a b c d), or else
; cause an error. If given ((DECLARE a b) "Doc string" (DECLARE c d))
; (and binder is among those in *documentation-strings-permitted*),
; we return ("Doc string" a b c d).
; If binder is among those in *documentation-strings-permitted* we permit
; at most one documentation string in lst. Otherwise, we cause an error.
(cond ((> (number-of-strings lst)
(if (member-eq binder *documentation-strings-permitted*)
1
0))
(cond ((member-eq binder *documentation-strings-permitted*)
(er-cmp ctx
"At most one documentation string is permitted at the ~
top-level of ~x0 but you have provided ~n1."
binder
(number-of-strings lst)))
(t
(er-cmp ctx
"Documentation strings are not permitted in ~x0 forms."
binder))))
(t
(er-let*-cmp
((dcls (collect-dcls (remove-strings lst) ctx)))
(er-progn-cmp (chk-dcl-lst dcls vars binder ctx wrld)
(value-cmp (append (get-string lst) dcls)))))))
(defun collect-declarations (lst vars binder state ctx)
(cmp-to-error-triple (collect-declarations-cmp lst vars binder ctx
(w state))))
(defun listify (l)
(cond ((null l) *nil*)
(t (list 'cons (car l) (listify (cdr l))))))
(defun translate-dcl-lst (edcls wrld)
; Given a bunch of expanded dcls we find all the (TYPE x v1 ... vn)
; dcls among them and make a list of untranslated terms expressing the
; type restriction x for each vi.
(cond ((null edcls) nil)
((eq (caar edcls) 'type)
(append (translate-declaration-to-guard-var-lst (cadr (car edcls))
(cddr (car edcls))
wrld)
(translate-dcl-lst (cdr edcls) wrld)))
(t (translate-dcl-lst (cdr edcls) wrld))))
(defconst *oneify-primitives*
;;;; Some day we should perhaps remove consp and other such functions from this
;;;; list because of the "generalized Boolean" problem.
; Add to this list whenever we find a guardless function in #+acl2-loop-only.
'(if equal cons not consp atom acl2-numberp characterp integerp rationalp
stringp symbolp
; We want fmt-to-comment-window (which will arise upon macroexpanding calls of
; cw) to be executed always in raw Lisp, so we add it to this list in order to
; bypass its *1* function.
fmt-to-comment-window
; When we oneify, we sometimes do so on code that was laid down for constrained
; functions. Therefore, we put throw on the list.
throw-raw-ev-fncall
; The next group may be important for the use of safe-mode.
makunbound-global
trans-eval ev ev-lst ev-fncall
; fmt-to-comment-window ; already included above
sys-call-status
; pstack-fn
untranslate
untranslate-lst
trace$-fn-general untrace$-fn-general untrace$-fn1 maybe-untrace$-fn
set-w acl2-unwind-protect
; We know that calls of mv-list in function bodies are checked syntactically to
; satisfy arity and syntactic requirements, so it is safe to call it in raw
; Lisp rather than somehow considering its *1* function. We considered adding
; return-last as well, but not only does return-last have a guard other than T,
; but indeed (return-last 'mbe1-raw exec logic) macroexpands in raw Lisp to
; exec, which isn't what we want in oneified code. We considered adding
; functions in *defun-overrides*, but there is no need, since defun-overrides
; makes suitable definitions for *1* functions.
mv-list
))
(defconst *ec-call-bad-ops*
; We are conservative here, avoiding (ec-call (fn ...)) when we are the least
; bit nervous about that. Reasons to be nervous are special treatment of a
; function symbol by guard-clauses (if) or special treatment in oneify
; (return-last and anything in *oneify-primitives*).
(union-equal '(if wormhole-eval return-last)
*oneify-primitives*))
(defmacro return-last-call (fn &rest args)
`(fcons-term* 'return-last ',fn ,@args))
(defmacro prog2$-call (x y)
`(fcons-term* 'return-last ''progn ,x ,y))
(defun dcl-guardian (term-lst)
; Suppose term-lst is a list of terms, e.g., '((INTEGERP X) (SYMBOLP V)).
; We produce an expression that evaluates to t if the conjunction of the
; terms is true and returns a call of illegal otherwise.
(cond ((or (null term-lst)
; A special case is when term-list comes from (the (type type-dcl) x). The
; expansion of this call of THE results in a declaration of the form (declare
; (type (or t type-dcl) var)). We have seen examples where generating the
; resulting if-term, to be used in a call of prog2$, throws off a proof that
; succeeded before the addition of this declaration (which was added in order
; to handle (the (satisfies pred) term)); specifically, len-pushus in
; symbolic/tiny-fib/tiny.lisp (and probably in every other tiny.lisp). Here we
; simplify the resulting term (if t t (type-pred x)) to t. And when we use
; dcl-guardian to create (prog2$ type-test u), we instead simply create u if
; type-test is t.
(let ((term (car term-lst)))
(and (ffn-symb-p term 'if)
(equal (fargn term 1) *t*)
(equal (fargn term 2) *t*))))
*t*)
((null (cdr term-lst))
(fcons-term* 'check-dcl-guardian
(car term-lst)
(kwote (car term-lst))))
(t (prog2$-call (fcons-term* 'check-dcl-guardian
(car term-lst)
(kwote (car term-lst)))
(dcl-guardian (cdr term-lst))))))
(defun ignore-vars (dcls)
(cond ((null dcls) nil)
((eq (caar dcls) 'ignore)
(append (cdar dcls) (ignore-vars (cdr dcls))))
(t (ignore-vars (cdr dcls)))))
(defun ignorable-vars (dcls)
(cond ((null dcls) nil)
((eq (caar dcls) 'ignorable)
(append (cdar dcls) (ignorable-vars (cdr dcls))))
(t (ignorable-vars (cdr dcls)))))
(defun mv-nth-list (var i maximum)
(cond ((= i maximum) nil)
(t (cons (fcons-term* 'mv-nth (list 'quote i) var)
(mv-nth-list var (1+ i) maximum)))))
(defmacro translate-bind (x val bindings)
; Used only in translation. Binds x to val on bindings.
`(cons (cons ,x ,val) ,bindings))
(defun translate-deref (x bindings)
; X is t, a consp value or the name of some function. If the last, we
; chase down its ``ultimate binding'' in bindings. Bindings may
; contain many indirections, but may not be circular except when x is
; bound to x itself. We return nil if x is not bound in bindings.
(cond ((eq x t) t)
((consp x) x)
(t
(let ((p (assoc-eq x bindings)))
(cond (p
(cond ((eq x (cdr p)) x)
(t (translate-deref (cdr p) bindings))))
(t nil))))))
(defun translate-unbound (x bindings)
; X is considered unbound if it is a function name whose ultimate
; binding is a function name.
(and (not (eq x t))
(atom (translate-deref x bindings))))
(defun listlis (l1 l2)
; Like pairlis$, but LISTs instead of CONSes.
(cond ((null l1) nil)
(t (cons (list (car l1) (car l2))
(listlis (cdr l1) (cdr l2))))))
(mutual-recursion
(defun find-first-var (term)
(cond ((variablep term) term)
((fquotep term) nil)
((find-first-var-lst (fargs term)))
((flambdap (ffn-symb term))
(car (lambda-formals (ffn-symb term))))
(t nil)))
(defun find-first-var-lst (lst)
(cond ((null lst) nil)
(t (or (find-first-var (car lst))
(find-first-var-lst (cdr lst))))))
)
(mutual-recursion
(defun find-first-fnsymb (term)
(cond ((variablep term) nil)
((fquotep term) nil)
((flambdap (ffn-symb term))
(or (find-first-fnsymb-lst (fargs term))
(find-first-fnsymb (lambda-body (ffn-symb term)))))
(t (ffn-symb term))))
(defun find-first-fnsymb-lst (lst)
(cond ((null lst) nil)
(t (or (find-first-fnsymb (car lst))
(find-first-fnsymb-lst (cdr lst))))))
)
(defun find-pkg-witness (term)
; This function must return a symbol. Imagine that term is to be replaced by
; some variable symbol. In which package do we intern that symbol? This
; function finds a symbol which is used with intern-in-package-of-symbol.
; Thus, the package of the returned symbol is important to human readability.
; We return the first variable we see in term, if there is one. Otherwise, we
; return the first function symbol we see, if there is one. Otherwise, we
; return the symbol 'find-pkg-witness.
(or (find-first-var term)
(find-first-fnsymb term)
'find-pkg-witness))
; TRANSLATE
; For comments on translate, look after the following nest.
(defmacro trans-er (&rest args)
; Warning: Keep in sync with er-cmp (see commented-out call below) and
; er-cmp-fn. We avoid using er-cmp because we don't want break-on-error to
; break on translate errors, since we know that sometimes translate errors are
; benign -- for example, in translate11 we backtrack if there is an error in
; translating the term tbr in (IF tst tbr fbr), to translate fbr first.
; Like er-cmp but returns 3 values, the additional one being the current value
; of bindings. See also trans-er+ and trans-er+?.
`(mv-let (ctx msg-or-val)
; (er-cmp ,@args) ; See "keep in sync" comment above.
(mv ,(car args) (msg ,(cadr args) ,@(cddr args)))
(mv ctx msg-or-val bindings)))
(defmacro trans-er+ (form ctx str &rest args)
; Warning: Keep in sync with er-cmp (see commented-out call below) and
; er-cmp-fn. For an explanation, see the corresponding warning in trans-er.
; This macro is like trans-er, but it also prints the offending context, form,
; which could be the untranslated term or a surrounding term, etc.
`(mv-let (ctx msg-or-val)
; (er-cmp ,ctx ; See "keep in sync" comment above.
; "~@0 Note: this error occurred in the context ~x1."
; (msg ,str ,@args)
; ,form)
(mv ,ctx
(msg "~@0 Note: this error occurred in the context ~x1."
(msg ,str ,@args)
,form))
(mv ctx msg-or-val bindings)))
(defmacro trans-er+? (cform x ctx str &rest args)
; This macro behaves as trans-er+ using cform, if x and cform are distinct (in
; which case cform can provide context beyond x); else it behaves as trans-er.
; The guard is for efficiency, to guarantee that we don't evaluate x or cform
; twice. (Actually x is only evaluated once by the expansion of this macro,
; but it is likely evaluated in another place by the calling code.)
(declare (xargs :guard (and (symbolp cform)
(symbolp x))))
`(cond ((equal ,x ,cform)
(trans-er ,ctx ,str ,@args))
(t
(trans-er+ ,cform ,ctx ,str ,@args))))
(defmacro trans-value (x &optional (bindings 'bindings))
; Like value-cmp but returns 3 values, erp, x, and bindings.
`(mv nil ,x ,bindings))
(defmacro trans-er-let* (alist body)
; Like er-let*-cmp but deals in trans-er's 3-tuples and binds and returns
; bindings.
(declare (xargs :guard (alistp alist)))
(cond ((null alist)
(list 'check-vars-not-free
'(er-let-star-use-nowhere-else)
body))
(t (list 'mv-let
(list 'er-let-star-use-nowhere-else
(caar alist)
'bindings)
(cadar alist)
(list 'cond
(list 'er-let-star-use-nowhere-else
(list 'mv
'er-let-star-use-nowhere-else
(caar alist)
'bindings))
(list t (list 'trans-er-let* (cdr alist) body)))))))
(defun hide-ignored-actuals (ignore-vars bound-vars value-forms)
(cond
; Most of the time there won't be any ignore-vars, so we don't mind
; paying the price of checking the following condition on each
; recursive call (even though the answer remains the same).
((null ignore-vars)
value-forms)
((null bound-vars)
nil)
((and (member-eq (car bound-vars) ignore-vars)
(let ((form (car value-forms)))
(and (or (variablep form)
(fquotep form)
(not (eq (ffn-symb form) 'hide)))
(cons (fcons-term* 'hide form)
(hide-ignored-actuals ignore-vars
(cdr bound-vars)
(cdr value-forms)))))))
(t
(cons (car value-forms)
(hide-ignored-actuals ignore-vars
(cdr bound-vars)
(cdr value-forms))))))
(defun augment-ignore-vars (bound-vars value-forms acc)
; Note added shortly before releasing ACL2 Version_6.1. This function seems to
; have been added in Version_2.9.4. It's not clear that we need this function,
; since it doesn't seem that translate11 is passed a form with HIDE calls
; already added in the manner described below. For now we'll continue to calls
; this function, as it seems harmless enough. We might want to try a
; regression sometime with it redefined simply to return acc, and if that
; succeeds, we could consider deleting it. (But that seems dangerous to do
; just before a release!)
; Bound-vars and value-forms are lists of the same length. Return the result
; of extending the list acc by each member of bound-vars for which the
; corresponding element of value-forms (i.e., in the same position) is a call
; of hide. Since translate11 inserts a call of hide for each bound var, this
; function returns a list that contains every variable declared ignored in the
; original let form binding bound-vars to value-forms (or the corresponding
; untranslations of the terms in value-forms).
(cond ((endp bound-vars)
acc)
((let ((form (car value-forms)))
(or (variablep form)
(fquotep form)
(not (eq (ffn-symb form) 'hide))))
(augment-ignore-vars (cdr bound-vars) (cdr value-forms) acc))
(t (augment-ignore-vars (cdr bound-vars)
(cdr value-forms)
(cons (car bound-vars) acc)))))
; Essay on STOBJS-IN and STOBJS-OUT
; Once upon a time, before user-defined single-threaded objects came along,
; every function symbol had four aspects to its syntactic character:
; * its arity
; * which of its inputs was STATE
; * its multiplicity (how many results it returns)
; * which of its outputs was STATE
; These were coded on the property list in a somewhat optimized way involving
; the four properties FORMALS, STATE-IN, MULTIPLICITY, and STATE-OUT. If
; STATE-IN was absent or NIL, then STATE was not a formal. Otherwise, STATE-IN
; indicated the position (1-based) of STATE in the FORMALS. If MULTIPLICITY
; was absent, it was implicitly 1. If STATE-OUT was T then multiplicity was 1
; and STATE was the single result. We review these old characteristics because
; they were generalized when we introduced single-threaded objects, or
; ``stobjs''.
; Since the introduction of stobjs, every function has four aspects to its
; syntactic character:
; * its arity
; * which of its inputs are stobjs
; * its multiplicity
; * which of its outputs are stobjs
; This is coded on the property list as follows. First, a ``STOBJ flag'' is
; either NIL or the name of a stobj (including STATE). A list of n STOBJ flags
; can thus indicate which elements of another list of length n are stobjs and
; which stobjs they are.
; FORMALS gives the list of formals.
; STOBJS-IN is a list of STOBJ flags that is interpreted in 1:1 correspondence
; with the formals. Every function symbol must have a STOBJS-IN property. We
; do not support space-efficient coding of any special cases. Each formal must
; be the corresponding stobj.
; STOBJS-OUT is a list of stobj flags indicating both the multiplicity and
; which outputs are stobjs, and the correspondence between output stobjs and
; input stobjs. For example, if the STOBJS-IN property is (nil $s1 $s2 nil)
; and the STOBJS-OUT property is (nil $s2), then two values are returned, where
; the second value returned is the same stobj as the third input (labeled $s2
; above). Every function must have a STOBJS-OUT property, with the effective
; exception of return-last: an error is caused if the function stobjs-out is
; applied to return-last, which always returns its last argument (possibly a
; multiple value) and should generally be considered as not having STOBJS-OUT.
; We now consider translation performed on behalf of evaluation (as opposed to
; translating only for the logic, as when translating proposed theorems).
; During translation of each argument of a function call, we generally have a
; stobj flag associated with the term we are translating, indicating the
; expected stobj, if any, produced by the term. Consider a stobj flag, $s,
; that is non-nil, i.e., is a stobj name. Then the term occupying the
; corresponding slot MUST be the stobj name $s, except in the case that
; congruent stobjs are involved (see below). We think of the stobj flags as
; meaning that the indicated stobj name is the only term that can be passed
; into that slot.
; We mentioned a relaxation above for the case of congruent stobjs. (See :DOC
; defstobj for an introduction to congruent stobjs.) Consider again a function
; call. Each argument corresponding to a non-nil stobj flag should be
; a stobj that is congruent to that flag (a stobj). Moreover, no two such
; arguments may be the same.
; We turn now from translation to evaluation in the logic (i.e., with *1*
; functions that might or might not pass control to raw Lisp functions).
; Our stobj primitives are all capable of computing on the logical objects that
; represent stobjs. But they give special treatment to the live ones. There
; are two issues. First, we do not want a live one ever to get into a
; non-stobj slot because the rest of the functions do not know how to handle
; it. So if the actual is a live stobj, the formal must be a stobj. Second,
; if the ith element of STOBJS-IN is a stobj, $s, and the jth element of
; STOBJS-OUT is also $s, and the ith actual of a call is a live stobj, then the
; jth return value from that call is that same live stobj. This is the only
; way that a live stobj can be found in the output (unless there is a call of a
; creator function, which is untouchable).
(defun compute-stobj-flags (lst known-stobjs w)
; Lst is a list of possibly UNTRANSLATED terms! This function
; computes the stobj flags for the elements of the list, assigning nil
; unless the element is a symbol with a 'STOBJ property in w.
(cond ((endp lst) nil)
((stobjp (car lst) known-stobjs w)
(cons (car lst)
(compute-stobj-flags (cdr lst) known-stobjs w)))
(t (cons nil
(compute-stobj-flags (cdr lst) known-stobjs w)))))
(defun prettyify-stobj-flags (lst)
; Note: The use of * to denote NIL here is arbitrary. But if another
; symbol is used, make sure it could never be defined as a stobj by
; the user!
(cond ((endp lst) nil)
(t (cons (or (car lst) '*) (prettyify-stobj-flags (cdr lst))))))
(defun unprettyify-stobj-flags (lst)
(cond ((endp lst) nil)
(t (cons (if (eq (car lst) '*) nil (car lst))
(unprettyify-stobj-flags (cdr lst))))))
(defun prettyify-stobjs-out (stobjs-out)
; This function uses prettyify-stobj-flags in the singleton case just
; to localize the choice of external form to that function.
(if (cdr stobjs-out)
(cons 'mv (prettyify-stobj-flags stobjs-out))
(car (prettyify-stobj-flags stobjs-out))))
(defun defstobj-supporterp (name wrld)
; If name is supportive of a single-threaded object implementation, we return
; the name of the stobj. Otherwise, we return nil. By "supportive" we mean
; name is the object name, the live var, a recognizer, accessor, updater,
; helper, resizer, or length function, or a constant introduced by the
; defstobj, or in the case of defabsstobj, a recognizer, accessor, or (other)
; exported function.
(cond
((getpropc name 'stobj nil wrld)
name)
((getpropc name 'stobj-function nil wrld))
((getpropc name 'stobj-constant nil wrld))
(t (getpropc name 'stobj-live-var nil wrld))))
(defun stobj-creatorp (name wrld)
; Returns the name of the stobj that name creates, if name is a stobj creator;
; else returns nil.
; Keep the null test below in sync with the null test (and stobj-flag (null
; (cadr def))) near the top of oneify-cltl-code.
(and (symbolp name)
(null (getpropc name 'formals t wrld))
(getpropc name 'stobj-function nil wrld)))
(mutual-recursion
(defun ffnnamep (fn term)
; We determine whether the function fn (possibly a lambda-expression)
; is used as a function in term.
(declare (xargs :guard (pseudo-termp term)))
(cond ((variablep term) nil)
((fquotep term) nil)
((flambda-applicationp term)
(or (equal fn (ffn-symb term))
(ffnnamep fn (lambda-body (ffn-symb term)))
(ffnnamep-lst fn (fargs term))))
((eq (ffn-symb term) fn) t)
(t (ffnnamep-lst fn (fargs term)))))
(defun ffnnamep-lst (fn l)
(declare (xargs :guard (pseudo-term-listp l)))
(if (endp l)
nil
(or (ffnnamep fn (car l))
(ffnnamep-lst fn (cdr l)))))
)
(defconst *synp-trans-err-string*
"A synp term must take three quoted arguments, unlike ~x0. Normally, a call ~
to synp is the result of the macroexpansion of a call to syntaxp or ~
bind-free, but this does not seem to be the case here. If you believe this ~
error message is itself in error please contact the maintainers of ACL2.")
(defun unknown-binding-msg (stobjs-bound str1 str2 str3)
(msg
"The single-threaded object~#0~[ ~&0 has~/s ~&0 have~] been bound in ~@1. ~
It is a requirement that ~#0~[this object~/these objects~] be among the ~
outputs of ~@2. But, at the time at which we process ~@2, we are unable ~
to determine what the outputs are and so cannot allow it. This situation ~
arises when the output of ~@2 is a recursive call of the function being ~
admitted and the call is encountered before we have encountered the first ~
base case of the function (which would tell us what single-threaded ~
objects are being returned). In the case of the admission of a clique of ~
mutually-recursive functions, the situation can additionally arise when ~
the output of ~@2 is a call of a function in the clique and that function ~
appears in the clique after the definition in question. This situation ~
can be eliminated by rearranging the order of the branches of an IF ~
and/or rearranging the order of the presentation of a clique of mutually ~
recursive functions."
stobjs-bound str1 str2 str3))
(defconst *macros-for-nonexpansion-in-raw-lisp*
; If a symbol, sym, is on this list then the form (sym a1 ... ak) is oneified
; to (sym a1' ... ak') where ai' is the oneification of ai. Thus, conditions
; for sym being put on this list include that it is defined as a function or
; macro in raw lisp and that it is "applied" to a list of terms. Another
; condition is that it not have a guard, because if a guard is present it is
; likely that Common Lisp will cause an error when we run the oneified version
; on inappropriate inputs.
; The value of this list should be a subset of
; (loop for x in (w state) when (eq (cadr x) 'macro-body) collect (car x))
; Below we exhibit the value of the sloop above and comment out the macros we
; do not want on it. The macros commented out will be translated away in
; oneified code.
; When in doubt, comment it out!
'(f-decrement-big-clock ; we leave these two in oneified code because they
f-big-clock-negative-p ; are handled by our raw lisp
; make-list
; ; Must omit f-put-global, f-get-global, and f-boundp-global, in order to
; ; avoid calling global-table in raw Lisp.
; mv-let ; not of the right shape so special-cased in oneify
mv
; The following are not in primitive-event-macros (which is handled directly
; in oneify-cltl-code).
; Note that safe-mode for make-event will require addition of the following four:
; certify-book make-event defpkg in-package
; acl2-unwind-protect
; pprogn
; the
list*
; rest tenth ninth eighth seventh sixth fifth fourth third second first cddddr
; cdddar cddadr cddaar cdaddr cdadar cdaadr cdaaar cadddr caddar cadadr cadaar
; caaddr caadar caaadr caaaar cdddr cddar cdadr cdaar caddr cadar caadr caaar
; cddr cdar cadr caar
; case progn mutual-recursion
; / * >= > <= ; guarded
; let* cond
; + - ; guarded
or and list
; local
with-live-state
))
; Historical Note: The following material -- chk-no-duplicate-defuns,
; chk-state-ok, chk-arglist, and chk-defuns-tuples -- used to be in the file
; defuns.lisp. It is mainly concerned with translating hints. But we had to
; move it to before prove.lisp when we added hint functions, and then we had to
; move it before translate11 when we introduced flet.
(defun chk-no-duplicate-defuns-cmp (lst ctx)
(declare (xargs :guard (true-listp lst)))
(cond ((no-duplicatesp lst)
(value-cmp nil))
(t (er-cmp ctx
"We do not permit duplications among the list of symbols ~
being defined. However, the symbol~#0~[ ~&0 is~/s ~&0 ~
are each~] defined more than once."
(duplicates lst)))))
(defun chk-no-duplicate-defuns (lst ctx state)
(cmp-to-error-triple (chk-no-duplicate-defuns-cmp lst ctx)))
(defun chk-state-ok-msg (wrld)
; We are in a context where 'state is a member of a list of formals. Is this
; OK?
(cond ((not (cdr (assoc-eq :state-ok
(table-alist 'acl2-defaults-table
wrld))))
(msg "The variable symbol STATE should not be used as a formal ~
parameter of a defined function unless you are aware of its ~
unusual status and the restrictions enforced on its use. See ~
:DOC set-state-ok."))
(t nil)))
(defun chk-state-ok (ctx wrld state)
(let ((msg (chk-state-ok-msg wrld)))
(cond (msg (er soft ctx "~@0" msg))
(t (value nil)))))
(defun chk-arglist-msg (args chk-state wrld)
(cond ((arglistp args)
(if (and chk-state (member-eq 'state args))
(chk-state-ok-msg wrld)
nil))
((not (true-listp args))
(msg "The argument list to a function or macro must be a true list ~
but ~x0 is not."
args))
(t (mv-let (culprit explan)
(find-first-bad-arg args)
(msg "The argument list to a function or macro must be a ~
true list of distinct, legal variable names. ~x0 is ~
not such a list. The element ~x1 violates the rules ~
because it ~@2."
args culprit explan)))))
(defun msg-to-cmp (ctx msg)
; Convert a given context and message to a corresponding context-message pair
; (see the Essay on Context-message Pairs).
(assert$ ctx
(cond (msg (mv ctx msg))
(t (mv nil nil)))))
(defun chk-arglist-cmp (args chk-state ctx wrld)
(msg-to-cmp ctx (chk-arglist-msg args chk-state wrld)))
(defun@par chk-arglist (args chk-state ctx wrld state)
(let ((msg (chk-arglist-msg args chk-state wrld)))
(cond (msg (er@par soft ctx "~@0" msg))
(t (value@par nil)))))
(defun logical-name-type (name wrld quietp)
; Given a logical-namep we determine what sort of logical object it is.
(cond ((stringp name) 'package)
((function-symbolp name wrld) 'function)
((getpropc name 'macro-body nil wrld) 'macro)
((getpropc name 'const nil wrld) 'const)
((getpropc name 'theorem nil wrld) 'theorem)
((not (eq (getpropc name 'theory t wrld) t))
'theory)
((getpropc name 'label nil wrld) 'label)
((getpropc name 'stobj nil wrld)
; Warning: Non-stobjs can have the stobj property, so do not move this cond
; clause upward!
'stobj)
((getpropc name 'stobj-live-var nil wrld)
'stobj-live-var)
(quietp nil)
(t (er hard 'logical-name-type
"~x0 is evidently a logical name but of undetermined type."
name))))
(defun chk-all-but-new-name-cmp (name ctx new-type w)
; We allow new-type to be NIL. Currently, its only uses are to allow
; redefinition of functions, macros, and consts residing in the main Lisp
; package, and to allow events to use the main Lisp package when they
; do not introduce functions, macros, or constants.
(cond ((not (symbolp name))
(er-cmp ctx
"Names must be symbols and ~x0 is not."
name))
((keywordp name)
(er-cmp ctx
"Keywords, such as ~x0, may not be defined or constrained."
name))
((and (member-eq new-type '(function const stobj macro
constrained-function))
(equal *main-lisp-package-name* (symbol-package-name name))
(or
; Only definitions can be redefined from :program mode to :logic mode.
(not (eq new-type 'function))
(not (eq (logical-name-type name w t) 'function)))
(not (global-val 'boot-strap-flg w)))
(er-cmp ctx
"Symbols in the main Lisp package, such as ~x0, may not be ~
defined or constrained."
name))
(t (value-cmp nil))))
(defun chk-all-but-new-name (name ctx new-type w state)
(cmp-to-error-triple (chk-all-but-new-name-cmp name ctx new-type w)))
(defun chk-defuns-tuples-cmp (lst local-p ctx wrld)
(cond ((atom lst)
; This error message can never arise because we know terms are true
; lists.
(cond ((eq lst nil) (value-cmp nil))
(t (er-cmp ctx
"A list of definitions must be a true list."))))
((not (true-listp (car lst)))
(er-cmp ctx
"Each~#0~[ local~/~] definition must be a true list and ~x1 ~
is not."
(if local-p 0 1)
(if local-p (car lst) (cons 'DEFUN (car lst)))))
((not (>= (length (car lst))
3))
(er-cmp ctx
"A definition must be given three or more arguments, but ~x0 ~
has length only ~x1."
(car lst)
(length (car lst))))
(t (er-progn-cmp
(chk-all-but-new-name-cmp (caar lst) ctx 'function wrld)
(chk-arglist-cmp (cadar lst) nil ctx wrld)
(er-let*-cmp
((edcls (collect-declarations-cmp
(butlast (cddar lst) 1)
(cadar lst)
(if local-p 'flet 'defuns)
ctx wrld))
(rst (chk-defuns-tuples-cmp (cdr lst) local-p ctx wrld)))
(value-cmp (cons (list* (caar lst)
(cadar lst)
(if (stringp (car edcls))
(car edcls)
nil)
(if (stringp (car edcls))
(cdr edcls)
edcls)
(last (car lst)))
rst)))))))
(defun chk-defuns-tuples (lst local-p ctx wrld state)
(cmp-to-error-triple (chk-defuns-tuples-cmp lst local-p ctx wrld)))
(defun non-trivial-encapsulate-ee-entries (embedded-event-lst)
(cond ((endp embedded-event-lst)
nil)
((and (eq (caar embedded-event-lst) 'encapsulate)
(cadar embedded-event-lst))
(cons (car embedded-event-lst)
(non-trivial-encapsulate-ee-entries (cdr embedded-event-lst))))
(t (non-trivial-encapsulate-ee-entries (cdr embedded-event-lst)))))
(defun name-dropper (lst)
; This function builds a term that mentions each element of lst. Provided the
; elements of list are translated terms, the output is a translated term.
; Provided every element of lst has a guard of t, the output has a guard of t.
; The intention here is that lst is a list of distinct variable names and
; name-dropper builds a translated term whose free-vars are those variables;
; furthermore, it is cheap to evaluate and always has a guard of T.
; The general form is either 'NIL, a single var, or a PROG2$ nest around
; the vars.
(cond ((endp lst) *nil*)
((endp (cdr lst)) (car lst))
(t (prog2$-call (car lst)
(name-dropper (cdr lst))))))
(defun first-assoc-eq (keys alist)
(declare (xargs :guard (and (alistp alist)
(symbol-listp keys))))
(cond ((endp keys)
nil)
(t (or (assoc-eq (car keys) alist)
(first-assoc-eq (cdr keys) alist)))))
(defun context-for-encapsulate-pass-2 (wrld in-local-flg)
; Return 'illegal if we are in pass 2 of a non-trivial encapsulate, or if known
; to be non-local (as per in-local-flg) in pass 1 of a non-trivial encapsulate.
; We include the latter because presumably it is courteous to the user to
; signal an issue during pass 1, rather than waiting till the inevitable
; problem in pass 2.
; If we are in pass 1 of a non-trivial encapsulate but in a local context, then
; we might or might not be in an illegal context for the corresponding pass 2,
; depending on whether the local wrapper is close enough to make the context
; disappear in pass 2. So we return 'maybe in this case. Otherwise, we return
; nil.
(let ((ee-entries (non-trivial-encapsulate-ee-entries
(global-val 'embedded-event-lst wrld))))
(and ee-entries ; we are in at least one non-trivial encapsulate
(cond ((or
; The term (cddr (car ee-entries)) is true exactly when we are in pass 2 of the
; immediately superior non-trivial encapsulate, hence holds if we are in pass 2
; of some superior encapsulate (since then we would be skipping pass 1 of its
; inferior encapsulates). So (cddr (car ee-entries)) is non-nil if and only if
; we are in pass 2 of some encapsulate.
(cddr (car ee-entries))
(null in-local-flg))
'illegal)
(t 'maybe)))))
(defconst *brr-globals*
'(brr-monitored-runes
brr-stack
brr-gstack
brr-alist))
(defun unknown-binding-msg-er (x ctx stobjs-bound str1 str2 str3)
(mv-let
(erp msg bindings)
(let ((bindings nil)) ; don't-care
(trans-er+
x ctx
"~@0"
(msg "The single-threaded object~#0~[ ~&0 has~/s ~&0 have~] been bound ~
in ~@1. It is a requirement that ~#0~[this object~/these ~
objects~] be among the outputs of ~@2. But, at the time at which ~
we process ~@2, we are unable to determine what the outputs are ~
and so cannot allow it. In the case of the admission of a clique ~
of mutually-recursive functions, this situation can arise when ~
the output of ~@2 is a call of a function defined in the clique ~
after the definition containing ~@2, in which case the problem ~
might be eliminated by rearranging the order of the definitions."
stobjs-bound str1 str2 str3)))
(declare (ignore bindings))
(mv erp msg :UNKNOWN-BINDINGS)))
(defun congruent-stobjsp (st1 st2 wrld)
(eq (congruent-stobj-rep st1 wrld)
(congruent-stobj-rep st2 wrld)))
(defun stobjs-in-out1 (stobjs-in args known-stobjs wrld alist new-stobjs-in)
; We are translating an application of a function to args. where args satisfies
; the stobjs discipline of passing a stobj name to a stobjs-in position; see
; the comment about this in translate11-call.
(cond ((endp stobjs-in)
(if (null args)
(mv alist (reverse new-stobjs-in))
(mv :failed nil)))
((endp args) (mv :failed nil))
((null (car stobjs-in))
(stobjs-in-out1 (cdr stobjs-in) (cdr args) known-stobjs wrld alist
(cons nil new-stobjs-in)))
((and (car stobjs-in)
(stobjp (car args) known-stobjs wrld)
(not (rassoc-eq (car args)
alist)) ; equiv. to not member of new-stobjs-in
(or (eq (car stobjs-in) (car args))
(congruent-stobjsp (car stobjs-in) (car args) wrld)))
(stobjs-in-out1 (cdr stobjs-in) (cdr args) known-stobjs wrld
(acons (car stobjs-in) (car args) alist)
(cons (car args) new-stobjs-in)))
(t (mv :failed nil))))
(defun stobjs-in-matchp (stobjs-in args)
(cond ((endp stobjs-in) (null args))
((endp args) nil)
((or (null (car stobjs-in))
(eq (car stobjs-in) (car args)))
(stobjs-in-matchp (cdr stobjs-in) (cdr args)))
(t nil)))
(defun stobjs-in-out (fn args stobjs-out known-stobjs wrld)
; We are translating an application of fn to args, where fn has the indicated
; stobjs-out and args satisfies the stobjs discipline of passing a stobj name
; to a stobjs-in position. See the comment about this discipline in
; translate11-call.
; In general we return (mv flg new-stobjs-in new-stobjs-out), according to one
; of the following cases.
; - If flg is :failed, then we return (mv :failed stobjs-in stobjs-out), where
; stobjs-in is the stobjs-in of fn and stobjs-out is returned unchanged.
; - Otherwise flg is an alist, and either stobjs-out is a symbol (representing
; a function symbol or :stobjs-out bound in an implicit bindings in
; translate11), or else fn can be viewed as mapping new-stobjs-in to
; new-stobjs-out. Alist maps the original stobjs-in to new-stobjs-in; in
; particular, if alist is nil then new-stobjs-in is equal to the original
; stobjs-in.
(let ((stobjs-in (cond ((consp fn)
(compute-stobj-flags (lambda-formals fn)
known-stobjs
wrld))
(t (stobjs-in fn wrld)))))
(cond ((stobjs-in-matchp stobjs-in args)
(mv nil stobjs-in stobjs-out))
(t (mv-let
(alist new-stobjs-in)
(stobjs-in-out1 stobjs-in args known-stobjs wrld nil nil)
(cond ((eq alist :failed)
(mv :failed stobjs-in stobjs-out))
((symbolp stobjs-out)
(mv alist new-stobjs-in stobjs-out))
(t (mv alist
new-stobjs-in
(apply-symbol-alist alist stobjs-out nil)))))))))
(defun non-trivial-stobj-binding (stobj-flags bindings)
(declare (xargs :guard (and (symbol-listp stobj-flags)
(symbol-doublet-listp bindings)
(eql (length stobj-flags)
(length bindings)))))
(cond ((endp stobj-flags) nil)
((or (null (car stobj-flags))
(assert$ (eq (car stobj-flags) (caar bindings))
(eq (car stobj-flags) (cadar bindings))))
(non-trivial-stobj-binding (cdr stobj-flags) (cdr bindings)))
(t (car stobj-flags))))
(defun formalized-varlistp (varlist formal-lst)
(declare (xargs :guard (and (symbol-listp varlist)
(pseudo-termp formal-lst))))
(cond ((endp varlist)
(equal formal-lst *nil*))
((variablep formal-lst)
nil)
(t (and ; (not (fquotep formal-lst))
(eq (ffn-symb formal-lst) 'cons)
(eq (car varlist) (fargn formal-lst 1))
(formalized-varlistp (cdr varlist) (fargn formal-lst 2))))))
(defun throw-nonexec-error-p1 (targ1 targ2 name formals)
; Consider a term (return-last targ1 targ2 ...). We recognize when this term
; is of the form (return-last 'progn (throw-non-exec-error x ...) ...), with
; some additional requirements as explained in a comment in
; throw-nonexec-error-p.
(declare (xargs :guard (and (pseudo-termp targ1)
(pseudo-termp targ2)
(symbolp name)
(symbol-listp formals))))
(and (quotep targ1)
(eq (unquote targ1) 'progn)
(ffn-symb-p targ2 'throw-nonexec-error)
(or (null name)
(let ((qname (fargn targ2 1)))
(and (quotep qname)
(if (eq name :non-exec)
(eq (unquote qname) :non-exec)
(and (eq (unquote qname) name)
(formalized-varlistp formals (fargn targ2 2)))))))))
(defun throw-nonexec-error-p (body name formals)
; We recognize terms that could result from translating (prog2$
; (throw-nonexec-error x ...) ...), i.e., terms of the form (return-last 'progn
; (throw-non-exec-error x ...) ...). If name is nil, then there are no further
; requirements. If name is :non-exec, then we require that x be (quote
; :non-exec). Otherwise, we require that x be (quote name) and that the second
; argument of throw-non-exec-error be (cons v1 (cons v2 ... (cons vk nil)
; ...)), where formals is (v1 v2 ... vk).
(declare (xargs :guard (and (pseudo-termp body)
(symbolp name)
(symbol-listp formals))))
(and (ffn-symb-p body 'return-last)
(throw-nonexec-error-p1 (fargn body 1) (fargn body 2) name formals)))
(defun chk-flet-declarations (names decls declare-form ctx)
(cond ((null decls)
(value-cmp nil))
((atom decls)
(er-cmp ctx
"The DECLARE form for an FLET expression must be a ~
true-list. The form ~x0 is thus illegal. See :DOC flet."
declare-form))
(t (let ((decl (car decls)))
(cond ((and (consp decl)
(member-eq (car decl)
'(inline notinline))
(true-listp (cdr decl))
(subsetp-eq (cdr decl) names))
(chk-flet-declarations names (cdr decls) declare-form ctx))
(t (er-cmp ctx
"Each declaration in a DECLARE form of an flet ~
expression must be of the form (INLINE . fns) ~
or (NOTINLINE . fns), where fns is a true-list ~
of names that are all defined by the FLET ~
expression. The declare form ~x0 is thus ~
illegal because of its declaration, ~x1. See ~
:DOC flet."
declare-form
decl)))))))
(defun chk-flet-declare-form (names declare-form ctx)
(cond
((null declare-form)
(value-cmp nil))
(t (case-match declare-form
(('declare . decls)
(chk-flet-declarations names decls declare-form ctx))
(&
(er-cmp ctx
"The optional DECLARE forms for an flet expression must each ~
be of the form (DECLARE DCL1 DCL2 ... DCLk), where each ~
DCLi is an INLINE or NOTINLINE declaration. The form ~x0 ~
is thus not a legal DECLARE form. See :DOC flet."
declare-form))))))
(defun chk-flet-declare-form-list (names declare-form-list ctx)
(cond ((endp declare-form-list)
(value-cmp nil))
(t (er-progn-cmp
(chk-flet-declare-form names (car declare-form-list) ctx)
(chk-flet-declare-form-list names (cdr declare-form-list) ctx)))))
(defun stobj-updater-guess-from-accessor (accessor)
; Warning: Keep the following in sync with defstobj-fnname.
; This function guesses a stobj updater name for a field from the accessor name
; for that field. We use it to supply a reasonable default when a stobj-let
; binding does not specify an updater, but ultimately we check it just as we
; would check a supplied updater name.
; The following example shows why this is only a guess.
; (defpkg "MY-PKG" '(fldi))
; (defstobj st (my-pkg::fld :type (array t (8))))
; Then the accessor is ACL2::FLDI and the updater is MY-PKG::UPDATE-FLDI. But
; the call of pack-pos below, with acc bound to ACL2::FLDI, yields
; ACL2::UPDATE-FLDI.
(packn-pos (list "UPDATE-" accessor)
accessor))
(defun parse-stobj-let1 (bindings producer-vars bound-vars actuals stobj
updaters corresp-accessor-fns)
; Either return (mv binding nil nil ... nil) for some unsuitable binding in
; bindings, or else return the result of accumulating from bindings into the
; other arguments. See parse-stobj-let. Note that stobj is initially nil, but
; is bound by the first recursive call and must be the same at every ensuing
; recursive call.
(declare (xargs :guard (and (true-listp bindings)
(true-listp producer-vars)
(true-listp bound-vars)
(true-listp actuals)
(true-listp updaters))))
(cond
((endp bindings)
(mv nil
(reverse bound-vars)
(reverse actuals)
stobj
(reverse updaters)
(reverse corresp-accessor-fns)))
(t (let ((binding (car bindings)))
(case-match binding
((s act . rest) ; e.g. (st1 (fld1 st+) update-fld1)
(cond
((not (or (null rest)
(and (consp rest)
(null (cdr rest))
(symbolp (car rest)))))
(mv binding nil nil nil nil nil))
((not (and (true-listp act)
(member (length act) '(2 3))
(symbolp (car act))
(symbolp (car (last act)))))
(mv binding nil nil nil nil nil))
(t (let ((arrayp (eql (length act) 3))) ; e.g. (fld3i 4 st+)
(cond
((and arrayp
(let ((index (cadr act)))
; As discussed in the Essay on Nested Stobjs, the index must be a natural
; number or else a symbol that is not among the producer variables. We relax
; the former condition to allow a quoted natural.
(not (or (and (symbolp index)
(not (member-eq index
producer-vars)))
(natp index)
(and (consp index)
(consp (cdr index))
(null (cddr index))
(eq (car index) 'quote)
(natp (cadr index)))))))
(mv binding nil nil nil nil nil))
(t
(let ((accessor (car act))
(stobj0 (car (last act)))
(update-fn (car rest)))
(cond
((or (null stobj0)
(and stobj
(not (eq stobj0 stobj))))
(mv binding nil nil nil nil nil))
((member-eq s producer-vars)
(parse-stobj-let1
(cdr bindings)
producer-vars
(cons s bound-vars)
(cons act actuals)
stobj0
(cons (cons (or update-fn
(stobj-updater-guess-from-accessor
accessor))
(if arrayp
(list* (cadr act) ; index
s
(cddr act))
(cons s (cdr act))))
updaters)
(cons accessor corresp-accessor-fns)))
(t
(parse-stobj-let1
(cdr bindings)
producer-vars
(cons s bound-vars)
(cons act actuals)
stobj0
updaters
corresp-accessor-fns))))))))))
(& (mv binding nil nil nil nil nil)))))))
(defun illegal-stobj-let-msg (msg form)
(msg "~@0 The form ~x1 is thus illegal. See :DOC stobj-let."
msg form))
(defun parse-stobj-let (x)
; This function is used both in the definition of the stobj-let macro and, in
; translate11, to translate stobj-let forms. This function is not responsible
; for all error checking, as some checks take place in translate11, which must
; ensure that x and its oneification will execute correctly. Nevertheless, the
; error checking done in this function is useful for giving feedback on misuses
; of stobj-let in contexts such as theorems in which translate11 will not
; insist on correctness for execution, such as single-threadedness. Of course,
; users who have a specific reason for "misusing" stobj-let in such contexts
; are welcome to avoid stobj-let and write let-expressions instead.
; X is a stobj-let form. We return (mv erp bound-vars actuals stobj
; producer-vars producer updaters corresponding-accessor-fns consumer), where
; erp is either a msg or nil, and when erp is nil:
; - bound-vars is a list of symbols, without duplicates;
; - actuals is a corresponding list of untranslated field accessors;
; - stobj is the stobj accessed by those field accessors;
; - producer-vars is the true-list of producer variables
; - producer is an untranslated expression that returns values corresponding to
; producer-vars;
; - updaters is a list of stobj updaters, obtained from producer-vars, actuals,
; and any updaters specified explicitly in the first argument of the
; stobj-let;
; - corresponding-accessor-fns is a list of accessor functions that corresponds
; positionally to updaters; and
; - consumer is an expression that provides the return value(s).
; For example, if x is
; (stobj-let
; ((st1 (fld1 st+))
; (st2 (fld2 st+) update-fld2)
; (st3 (fld3i 4 st+)))
; (x st1 y st3)
; (producer st1 u st2 v st3)
; (consumer st+ u x y v w))
; then we return:
; (mv nil ; erp
; (st1 st2 st3) ; bound-vars
; ((fld1 st+) (fld2 st+) (fld3i 4 st+)) ; untranslated actuals
; st+ ; stobj accessed above
; (x st1 y st3) ; producer-vars
; (producer st1 u st2 v st3) ; producer (untranslated)
; ((update-fld1 st+) ; stobj updaters
; (update-fld3i 4 st3 st+))
; (fld1 fld3) ; accessors for the updaters
; (consumer st+ u x y v w) ; consumer (untranslated)
; )
(declare (xargs :guard t))
(case-match x
(('stobj-let bindings
producer-vars
producer
consumer)
(cond
((not (and bindings
; We could check true-list-listp here, but we prefer to leave such a check to
; parse-stobj-let1 so that the error message can refer to the particular
; ill-formed binding.
(true-listp bindings)))
(mv (illegal-stobj-let-msg
"The bindings of a STOBJ-LET form must be a non-empty true-list."
x)
nil nil nil nil nil nil nil nil))
((not (and producer-vars
(arglistp producer-vars)))
(mv (illegal-stobj-let-msg
"The producer-variables of a STOBJ-LET form must be a non-empty ~
list of legal variable names."
x)
nil nil nil nil nil nil nil nil))
(t (mv-let
(bad bound-vars actuals stobj updaters corresp-accessor-fns)
(parse-stobj-let1 bindings producer-vars nil nil nil nil nil)
(cond
(bad (mv (illegal-stobj-let-msg
(msg "Illegal binding for stobj-let, ~x0."
bad)
x)
nil nil nil nil nil nil nil nil))
(t (mv nil bound-vars actuals stobj producer-vars producer
updaters corresp-accessor-fns consumer)))))))
(& (mv (illegal-stobj-let-msg
"The proper form of a stobj-let is (STOBJ-LET <bindings> ~
<producer-variables> <producer> <consumer>)."
x)
nil nil nil nil nil nil nil nil))))
(defun pairlis-x1 (x1 lst)
; Cons x1 onto the front of each element of lst.
(cond ((null lst) nil)
(t (cons (cons x1 (car lst))
(pairlis-x1 x1 (cdr lst))))))
(defun pairlis-x2 (lst x2)
; Make an alist pairing each element of lst with x2.
(cond ((null lst) nil)
(t (cons (cons (car lst) x2)
(pairlis-x2 (cdr lst) x2)))))
(defun no-duplicatesp-checks-for-stobj-let-actuals/alist (alist)
(cond ((endp alist) nil)
(t (let ((indices (cdar alist)))
(cond ((or (null (cdr indices))
(and (nat-listp indices)
(no-duplicatesp indices)))
(no-duplicatesp-checks-for-stobj-let-actuals/alist
(cdr alist)))
(t (cons `(with-guard-checking
t
; This use of with-guard-checking guarantees that the guard will be checked by
; running chk-no-duplicatesp inside *1* code for stobj-let. (See a comment
; near the end of stobj-let-fn for how handling of invariant-risk guarantees
; that such *1* code is run under program-mode wrappers.)
(chk-no-duplicatesp
; The use of reverse is just aesthetic, to preserve the original order.
(list ,@(reverse indices))))
(no-duplicatesp-checks-for-stobj-let-actuals/alist
(cdr alist)))))))))
(defun no-duplicatesp-checks-for-stobj-let-actuals (exprs alist)
; Alist associates array field accessor names with lists of index terms.
(cond ((endp exprs)
(no-duplicatesp-checks-for-stobj-let-actuals/alist alist))
(t (let ((expr (car exprs)))
(no-duplicatesp-checks-for-stobj-let-actuals
(cdr exprs)
(cond
((eql (length expr) 3) ; array case, (fldi index st)
(let* ((key (car expr))
(index (cadr expr))
(index (if (consp index)
(assert$ (and (eq (car index) 'quote)
(natp (cadr index)))
(cadr index))
index))
(entry (assoc-eq key alist)))
(put-assoc-eq key
(cons index (cdr entry))
alist)))
(t alist)))))))
(defun stobj-let-fn (x)
; Warning: Keep this in sync with stobj-let-fn-raw, with the handling of
; stobj-let in translate11, and with the handling of stobj-let in oneify.
; See the Essay on Nested Stobjs.
(mv-let
(msg bound-vars actuals stobj producer-vars producer updaters
corresp-accessor-fns consumer)
(parse-stobj-let x)
(declare (ignore corresp-accessor-fns))
(cond (msg (er hard 'stobj-let "~@0" msg))
(t (let* ((guarded-producer
`(check-vars-not-free (,stobj) ,producer))
(guarded-consumer
`(check-vars-not-free ,bound-vars ,consumer))
(updated-guarded-consumer
`(let* ,(pairlis-x1 stobj (pairlis$ updaters nil))
,guarded-consumer))
(form
`(let ,(pairlis$ bound-vars (pairlis$ actuals nil))
(declare (ignorable ,@bound-vars))
,(cond
((cdr producer-vars)
`(mv-let ,producer-vars
,guarded-producer
,updated-guarded-consumer))
(t `(let ((,(car producer-vars) ,guarded-producer))
,updated-guarded-consumer)))))
(no-dups-exprs
(no-duplicatesp-checks-for-stobj-let-actuals actuals nil)))
`(progn$ ,@no-dups-exprs
; Warning: Think carefully before modifying how the no-dups-exprs test (just
; above) is worked into this logical code. A concern is whether a program-mode
; wrapper will be able to circumvent this check. Fortunately, the check only
; needs to be done if there are updater calls in form, in which case there is
; invariant-risk that will cause execution of this code as *1* code. A concern
; is that if the no-dups-exprs check is buried in a function call, perhaps that
; call would somehow avoid that check by being executed in raw Lisp.
,form))))))
(defun the-live-var-bindings (stobj-names)
(cond ((endp stobj-names) nil)
(t (cons (let ((stobj (car stobj-names)))
`(,(the-live-var stobj) ,stobj))
(the-live-var-bindings (cdr stobj-names))))))
(defun the-maybe-live-var-bindings (stobj-names)
(cond ((endp stobj-names) nil)
(t (cons (let* ((stobj (car stobj-names))
(live-var (the-live-var stobj)))
`(,live-var
(if (live-stobjp ,stobj)
,stobj
,live-var)))
(the-maybe-live-var-bindings (cdr stobj-names))))))
#-acl2-loop-only
(defun non-memoizable-stobj-raw (name)
(assert name)
(let* ((d (get (the-live-var name)
'redundant-raw-lisp-discriminator))
(ans (cdr (cddddr d))))
ans))
#-acl2-loop-only
(defun stobj-let-fn-raw (x)
; Warning: Keep this in sync with stobj-let-fn and with the
; handling of stobj-let in translate11.
; This function could be admitted into the logic were it not for the calls of
; congruent-stobj-rep-raw and non-memoizable-stobj-raw below.
; See the Essay on Nested Stobjs.
(mv-let
(msg bound-vars actuals stobj producer-vars producer updaters
corresp-accessor-fns consumer)
(parse-stobj-let x)
(declare (ignore updaters corresp-accessor-fns
#-hons stobj))
(cond (msg (er hard 'stobj-let "~@0" msg))
(t
; Should we allow trans-eval under a stobj-let? We decided not to, for two
; reasons: first, potential user confusion over the meaning of a stobj
; reference (which in the trans-eval case is to the value in the
; *user-stobj-alist*, not to the value bound by a superior stobj-let); and
; second, difficulty in getting the implementation right! The following
; example illustrates how trans-eval would operate, were we to allow it in such
; a circumstance. Note that the trans-eval call below updates the global
; stobj, sub1, not the locally bound sub1 that is a field of top1.
; (defstobj sub1 sub1-fld1)
; (defstobj top1 (top1-fld :type sub1))
;
; (defun f (x top1 state)
; (declare (xargs :stobjs (top1 state) :mode :program))
; (stobj-let
; ((sub1 (top1-fld top1)))
; (sub1 state)
; (mv-let (erp val state)
;
; ; NOTE: The reference to sub1 inside the following trans-eval call is
; ; actually a reference to the global sub1 from the *user-stobj-alist*, not
; ; to the sub1 bound by stobj-let above.
;
; (trans-eval `(update-sub1-fld1 ',x sub1) 'my-top state t)
; (declare (ignore erp val))
; (mv sub1 state))
; top1))
;
; (f 7 top1 state)
; (assert-event (equal (sub1-fld1 sub1) 7))
; (f 8 top1 state)
; (assert-event (equal (sub1-fld1 sub1) 8))
;
; (defun f2 (top1)
; (declare (xargs :stobjs top1 :mode :program))
; (stobj-let
; ((sub1 (top1-fld top1)))
; (val)
; (sub1-fld1 sub1)
; val))
;
; (assert-event (equal (f2 top1) nil))
; Thus, in the code below, we bind the live var for each bound stobj so that we
; will get the error "It is illegal to run ACL2 evaluators...." when attempting
; to call trans-eval (as trans-eval calls ev-for-trans-eval, which calls
; user-stobj-alist-safe, which calls chk-user-stobj-alist, which checks the
; global *user-stobj-alist* against the live stobj values).
; Another reason to bind the-live-stobj is in case we need to print the stobj
; during guard violations or tracing, in which case we can distinguish it from
; the global stobj with the same name. See for example stobj-print-symbol,
; which is used during tracing.
`(let* (,@(pairlis$ bound-vars (pairlis$ actuals nil))
,@(the-live-var-bindings bound-vars))
(declare (ignorable ,@bound-vars))
,(let* ((modified-bound-vars (intersection-eq producer-vars
bound-vars))
(flush-form
#-hons nil
#+hons
(and modified-bound-vars
(not (non-memoizable-stobj-raw stobj))
`(memoize-flush ,(congruent-stobj-rep-raw stobj)))))
(cond
((cdr producer-vars)
`(mv-let ,producer-vars
,producer
,@(and modified-bound-vars
`((declare (ignore ,@modified-bound-vars))))
,(if flush-form
`(progn ,flush-form ,consumer)
consumer)))
(t `(let ((,(car producer-vars) ,producer))
,@(and modified-bound-vars
`((declare (ignore ,@modified-bound-vars))))
; Here is a proof of nil in ACL2(h) 6.4 that exploits an unfortunate
; "interaction of stobj-let and memoize", discussed in :doc note-6-5. This
; example let us to add the call of memoize-flush in flush-form, below. A
; comment in chk-stobj-field-descriptor explains how this flushing is important
; for allowing memoization of functions that take a stobj argument even when
; that stobj has a child stobj that is :non-memoizable.
; (in-package "ACL2")
;
; (defstobj kid1 fld1)
;
; (defstobj kid2 fld2)
;
; (defstobj mom
; (kid1-field :type kid1)
; (kid2-field :type kid2))
;
; (defun mom.update-fld1 (val mom)
; (declare (xargs :stobjs mom))
; (stobj-let
; ((kid1 (kid1-field mom)))
; (kid1)
; (update-fld1 val kid1)
; mom))
;
; (defun mom.fld1 (mom)
; (declare (xargs :stobjs mom))
; (stobj-let
; ((kid1 (kid1-field mom)))
; (val)
; (fld1 kid1)
; val))
;
; (defun test ()
; (with-local-stobj
; mom
; (mv-let (val mom)
; (let* ((mom (mom.update-fld1 3 mom))
; (val1 (mom.fld1 mom))
; (mom (mom.update-fld1 4 mom))
; (val2 (mom.fld1 mom)))
; (mv (equal val1 val2) mom))
; val)))
;
; (defthm true-prop
; (not (test))
; :rule-classes nil)
;
; (memoize 'mom.fld1)
;
; (defthm false-prop
; (test)
; :rule-classes nil)
;
; (defthm contradiction
; nil
; :hints (("Goal" :in-theory nil
; :use (true-prop false-prop)))
; :rule-classes nil)
,@(and flush-form (list flush-form))
,consumer)))))))))
(defun stobj-field-accessor-p (fn stobj wrld)
(and
; We believe that the first check is subsumed by the others, but we leave it
; here for the sake of robustness.
(eq (getpropc fn 'stobj-function nil wrld)
stobj)
; The 'stobj property of stobj is (*the-live-var* recognizer creator ...).
(member-eq fn (cdddr (getpropc stobj 'stobj nil wrld)))
; At this point, fn could still be a constant.
(function-symbolp fn wrld)
; Now distinguish accessors from updaters.
(not (eq (car (stobjs-out fn wrld))
stobj))))
(defun chk-stobj-let/bindings (stobj acc-stobj first-acc bound-vars actuals
wrld)
; The bound-vars and actuals have been returned by parse-stobj-let, so we know
; that some basic syntactic requirements have been met and that the two lists
; have the same length. See also chk-stobj-let.
; Stobj is the variable being accessed/updated. Acc-stobj is the stobj
; associated with the first accessor; we have already checked in chk-stobj-let
; that this is congruent to stobj. First-acc is the first accessor, which is
; just used in the error message when another accessor's stobj doesn't match.
(cond ((endp bound-vars) nil)
(t (let* ((var (car bound-vars))
(actual (car actuals))
(accessor (car actual))
(st (car (last actual))))
(assert$
(eq st stobj) ; guaranteed by parse-stobj-let
(cond ((not (stobj-field-accessor-p accessor acc-stobj wrld))
(msg "The name ~x0 is not the name of a field accessor ~
for the stobj ~x1.~@2"
accessor acc-stobj
(if (eq acc-stobj stobj)
""
(msg " (The first accessor used in a stobj-let, ~
in this case ~x0, determines the stobj with ~
which all other accessors must be ~
associated, namely ~x1.)"
first-acc acc-stobj))))
((not (stobjp var t wrld))
(msg "The stobj-let bound variable ~x0 is not the name ~
of a known single-threaded object in the current ~
ACL2 world."
var))
((not (eq (congruent-stobj-rep var wrld)
(congruent-stobj-rep
(car (stobjs-out accessor wrld))
wrld)))
(msg "The stobj-let bound variable ~x0 is not the same ~
as, or even congruent to, the output ~x1 of accessor ~
~x2 (of stobj ~x3)."
var
(car (stobjs-out (caar actuals) wrld))
(caar actuals)
stobj))
((member-equal actual (cdr actuals))
; This case fixes a soundness bug for duplicated actuals (see :DOC note-8-0).
; It effectively checks no-duplicatesp-equal of the actuals, but doing it here
; one-by-one has the advantage that we can easily say which actual is
; duplicated. Alternatively, we could check only that scalar accessor
; functions are not used more than once. This is a bit stronger since it also
; disallows duplicate array accesses (though they would be disallowed by guards
; anyway). If we ever relax the strict syntactic restrictions on actuals --
; e.g., allow accessors from multiple congruent stobjs -- this check will need
; to become smarter.
(msg "The bindings of a stobj-let must contain no ~
duplicated actuals, but in the following form, the ~
actual ~x0 is bound more than once."
actual))
(t (chk-stobj-let/bindings stobj acc-stobj first-acc
(cdr bound-vars)
(cdr actuals)
wrld))))))))
(defun chk-stobj-let/updaters1 (updaters accessors lst)
; Lst is the cdddr of the 'stobj property of a stobj in an implicit world,
; accessors is a list of field accessors for that stobj, and updaters is a list
; of the same length as accessors. We check for each i < (length accessors),
; the ith updater is indeed the stobj field updater corresponding to the ith
; accessor. Recall that the 'stobj property is a list of the form
; (*the-live-var* recognizer creator ...), and that each field updater
; immediately follows the corresponding field accessor in that list.
(cond ((endp updaters) nil)
(t (let* ((updater-expr (car updaters))
(updater (car updater-expr))
(accessor (car accessors))
(accessor-tail (member-eq (car accessors) lst))
(actual-updater (cadr accessor-tail)))
(assert$
; This assertion should be true because of the check done by a call of
; stobj-field-accessor-p in chk-stobj-let/bindings.
accessor-tail
(cond
((eq updater actual-updater)
(chk-stobj-let/updaters1 (cdr updaters) (cdr accessors) lst))
(t (msg "The stobj-let bindings have specified that the stobj ~
field updater corresponding to accessor ~x0 is ~x1, ~
but the actual corresponding updater is ~x2."
accessor updater actual-updater))))))))
(defun chk-stobj-let/updaters (updaters corresp-accessor-fns stobj wrld)
(chk-stobj-let/updaters1
updaters
corresp-accessor-fns
(cdddr ; optimization: pop live-var, recognizer, and creator
(getpropc stobj 'stobj nil wrld))))
(defun chk-stobj-let (bound-vars actuals stobj updaters corresp-accessor-fns
known-stobjs wrld)
; The inputs (other than wrld) have been returned by parse-stobj-let, so we
; know that some basic syntactic requirements have been met. Others are to be
; checked directly by translate11 after the present check passes. Here, we
; do the checks necessary after parse-stobj-let but before translate11.
(cond
((not (stobjp stobj known-stobjs wrld))
(msg
"The name ~x0 is being used as a single-threaded object. But in the ~
current context, ~x0 is not a declared stobj name."
stobj))
((getpropc stobj 'absstobj-info nil wrld)
(msg
"The name ~x0 is the name of an abstract stobj."
stobj))
(t (let* ((first-actual (car actuals))
(first-accessor (car first-actual))
(acc-stobj (getpropc first-accessor 'stobj-function nil wrld)))
(cond
((not (eq (congruent-stobj-rep acc-stobj wrld)
(congruent-stobj-rep stobj wrld)))
(msg "The name ~x0 is not the name of a field accessor for the ~
stobj ~x1, or even one congruent to it."
first-accessor stobj))
((chk-stobj-let/bindings
stobj acc-stobj first-accessor bound-vars actuals wrld))
((chk-stobj-let/updaters
updaters corresp-accessor-fns acc-stobj wrld))
(t nil))))))
(defun all-nils-or-x (x lst)
(declare (xargs :guard (and (symbolp x)
(true-listp lst))))
(cond ((endp lst) t)
((or (eq (car lst) x)
(null (car lst)))
(all-nils-or-x x (cdr lst)))
(t nil)))
(defun stobj-field-fn-of-stobj-type-p (fn wrld)
; Return true if for some concrete stobj st, fn is the accessor or updater for
; a field fld of st of stobj type. For fn the accessor or updater for fld,
; this is equivalent to taking or returning that stobj type, respectively,
; which is equivalent to taking or returning some stobj other than st.
; Abstract stobjs are not a concern here; they don't have "fields".
(let ((st (getpropc fn 'stobj-function nil wrld)))
(and st
(not (getpropc st 'absstobj-info nil wrld))
(or (not (all-nils-or-x st (stobjs-in fn wrld)))
(not (all-nils-or-x st (stobjs-out fn wrld)))))))
(defun stobj-recognizer-p (fn wrld)
; Fn is a function symbol of wrld. We return true when fn is a stobj
; recognizer in wrld.
(let ((stobj (getpropc fn 'stobj-function nil wrld)))
(and stobj
(eq fn (get-stobj-recognizer stobj wrld)))))
(defmacro trans-or (form1 condition form2 extra-msg)
; Like trans-er-let*, this function deals in trans-er's 3-tuples (mv erp val
; bindings). The 3-tuple produced by form1 is returned except in one case:
; that 3-tuple has non-nil first value (erp), condition is true, and form2
; produces a 3-tuple of the form (mv nil val bindings), in which case that
; 3-tuple is returned.
`(let ((trans-or-extra-msg ,extra-msg))
(mv-let (trans-or-erp trans-or-val trans-or-bindings)
,form1
(cond
((and trans-or-erp
(check-vars-not-free
(trans-or-er trans-or-val trans-or-bindings
trans-or-extra-msg)
,condition))
(mv-let (erp val bindings)
(check-vars-not-free
(trans-or-er trans-or-val trans-or-bindings
trans-or-extra-msg)
,form2)
(cond
(erp (mv trans-or-erp
(msg "~@0~@1" trans-or-val trans-or-extra-msg)
trans-or-bindings))
(t (mv nil val bindings)))))
(t (mv trans-or-erp trans-or-val trans-or-bindings))))))
(defun inside-defabsstobj (wrld)
; We use this function to allow certain violations of normal checks in
; translate11 while executing events on behalf of defabsstobj. In particular,
; we avoid the normal translation checks in the :exec components of mbe calls
; that are laid down for defabsstobj; see defabsstobj-axiomatic-defs.
(eq (caar (global-val 'embedded-event-lst wrld))
; It seems reasonable to expect 'defabsstobj below instead of 'defstobj, but
; 'defstobj is what we actually get.
'defstobj))
(defun missing-known-stobjs (stobjs-out stobjs-out2 known-stobjs acc)
; See translate11-call for a discussion of the arguments of this function,
; which is intended to return a list of stobj names that are unexpectedly
; returned because they are not known to be stobjs in the current context.
; It is always legal to return nil. But if the result is non-nil, then the
; members of stobjs-out and stobjs-out2 are positionally equal (where the
; shorter one is extended by nils if necessary) except that in some positions,
; stobjs-out may contain nil while stobjs-out2 contains a value missing from
; known-stobjs. In that case the value returned can be the result of pushing
; all such values onto acc.
(cond ((and (endp stobjs-out) (endp stobjs-out2))
(reverse acc))
((eq (car stobjs-out) (car stobjs-out2))
(missing-known-stobjs (cdr stobjs-out) (cdr stobjs-out2) known-stobjs
acc))
((and (null (car stobjs-out))
(not (or (eq known-stobjs t)
(member-eq (car stobjs-out2) known-stobjs))))
(missing-known-stobjs (cdr stobjs-out) (cdr stobjs-out2) known-stobjs
(cons (car stobjs-out2) acc)))
(t nil)))
(defun deref-macro-name (macro-name macro-aliases)
(declare (xargs :guard (if (symbolp macro-name)
(alistp macro-aliases)
(symbol-alistp macro-aliases))))
(let ((entry (assoc-eq macro-name macro-aliases)))
(if entry
(cdr entry)
macro-name)))
(defun corresponding-inline-fn (fn wrld)
(let ((macro-body (getpropc fn 'macro-body t wrld)))
(and (not (eq macro-body t))
(let* ((fn$inline (add-suffix fn *inline-suffix*))
(formals (getpropc fn$inline 'formals t wrld)))
(and (not (eq formals t))
(equal (macro-args fn wrld) formals)
(equal macro-body
(fcons-term*
'cons
(kwote fn$inline)
(if formals
(xxxjoin 'cons
(append formals
(list
*nil*)))
(list *nil*))))
fn$inline)))))
(defmacro untouchable-fn-p (sym wrld temp-touchable-fns)
; Warning: Keep this in sync with ev-fncall-w-guard (see the comment about
; untouchable-fn-p in that definition).
`(let ((sym ,sym)
(untouchable-fns ; avoid global-val; wrld can be nil during boot-strap
(getpropc 'untouchable-fns 'global-value nil ,wrld)))
(and (member-eq sym untouchable-fns)
(let ((temp-touchable-fns
(check-vars-not-free (sym untouchable-fns)
,temp-touchable-fns)))
(and (not (eq temp-touchable-fns t))
(not (member-eq sym temp-touchable-fns)))))))
(defun macroexpand1*-cmp (x ctx wrld state-vars)
; We expand x repeatedly as long as it is a macro call, though we may stop
; whenever we like. We rely on a version of translate with to finish the job;
; indeed, it should be the case that when translate11 is called on x with the
; following arguments, it returns the same result regardless of whether
; macroexpand1*-cmp is first called to do some expansion.
; stobjs-out - :stobjs-out
; bindings - ((:stobjs-out . :stobjs-out))
; known-stobjs - t
; flet-alist - nil
; Warning: Keep this in sync with translate11 -- especially the first cond
; branch's test below.
(cond ((or (or (atom x) (eq (car x) 'quote))
(not (true-listp (cdr x)))
(not (symbolp (car x)))
(member-eq (car x) '(mv
mv-let
pargs
translate-and-test
with-local-stobj
stobj-let))
(assoc-eq (car x) *ttag-fns-and-macros*))
(value-cmp x))
((and (getpropc (car x) 'macro-body nil wrld)
(not (and (member-eq (car x) '(pand por pargs plet))
(eq (access state-vars state-vars :parallel-execution-enabled)
t)))
(not (untouchable-fn-p (car x)
wrld
(access state-vars state-vars
:temp-touchable-fns))))
(mv-let
(erp expansion)
(macroexpand1-cmp x ctx wrld state-vars)
(cond
(erp (mv erp expansion))
(t (macroexpand1*-cmp expansion ctx wrld state-vars)))))
(t (value-cmp x))))
(defun find-stobj-out-and-call (lst known-stobjs ctx wrld state-vars)
; Lst is a list of possibly UNTRANSLATED terms!
(cond
((endp lst) nil)
(t
(or (mv-let (erp val)
(macroexpand1*-cmp (car lst) ctx wrld state-vars)
(and (not erp)
(consp val)
(symbolp (car val))
(not (member-eq (car val) *stobjs-out-invalid*))
(let ((stobjs-out (stobjs-out (car val) wrld)))
(and (consp stobjs-out)
(null (cdr stobjs-out))
(stobjp (car stobjs-out) known-stobjs wrld)
(cons (car stobjs-out) (car lst))))))
(find-stobj-out-and-call (cdr lst) known-stobjs ctx wrld
state-vars)))))
(defconst *initial-return-last-table*
'((time$1-raw . time$1)
(with-prover-time-limit1-raw . with-prover-time-limit1)
(with-fast-alist-raw . with-fast-alist)
(with-stolen-alist-raw . with-stolen-alist)
(fast-alist-free-on-exit-raw . fast-alist-free-on-exit)
; Keep the following comment in sync with *initial-return-last-table* and with
; chk-return-last-entry.
; The following could be omitted since return-last gives them each special
; handling: prog2$ and mbe1 are used during the boot-strap before tables are
; supported, and ec-call1 and (in ev-rec-return-last) with-guard-checking gets
; special handling. It is harmless though to include them explicitly, in
; particular at the end so that they do not add time in the expected case of
; finding one of the other entries in the table. If we decide to avoid special
; handling (which we have a right to do, by the way, since users who modify
; return-last-table are supposed to know what they are doing, as a trust tag is
; needed), then we should probably move these entries to the top where they'll
; be seen more quickly.
(progn . prog2$)
(mbe1-raw . mbe1)
(ec-call1-raw . ec-call1)
(with-guard-checking1-raw . with-guard-checking1)))
(defun defined-symbols (sym-name pkg-name known-package-alist wrld acc)
(cond
((endp known-package-alist) acc)
(t (let* ((entry (car known-package-alist))
(pkg-entry-name (package-entry-name entry)))
(cond
((or (equal pkg-name pkg-entry-name)
(package-entry-hidden-p entry))
(defined-symbols sym-name pkg-name (cdr known-package-alist) wrld
acc))
(t (let ((sym (intern$ sym-name pkg-entry-name)))
(defined-symbols sym-name pkg-name
(cdr known-package-alist)
wrld
(if (and (not (member-eq sym acc))
(or (function-symbolp sym wrld)
(getpropc sym 'macro-body nil wrld)))
(cons sym acc)
acc)))))))))
(defun macros-and-functions-in-other-packages (sym wrld)
(let ((kpa (global-val 'known-package-alist wrld)))
(defined-symbols (symbol-name sym) (symbol-package-name sym) kpa wrld
nil)))
(defun match-stobjs (lst1 lst2 acc)
; Lst1 and lst2 are proposed stobjs-out values. So they are lists of symbols,
; presumably each with nil as the only possible duplicate.
(cond ((endp lst1) (mv (null lst2) acc))
((endp lst2) (mv nil nil))
((not (eq (null (car lst1))
(null (car lst2))))
(mv nil nil))
((null (car lst1))
(match-stobjs (cdr lst1) (cdr lst2) acc))
(t (let ((pair (assoc-eq (car lst1) acc)))
(cond ((null pair)
(match-stobjs (cdr lst1)
(cdr lst2)
(if (eq (car lst1) (car lst2))
acc
(acons (car lst1) (car lst2) acc))))
(t (mv (er hard! 'match-stobjs
"Implementation error: expected no duplicates ~
in stobjs-out list!")
nil)))))))
(mutual-recursion
(defun translate11-flet-alist (form fives stobjs-out bindings known-stobjs
flet-alist ctx wrld state-vars)
(cond ((endp fives)
(trans-value flet-alist))
(t
(trans-er-let*
((flet-entry
(translate11-flet-alist1 form (car fives) stobjs-out bindings
known-stobjs flet-alist ctx wrld state-vars))
(flet-entries
(translate11-flet-alist form (cdr fives) stobjs-out bindings
known-stobjs flet-alist ctx wrld state-vars)))
(trans-value (cons flet-entry flet-entries))))))
(defun translate11-flet-alist1 (form five stobjs-out bindings known-stobjs
flet-alist ctx wrld state-vars)
(let* ((name (car five))
(bound-vars (cadr five))
(edcls (fourth five))
(body (fifth five))
(new-stobjs-out
(if (eq stobjs-out t)
t
(genvar name (symbol-name name) nil (strip-cars bindings)))))
(cond
((member-eq name '(flet with-local-stobj throw-raw-ev-fncall
untrace$-fn-general))
; This check may not be necessary, because of our other checks. But the
; symbols above are not covered by our check for the 'predefined property.
(trans-er+ form ctx
"An FLET form has attempted to bind ~x0. However, this ~
symbol must not be FLET-bound."
name))
((getpropc name 'predefined nil wrld)
(trans-er+ form ctx
"An FLET form has attempted to bind ~x0, which is predefined ~
in ACL2 hence may not be FLET-bound."
name))
#-acl2-loop-only
((or (special-form-or-op-p name)
(and (or (macro-function name)
(fboundp name))
(not (getpropc name 'macro-body nil wrld))
(eq (getpropc name 'formals t wrld) t)))
(prog2$ (er hard ctx
"It is illegal to FLET-bind ~x0, because it is defined as a ~
~s1 in raw Lisp~#2~[~/ but not in the ACL2 loop~]."
name
(cond ((special-form-or-op-p name) "special operator")
((macro-function name) "macro")
(t "function"))
(if (special-form-or-op-p name) 0 1))
(mv t
nil ; empty "message": see the Essay on Context-message Pairs
nil)))
(t
(trans-er-let*
((tdcls (translate11-lst (translate-dcl-lst edcls wrld)
nil ;;; '(nil ... nil)
bindings
known-stobjs
"in a DECLARE form in an FLET binding"
flet-alist form ctx wrld state-vars))
(tbody (translate11 body new-stobjs-out
(if (eq stobjs-out t)
bindings
(translate-bind new-stobjs-out new-stobjs-out
bindings))
known-stobjs
flet-alist form ctx wrld state-vars)))
(let ((used-vars (union-eq (all-vars tbody)
(all-vars1-lst tdcls nil)))
(ignore-vars (ignore-vars edcls))
(ignorable-vars (ignorable-vars edcls))
(stobjs-out (translate-deref new-stobjs-out bindings)))
(cond
; We skip the following case, where stobjs-out is not yet bound to a consp and
; some formal is a stobj, in favor of the next, which removes the stobjs-bound
; criterion. But we leave this case here as a comment in case we ultimately
; find a way to eliminate the more sweeping case after it. Note:
; unknown-binding-msg has been replaced by unknown-binding-msg-er, so a bit of
; rework will be needed if this case is to be reinstalled. Also note that we
; will need to bind stobjs-bound to
; ((and (not (eq stobjs-out t))
; (collect-non-x ; stobjs-bound
; nil
; (compute-stobj-flags bound-vars
; known-stobjs
; wrld))
; (not (consp stobjs-out)))
; (trans-er ctx
; "~@0"
; (unknown-binding-msg
; (collect-non-x ; stobjs-bound
; nil
; (compute-stobj-flags bound-vars
; known-stobjs
; wrld))
; (msg "the formals of an FLET binding for function ~x0"
; name)
; "the body of this FLET binding"
; "that body")))
((and (not (eq stobjs-out t))
(not (consp stobjs-out)))
; Warning: Before changing this case, see the comment above about the
; commented-out preceding case.
; We might be able to fix this case by using the :UNKNOWN-BINDINGS trick
; employed by unknown-binding-msg-er; see that function and search for
; :UNKNOWN-BINDINGS, to see how that works.
(trans-er+ form ctx
"We are unable to determine the output signature for an ~
FLET-binding of ~x0. You may be able to remedy the ~
situation by rearranging the order of the branches of ~
an IF and/or rearranging the order of the presentation ~
of a clique of mutually recursive functions. If you ~
believe you have found an example on which you believe ~
ACL2 should be able to complete this translation, ~
please send such an example to the ACL2 implementors."
name))
((intersectp-eq used-vars ignore-vars)
(trans-er+ form ctx
"Contrary to the declaration that ~#0~[it is~/they ~
are~] IGNOREd, the variable~#0~[ ~&0 is~/s ~&0 are~] ~
used in the body of an FLET-binding of ~x1, whose ~
formal parameter list includes ~&2."
(intersection-eq used-vars ignore-vars)
name
bound-vars))
(t
(let* ((diff (set-difference-eq
bound-vars
(union-eq used-vars
(union-eq ignorable-vars
ignore-vars))))
(ignore-ok
(if (null diff)
t
(cdr (assoc-eq
:ignore-ok
(table-alist 'acl2-defaults-table wrld))))))
(cond
((null ignore-ok)
(trans-er+ form ctx
"The variable~#0~[ ~&0 is~/s ~&0 are~] not used in ~
the body of the LET expression that binds ~&1. ~
But ~&0 ~#0~[is~/are~] not declared IGNOREd or ~
IGNORABLE. See :DOC set-ignore-ok."
diff
bound-vars))
(t
(prog2$
(cond
((eq ignore-ok :warn)
(warning$-cw1 ctx "Ignored-variables"
"The variable~#0~[ ~&0 is~/s ~&0 are~] not ~
used in the body of an FLET-binding of ~x1 ~
that binds ~&2. But ~&0 ~#0~[is~/are~] not ~
declared IGNOREd or IGNORABLE. See :DOC ~
set-ignore-ok."
diff
name
bound-vars))
(t nil))
(let* ((tbody
(cond
(tdcls
(let ((guardian (dcl-guardian tdcls)))
(cond ((equal guardian *t*)
; See the comment about THE in dcl-guardian.
tbody)
(t
(prog2$-call guardian tbody)))))
(t tbody)))
(body-vars (all-vars tbody))
(extra-body-vars (set-difference-eq
body-vars
bound-vars)))
(cond
(extra-body-vars
; Warning: Do not eliminate this error without thinking about the possible role
; of variables that are declared special in Common Lisp. There might not be
; such an issue, but we haven't thought about it.
(trans-er+ form ctx
"The variable~#0~[ ~&0 is~/s ~&0 are~] used in ~
the body of an FLET-binding of ~x1 that only ~
binds ~&2. In ACL2, every variable occurring ~
in the body of an FLET-binding, (fn vars ~
body), must be in vars, i.e., a formal ~
parameter of that binding. The ACL2 ~
implementors may be able to remove this ~
restriction, with some effort, if you ask."
extra-body-vars
name
bound-vars))
(t
(trans-value
(list* name
(make-lambda bound-vars tbody)
stobjs-out)
(if (eq new-stobjs-out t)
bindings
(delete-assoc-eq new-stobjs-out
bindings))))))))))))))))))
(defun translate11-flet (x stobjs-out bindings known-stobjs flet-alist
ctx wrld state-vars)
(cond
((< (length x) 3)
(trans-er ctx
"An FLET form must have the form (flet bindings body) or (flet ~
bindings declare-form1 ... declare-formk body), but ~x0 does ~
not have this form. See :DOC flet."
x))
(t
(let ((defs (cadr x))
(declare-form-list (butlast (cddr x) 1))
(body (car (last x))))
(mv-let
(erp fives)
(chk-defuns-tuples-cmp defs t ctx wrld)
(let ((names (and (not erp)
(strip-cars fives))))
(mv-let
(erp msg)
(if erp ; erp is a ctx and fives is a msg
(mv erp fives)
; Note that we do not need to call chk-xargs-keywords, since
; *acceptable-dcls-alist* guarantees that xargs is illegal.
(er-progn-cmp
(chk-no-duplicate-defuns-cmp names ctx)
(chk-flet-declare-form-list names declare-form-list ctx)))
(cond
(erp
; Erp is a context that we are ignoring in the message below. Probably it is
; ctx anyhow, but if not, there isn't an obvious problem with ignoring it.
(trans-er ctx
"~@0~|~%The above error indicates a problem with the ~
form ~p1."
msg x))
((first-assoc-eq names (table-alist 'return-last-table wrld))
; What horrors may lie ahead, for example, with
; (flet ((ec-call1-raw ....)) (ec-call ...))? The problem is that ec-call
; expands to a call of ec-call1-raw, but only through several steps that the
; user might not notice, and only in raw Lisp. Of course it's doubtful that
; someone would flet-bound ec-call1-raw; but it isn't hard to imagine a binding
; whose error isn't so obvious. Of course, someday a serious system hacker
; might want to flet ec-call1-raw; in that case, with a trust tag that person
; can also edit the code here!
(trans-er ctx
"It is illegal for FLET to bind a symbol that is given ~
special handling by ~x0. The FLET-binding~#1~[ is~/s ~
are~] thus illegal for ~&1. See :DOC ~
return-last-table."
'return-last
(intersection-eq
names
(strip-cars (table-alist 'return-last-table wrld)))))
(t
(trans-er-let*
((flet-alist (translate11-flet-alist x fives stobjs-out bindings
known-stobjs flet-alist ctx wrld
state-vars)))
(translate11 body
stobjs-out bindings known-stobjs flet-alist x
ctx wrld state-vars)))))))))))
(defun translate-stobj-calls (calls len bindings known-stobjs flet-alist
cform ctx wrld state-vars)
; Calls is a list of applications of stobj accessor or updater calls, as
; returned by parse-stobj-let1 and vetted by chk-stobj-let. We translate those
; applications without going through translate11, because in the case of
; updater calls, the calls update stobj fields, which is illegal except in
; proper support of a stobj-let form.
; We return a usual context-message triple: either (mv ctx erp bindings) or (mv
; nil translated-calls bindings). The only syntax changed by translation is
; in the case of an index for an array update, where len is the length of a
; call for such a case (3 for accessor calls, 4 for updater calls).
(cond ((endp calls) (trans-value nil))
(t (trans-er-let*
((rest (translate-stobj-calls (cdr calls) len bindings
known-stobjs flet-alist
cform ctx wrld state-vars)))
(let ((call (car calls)))
(cond
((eql (length call) len) ; e.g. (fldi index parent-st)
(trans-er-let*
((index
; We know from parse-stobj-let1 that the index is either a symbol, a natural
; number, or the quotation of a natural number. But in case we relax that
; restriction someday, and because a symbol can be a variable or a constant, we
; do not rely on that fact here.
(translate11 (cadr call) '(nil) bindings known-stobjs
flet-alist cform ctx wrld state-vars)))
(trans-value (cons (list* (car call) index (cddr call))
rest))))
(t (trans-value (cons call rest)))))))))
(defun translate11-let (x tbody0 targs stobjs-out bindings known-stobjs
flet-alist ctx wrld state-vars)
; Warning: If the final form of a translated let is changed,
; be sure to reconsider translated-acl2-unwind-protectp.
; X is a cons whose car is 'LET. If tbody0 is nil, as is the case for a
; user-supplied LET expression, then this function is nothing more than the
; restriction of function translate11 to that case. Otherwise, the LET
; expression arises from a STOBJ-LET expression, and we make the following
; exceptions: the bindings are allowed to bind more than one stobj; we suppress
; the check that a stobj bound in the LET bindings must be returned by the LET;
; tbody0 is used as the translation of the body of the LET; and targs, if
; non-nil, is used as the translation of the strip-cadrs of the bindings of the
; let, as these are assumed already to be translated.
; In translating LET and MV-LET we generate "open lambdas" as function
; symbols. The main reason we did this was to prevent translate from
; exploding in our faces when presented with typical DEFUNs (e.g., our
; own code). Note that such LAMBDAs can be expanded away. However,
; expansion affects the guards. Consider (let ((x (car 3))) t), which
; expands to ((lambda (x) t) (car 3)).
(cond
((not (and (>= (length x) 3)
(doublet-listp (cadr x))))
(trans-er ctx
"The proper form of a let is (let bindings dcl ... dcl body), ~
where bindings has the form ((v1 term) ... (vn term)) and the ~
vi are distinct variables, not constants, and do not begin ~
with an asterisk, but ~x0 does not have this form."
x))
((not (arglistp (strip-cars (cadr x))))
(mv-let (culprit explan)
(find-first-bad-arg (strip-cars (cadr x)))
(trans-er ctx
"The form ~x0 is an improper let expression because it ~
attempts to bind ~x1, which ~@2."
x culprit explan)))
(t
(let* ((bound-vars (strip-cars (cadr x)))
(multiple-bindings-p (consp (cdr bound-vars)))
(stobj-flags
(and (not (eq stobjs-out t))
(compute-stobj-flags bound-vars known-stobjs wrld)))
(stobjs-bound (and stobj-flags ; optimization
(collect-non-x nil stobj-flags))))
(cond
((and stobj-flags ; optimization (often false)
multiple-bindings-p
(null tbody0)
(non-trivial-stobj-binding stobj-flags (cadr x)))
(trans-er ctx
"A single-threaded object name, such as ~x0, may be ~
LET-bound to other than itself only when it is the only ~
binding in the LET, but ~x1 binds more than one variable."
(non-trivial-stobj-binding stobj-flags (cadr x))
x))
(t (mv-let
(erp edcls)
(collect-declarations-cmp (butlast (cddr x) 1)
bound-vars 'let ctx wrld)
(cond
(erp (mv erp edcls bindings))
(t
(trans-er-let*
((value-forms
(cond (targs (trans-value targs))
((and stobjs-bound ; hence (not (eq stobjs-out t))
(not multiple-bindings-p))
; In this case, we know that the only variable of the LET is a stobj name.
; Note that (list (car bound-vars)) is thus a stobjs-out specifying
; a single result consisting of that stobj.
(trans-er-let*
((val (translate11 (cadr (car (cadr x)))
(list (car bound-vars))
bindings known-stobjs flet-alist
x ctx wrld state-vars)))
(trans-value (list val))))
(t (translate11-lst (strip-cadrs (cadr x))
(if (eq stobjs-out t)
t
stobj-flags)
bindings known-stobjs
"in a LET binding (or LAMBDA ~
application)"
flet-alist x ctx wrld
state-vars))))
(tbody
(if tbody0
(trans-value tbody0)
(translate11 (car (last x)) stobjs-out bindings known-stobjs
flet-alist x ctx wrld state-vars)))
(tdcls (translate11-lst
(translate-dcl-lst edcls wrld)
(if (eq stobjs-out t)
t
nil) ;;; '(nil ... nil)
bindings known-stobjs
"in a DECLARE form in a LET (or LAMBDA)"
flet-alist x ctx wrld state-vars)))
(let ((used-vars (union-eq (all-vars tbody)
(all-vars1-lst tdcls nil)))
(ignore-vars (ignore-vars edcls))
(ignorable-vars (ignorable-vars edcls))
(stobjs-out (translate-deref stobjs-out bindings)))
(cond
((and stobjs-bound ; hence (not (eq stobjs-out t))
(not (consp stobjs-out)))
(unknown-binding-msg-er x ctx stobjs-bound
"a LET" "the LET" "the LET"))
((and
(null tbody0) ; else skip this check
stobjs-bound ; hence (not (eq stobjs-out t))
(not multiple-bindings-p) ; possible stobj mod in bindings
(not (eq (caar (cadr x))
(cadar (cadr x)))) ; stobj mod in bindings
(assert$ (null (cdr stobjs-bound))
(not (member-eq (car stobjs-bound) stobjs-out))))
(let ((stobjs-returned (collect-non-x nil stobjs-out)))
(trans-er+ x ctx
"The single-threaded object ~x0 has been bound ~
in a LET. It is a requirement that this ~
object be among the outputs of the LET, but ~
it is not. The LET returns ~#1~[no ~
single-threaded objects~/the single-threaded ~
object ~&2~/the single-threaded objects ~&2~]."
(car stobjs-bound)
(zero-one-or-more stobjs-returned)
stobjs-returned)))
((intersectp-eq used-vars ignore-vars)
(trans-er+ x ctx
"Contrary to the declaration that ~#0~[it ~
is~/they are~] IGNOREd, the variable~#0~[ ~&0 ~
is~/s ~&0 are~] used in the body of the LET ~
expression that binds ~&1."
(intersection-eq used-vars ignore-vars)
bound-vars))
(t
(let* ((ignore-vars (augment-ignore-vars bound-vars
value-forms
ignore-vars))
(diff (set-difference-eq
bound-vars
(union-eq used-vars
(union-eq ignorable-vars
ignore-vars))))
(ignore-ok
(if (null diff)
t
(cdr (assoc-eq
:ignore-ok
(table-alist 'acl2-defaults-table wrld))))))
(cond
((null ignore-ok)
(trans-er+ x ctx
"The variable~#0~[ ~&0 is~/s ~&0 are~] not ~
used in the body of the LET expression that ~
binds ~&1. But ~&0 ~#0~[is~/are~] not ~
declared IGNOREd or IGNORABLE. See :DOC ~
set-ignore-ok."
diff
bound-vars))
(t
(prog2$
(cond
((eq ignore-ok :warn)
(warning$-cw1 ctx "Ignored-variables"
"The variable~#0~[ ~&0 is~/s ~&0 are~] ~
not used in the body of the LET ~
expression that binds ~&1. But ~&0 ~
~#0~[is~/are~] not declared IGNOREd ~
or IGNORABLE. See :DOC set-ignore-ok."
diff
bound-vars))
(t nil))
(let* ((tbody
(cond
(tdcls
(let ((guardian (dcl-guardian tdcls)))
(cond ((equal guardian *t*)
; See the comment about THE in dcl-guardian.
tbody)
(t (prog2$-call guardian tbody)))))
(t tbody)))
(body-vars (all-vars tbody))
(extra-body-vars (set-difference-eq
body-vars
bound-vars)))
(trans-value
(cons (make-lambda
(append bound-vars extra-body-vars)
tbody)
; See the analogous line in the handling of MV-LET for an explanation
; of hide-ignored-actuals.
(append
(hide-ignored-actuals
ignore-vars bound-vars value-forms)
extra-body-vars)))))))))))))))))))))
(defun translate11-let* (x tbody targs stobjs-out bindings known-stobjs
flet-alist ctx wrld state-vars)
; This function is analogous to translate11-let, but it is for let* instead of
; let and here we assume no declarations. Thus, x is (let* ((var1 arg1) (vark
; ... argk)) body), where targs is the list of translations of arg1, ..., argk
; and tbody is the translation of body. Note that unlike translate11-let, here
; tbody and targs are not optional.
(cond ((endp targs) (trans-value tbody))
(t (case-match x
(('let* (pair . pairs) y)
(let ((body0 `(let* ,pairs ,y)))
(trans-er-let*
((tbody0 (translate11-let*
body0 tbody (cdr targs) stobjs-out bindings
known-stobjs flet-alist ctx wrld state-vars)))
(translate11-let
`(let (,pair) ,body0)
tbody0 (list (car targs)) stobjs-out bindings known-stobjs
flet-alist ctx wrld state-vars))))
(& (trans-er+ x ctx
"Implementation error: Unexpected form for ~x0."
'translate11-let*))))))
(defun translate11-mv-let (x tbody0 stobjs-out bindings known-stobjs
local-stobj local-stobj-creator flet-alist
ctx wrld state-vars)
; X is a cons whose car is 'MV-LET. This function is nothing more than the
; restriction of function translate11 to that case, with two exceptional cases:
; if tbody0 is not nil, then it is to be used as the translation of the body of
; the MV-LET, and we suppress the check that a stobj bound by MV-LET must be
; returned by the MV-LET; and if local-stobj is not nil, then we are in the
; process of translating (with-local-stobj local-stobj x local-stobj-creator),
; where we know that local-stobj-creator is the creator function for the stobj
; local-stobj.
; Warning: If the final form of a translated mv-let is changed, be sure to
; reconsider translated-acl2-unwind-protectp.
(cond
((not (and (true-listp (cadr x))
(> (length (cadr x)) 1)))
(trans-er ctx
"The first form in an MV-LET expression must be a true list of ~
length 2 or more. ~x0 does not meet these conditions."
(cadr x)))
((not (arglistp (cadr x)))
(mv-let (culprit explan)
(find-first-bad-arg (cadr x))
(trans-er ctx
"The first form in an MV-LET expression must be a list ~
of distinct variables of length 2 or more, but ~x0 ~
does not meet these conditions. The element ~x1 ~@2."
x culprit explan)))
((not (>= (length x) 4))
(trans-er ctx
"An MV-LET expression has the form (mv-let (var var var*) form ~
dcl* form) but ~x0 does not have sufficient length to meet ~
this condition."
x))
(t
(let* ((bound-vars (cadr x))
(producer-known-stobjs (if (and local-stobj
(not (eq known-stobjs t)))
(add-to-set-eq local-stobj known-stobjs)
known-stobjs))
(bound-stobjs-out (if (and (eq stobjs-out t)
; If local-stobj is true (hence we are being called by translate in the case of
; a with-local-stobj term), then we want to do syntax-checking that we wouldn't
; normally do with stobjs-out = t, because we don't have a spec for
; with-local-stobj in the case that this syntax-checking is turned off.
(not local-stobj))
t
(compute-stobj-flags bound-vars
producer-known-stobjs
wrld)))
(stobjs-bound0 (if (eq bound-stobjs-out t)
nil
(collect-non-x nil bound-stobjs-out)))
(stobjs-bound
; Stobjs-bound is perhaps an odd name for this variable, since if there is a
; local stobj, then literally speaking it is bound -- though we do not consider
; it so here. Really, stobjs-bound is the list of stobj names that we require
; to come out of the mv-let.
(if local-stobj
(remove1-eq local-stobj stobjs-bound0)
stobjs-bound0)))
(mv-let
(erp edcls)
(collect-declarations-cmp (butlast (cdddr x) 1)
(cadr x) 'mv-let ctx wrld)
(cond
(erp ; erp is a ctx and edcls is a msg
(trans-er erp "~@0" edcls))
(t
(trans-er-let*
((tcall (translate11 (caddr x)
bound-stobjs-out
bindings
producer-known-stobjs
flet-alist x ctx wrld state-vars))
(tdcls (translate11-lst (translate-dcl-lst edcls wrld)
(if (eq stobjs-out t)
t
nil) ;;; '(nil ... nil)
bindings known-stobjs
"in a DECLARE form in an MV-LET"
flet-alist x ctx wrld state-vars))
(tbody (if tbody0
(trans-value tbody0)
(translate11 (car (last x))
stobjs-out bindings known-stobjs flet-alist x
ctx wrld state-vars))))
(let ((used-vars (union-eq (all-vars tbody)
(all-vars1-lst tdcls nil)))
(ignore-vars (if local-stobj
(cons local-stobj (ignore-vars edcls))
(ignore-vars edcls)))
(ignorable-vars (ignorable-vars edcls))
(stobjs-out (translate-deref stobjs-out bindings)))
(cond
((and local-stobj
(not (member-eq local-stobj ignore-vars)))
(trans-er+ x ctx
"A local-stobj must be declared ignored, but ~x0 is ~
not. See :DOC with-local-stobj."
local-stobj))
((and stobjs-bound
(not (consp stobjs-out)))
(unknown-binding-msg-er x ctx stobjs-bound
"an MV-LET" "the MV-LET" "the MV-LET"))
((and stobjs-bound
(null tbody0) ; else skip this check
(not (subsetp stobjs-bound
(collect-non-x nil stobjs-out))))
(let ((stobjs-returned (collect-non-x nil stobjs-out)))
(trans-er+ x ctx
"The single-threaded object~#0~[ ~&0 has~/s ~&0 ~
have~] been bound in an MV-LET. It is a ~
requirement that ~#0~[this object~/these ~
objects~] be among the outputs of the MV-LET, but ~
~#0~[it is~/they are~] not. The MV-LET returns ~
~#1~[no single-threaded objects~/the ~
single-threaded object ~&2~/the single-threaded ~
objects ~&2~]."
(set-difference-eq stobjs-bound stobjs-returned)
(zero-one-or-more stobjs-returned)
stobjs-returned)))
((intersectp-eq used-vars ignore-vars)
(trans-er+ x ctx
"Contrary to the declaration that ~#0~[it is~/they ~
are~] IGNOREd, the variable~#0~[ ~&0 is~/s ~&0 ~
are~] used in the MV-LET expression that binds ~&1."
(intersection-eq used-vars ignore-vars)
bound-vars))
(t
(let* ((diff (set-difference-eq
bound-vars
(union-eq used-vars
(union-eq ignorable-vars
ignore-vars))))
(ignore-ok
(if (null diff)
t
(cdr (assoc-eq
:ignore-ok
(table-alist 'acl2-defaults-table wrld))))))
(cond
((null ignore-ok)
(trans-er+ x ctx
"The variable~#0~[ ~&0 is~/s ~&0 are~] not used ~
in the body of the MV-LET expression that binds ~
~&1. But ~&0 ~#0~[is~/are~] not declared ~
IGNOREd or IGNORABLE. See :DOC set-ignore-ok."
diff
bound-vars))
(t
(prog2$
(cond
((eq ignore-ok :warn)
(warning$-cw1 ctx "Ignored-variables"
"The variable~#0~[ ~&0 is~/s ~&0 are~] not ~
used in the body of the MV-LET expression ~
that binds ~&1. But ~&0 ~#0~[is~/are~] ~
not declared IGNOREd or IGNORABLE. See ~
:DOC set-ignore-ok."
diff
bound-vars))
(t nil))
(let* ((tbody
(cond
(tdcls
(let ((guardian (dcl-guardian tdcls)))
(cond ((equal guardian *t*)
; See the comment about THE in dcl-guardian.
tbody)
(t (prog2$-call guardian tbody)))))
(t tbody)))
(body-vars (all-vars tbody))
(extra-body-vars
(set-difference-eq body-vars (cadr x)))
(vars (all-vars1 tcall extra-body-vars))
(mv-var (genvar 'genvar "MV" nil vars)))
(trans-value
(list* (make-lambda
(cons mv-var extra-body-vars)
(cons (make-lambda
(append (cadr x)
extra-body-vars)
tbody)
; When the rewriter encounters ((lambda (... xi ...) body) ... actuali
; ...), where xi is ignored and actuali is in the corresponding
; position, we'd like to tell the rewriter not to bother rewriting
; actuali. We do this by wrapping a hide around it. This typically
; only happens with MV-LET expressions, though we do it for LET
; expressions as well.
(append (hide-ignored-actuals
ignore-vars
(cadr x)
(mv-nth-list
mv-var 0
(length (cadr x))))
extra-body-vars)))
(if local-stobj
(let ((tcall-vars
(remove1-eq local-stobj
(all-vars tcall))))
(cons (make-lambda
(cons local-stobj tcall-vars)
tcall)
(cons (list local-stobj-creator)
tcall-vars)))
tcall)
extra-body-vars))))))))))))))))))
(defun translate11-wormhole-eval (x y z bindings flet-alist ctx wrld
state-vars)
; The three arguments of wormhole-eval are x y and z. Here, z has been
; translated but x and y have not been. We want to insure that x and y are
; well-formed quoted forms of a certain shape. We don't actually care about z
; and ignore it! We translated it just for sanity's sake: no point in allowing
; the user ever to write an ill-formed term in a well-formed term.
(declare (ignore z))
(cond
((not (and (true-listp x)
(equal (length x) 2)
(equal (car x) 'quote)))
(trans-er ctx
"The first argument to wormhole-eval must be a QUOTE expression ~
containing the name of the wormhole in question and ~x0 is not ~
quoted."
x))
((not (and (true-listp y)
(equal (length y) 2)
(equal (car y) 'quote)))
(trans-er ctx
"The second argument to wormhole-eval must be a QUOTE ~
expression containing a LAMBDA expression and ~x0 is not ~
quoted."
y))
((not (and (true-listp (cadr y))
(equal (length (cadr y)) 3)
(equal (car (cadr y)) 'lambda)
(true-listp (cadr (cadr y)))
(<= (length (cadr (cadr y))) 1)))
(trans-er ctx
"The second argument to wormhole-eval must be a QUOTE ~
expression containing a LAMBDA expression with at most one ~
formal, e.g., the second argument must be either of the form ~
'(LAMBDA () body) or of the form (LAMBDA (v) body). But ~x0 ~
is of neither form."
y))
(t (let ((lambda-formals (cadr (cadr y)))
(lambda-body (caddr (cadr y))))
(cond
((not (arglistp lambda-formals))
(mv-let (culprit explan)
(find-first-bad-arg lambda-formals)
(trans-er ctx
"The quoted lambda expression, ~x0, supplied to ~
wormhole-eval is improper because it binds ~x1, ~
which ~@2."
y culprit explan)))
(t
(let ((whs (car lambda-formals)))
; Whs is either nil or the legal variable name bound by the lambda.
(mv-let
(body-erp tlambda-body body-bindings)
(translate11 lambda-body
'(nil) ; stobjs-out
nil
'(state) ; known-stobjs
flet-alist
x ctx wrld state-vars)
(declare (ignore body-bindings))
(cond
(body-erp (mv body-erp tlambda-body bindings))
((and whs
(not (member-eq whs (all-vars tlambda-body))))
(trans-er ctx
"The form ~x0 is an improper quoted lambda ~
expression for wormhole-eval because it binds but ~
does not use ~x1, which is understood to be the ~
name you're giving to the current value of the ~
wormhole status for the wormhole in question."
y whs))
(t
; We replace the second argument of wormhole-eval by a possibly different
; quoted object. But that is ok because wormhole-eval returns nil no matter
; what objects we pass it. We also compute a form with the same free vars as
; the lambda expression and stuff it in as the third argument, throwing away
; whatever the user supplied.
(trans-value
(fcons-term* 'wormhole-eval
x
(list 'quote
(if whs
`(lambda (,whs) ,tlambda-body)
`(lambda () ,tlambda-body)))
(name-dropper
(if whs
(remove1-eq whs (all-vars tlambda-body))
(all-vars tlambda-body)))))))))))))))
(defun translate11-call-1 (form fn args bindings
known-stobjs msg flet-alist ctx wrld state-vars
stobjs-in-call flg)
; Here we carve out some code from translate11-call (for the case that both
; stobjs-out and stobjs-out2 are conses), so that we can invoke it twice
; without writing the code twice. Msg is as described in translate11-lst.
(trans-er-let*
; We handle the special translation of wormhole-eval both here, when stobjs-out
; is known, and below, where it is not. Of course, stobjs-out2 (for
; wormhole-eval) is fixed: (nil). Keep this code in sync with that below.
; The odd treatment of wormhole-eval's first two arguments below is due to the
; fact that we actually don't want to translate them. We will insist that they
; actually be quoted forms, not macro calls that expand to quoted forms. So we
; put bogus nils in here and then swap back the untranslated args below.
((targs (trans-or
(translate11-lst (if (eq fn 'wormhole-eval)
(list *nil* *nil* (nth 2 args))
args)
stobjs-in-call
bindings
known-stobjs
msg flet-alist form ctx wrld
state-vars)
; Just below, we allow a stobj recognizer to be applied to an ordinary object,
; even when translating for execution (function bodies or top-level loop).
; This is an exception to the the usual rule, which requires stobj functions to
; respect their stobjs-in arguments when translating for execution. We take
; advantage of this exception in our support for stobj fields of stobjs. For
; example, consider the following two events.
; (defstobj sub1 sub1-fld1)
; (defstobj top1 (top1-fld :type sub1))
; The axiomatic definition generated in the second defstobj for function
; top1-fldp is as follows.
; (defun top1-fldp (x)
; (declare (xargs :guard t :verify-guards t)
; (ignorable x))
; (sub1p x))
; At this point, x is an ordinary object; only at the conclusion of a defstobj
; event do we put stobjs-in and stobjs-out properties for the new functions.
; By allowing sub1p to be applied to an ordinary object, we allow the
; definition to be accepted without any (other) special treatment.
(and (eq flg :failed)
(stobj-recognizer-p fn wrld))
(translate11-lst args
'(nil)
bindings
known-stobjs
msg flet-alist form ctx wrld
state-vars)
(msg " Observe that while it is permitted to apply ~x0 to an ~
ordinary object, this stobj recognizer must not be applied ~
to the wrong stobj."
fn))))
(cond ((eq fn 'wormhole-eval)
(translate11-wormhole-eval (car args)
(cadr args)
(caddr targs)
bindings flet-alist ctx wrld
state-vars))
(t (trans-value (fcons-term fn targs))))))
(defun translate11-call (form fn args stobjs-out stobjs-out2 bindings
known-stobjs msg flet-alist ctx wrld state-vars)
; We are translating (for execution, not merely theorems) a call of fn on args.
; Stobjs-out and stobjs-out2 are respectively the expected stobjs-out from the
; present context and the stobjs-out from fn, already dereferenced. Note that
; each of these is either a legitimate (true-list) stobjs-out or else a symbol
; representing an unknown stobjs-out.
; Msg is as described in translate11-lst.
; Note that for this call to be suitable, args has to satisfy the stobjs
; discipline of passing a stobj name to a stobjs-in position. We take
; advantage of this requirement: stobjs-in-out (called below) invokes
; stobjs-in-out1, which checks stobjp of each arg in args. For that reason, it
; is important that we do not call translate11-call on arbitrary lambdas, where
; an arg might not be a stobj name, e.g., ((LAMBDA (ST) ST) (UPDATE-FLD '2
; ST)).
; We are tempted to enforce the call-arguments-limit imposed by Common Lisp.
; According to the HyperSpec, this constant has an implementation-dependent
; value that is "An integer not smaller than 50", and is "The upper exclusive
; bound on the number of arguments that may be passed to a function."
; The limits vary considerably, and are as follows in increasing order.
; GCL Version 2.6.12
; 64
; LispWorks Version 7.0.0
; 2047
; Allegro CL Enterprise Edition 8.0
; 16384
; Clozure Common Lisp Version 1.12-dev-r16695M-trunk
; 65536
; CMU Common Lisp snapshot-2016-01 (21A Unicode)
; 536870911
; SBCL 1.3.0
; 4611686018427387903
; We have decided not to impose this limit ourselves, because for example, it
; would be sad if a large existing proof development done using, say, CCL, were
; to start failing because we impose a limit of 50 or 64. Instead, we view
; this limit as a resource limitation that is implementation-dependent, in the
; same spirit as how one could get a stack overflow or memory exhaustion on one
; platform but not another.
(mv-let
(flg stobjs-in-call stobjs-out-call)
(stobjs-in-out fn args stobjs-out2 known-stobjs wrld)
; Fn can be viewed as mapping stobjs-in-call to stobjs-out-call; see
; stobjs-in-out.
; If flg is :failed, then stobjs-in-call and stobjs-out-call are just the
; stobjs-in and (dereferenced) stobjs-out of fn. In that case we proceed
; happily without any mapping of input stobjs, expecting the usual
; input-mismatch error from a failed call of translate11-lst.
(cond
((consp stobjs-out)
(cond
((consp stobjs-out-call) ; equivalently: (consp stobjs-out2)
(cond
((equal stobjs-out stobjs-out-call)
; Then we translate where we view fn as mapping stobjs-in-call to
; stobjs-out-call; see stobjs-in-out.
(translate11-call-1 form fn args bindings
known-stobjs msg flet-alist ctx wrld state-vars
stobjs-in-call flg))
(t
; We are definitely in an error case: stobjs-in-out adjusted the stobjs-in of
; fn to match args, and then adjusted stobjs-out accordingly to yield
; stobjs-out-call, which disagrees with the expected stobjs-out. But in order
; to produce a helpful error message, we want to determine whether the problem
; is with input stobjs or output stobjs. Consider the following example.
; (defstobj st1 fld1)
; (defstobj st2 fld2 :congruent-to st1)
; (defun f (st2)
; (declare (xargs :stobjs st2))
; (let ((st2 (update-fld1 st2 3)))
; st2))
; The definition of f is ill-formed because the arguments to update-fld1 are in
; the wrong order. We can catch this and other input problems simply by
; attempting to translate the arguments, using the modified stobjs-in,
; stobjs-in-call. But consider the normal case, where no congruent stobjs are
; involved, and suppose that there are errors both in the arguments and in the
; stobjs-out. Traditionally we prefer to blame the stobjs-out in that case.
; Our solution is to check the stobjs-out and only report a stobjs-in problem
; when the stobjs-out match up when viewed through the lens of congruent
; stobjs.
(mv-let (flg2 alist2)
(match-stobjs stobjs-out stobjs-out2 nil)
(cond
((and flg2 alist2)
; Note that if congruent stobjs aren't involved, alist2 will be nil. So this
; case only applies when congruent stobjs are involved. Otherwise we report
; (in the error further below) that the function call returns a result of the
; wrong shape (as we probably always did before congruent stobjs were
; introduced).
; To see why we insist on alist2 being non-nil in the test just above even when
; congruent stobjs are involved, consider another example (thanks to Sol
; Swords), which assumes the same two defstobj events as above:
; (defun foo (st1 st2)
; (declare (xargs :stobjs (st1 st2)))
; (let ((st1 (update-fld1 0 st2)))
; (mv st1 st2)))
; In this case alist2 is nil, so the call below of translate11-call-1 completes
; without error. Rather than come up with a custom error message for that
; case, we prefer simply to report (in the error further below): "This function
; call returns a result of shape ST2 (after accounting for the replacement of
; some input stobjs by congruent stobjs) where a result of shape ST1 is
; required."
(trans-er-let*
((tform (translate11-call-1 form fn args bindings
known-stobjs msg flet-alist
ctx wrld state-vars
(apply-symbol-alist
alist2
stobjs-in-call
nil)
flg)))
; We fully expect an error from the call above of translate11-call-1, since the
; application of alist2 to the expected stobjs-in-call should cause a stobj
; mismatch. Perhaps the following error should suggest contacting the
; implementors. But since the only issue here is how to report an error -- we
; definitely are in an error case -- we don't bother with that suggestion.
(trans-er+ form ctx
"It is illegal to invoke ~@0 here because of a ~
signature mismatch involving congruent stobjs. ~
ACL2 was unable to determine the exact nature of ~
the mismatch."
(if (consp fn) msg (msg "~x0" fn)))))
(t
(trans-er+ form ctx
"It is illegal to invoke ~@0 here because of a ~
signature mismatch. This function call returns a ~
result of shape ~x1~@2 where a result of shape ~x3 ~
is required.~@4"
(if (consp fn) msg (msg "~x0" fn))
(prettyify-stobjs-out stobjs-out-call)
(if (and flg (not (eq flg :failed)))
" (after accounting for the replacement of some ~
input stobjs by congruent stobjs)"
"")
(prettyify-stobjs-out stobjs-out)
(let* ((missing (missing-known-stobjs stobjs-out
stobjs-out2
known-stobjs
nil))
(missing-user-stobjs (set-difference-eq missing
'(nil state)))
(state-string
" This error may occur when the ACL2 state ~
is not available in the current context, ~
for example as a formal parameter of a ~
defun.")
(user-stobj-string
" This error may~@0 occur when ~&1 ~
~#1~[is~/are~] not declared to be ~#1~[a ~
stobj~/stobjs~] in the current context."))
(cond
((and missing-user-stobjs
(member-eq 'state missing))
(msg "~@0~@1"
state-string
(msg user-stobj-string
" also"
missing-user-stobjs)))
(missing-user-stobjs
(msg user-stobj-string
""
missing-user-stobjs))
(missing state-string)
(t ""))))))))))
(t ; (symbolp stobjs-out2); equivalently, (symbolp stobjs-out-call)
; If flg is a non-empty alist, then the expected stobjs-out is not the
; stobjs-out to be returned by fn on arguments satisfying its declared
; signature. For example, suppose that st1 and st2 are congruent stobjs;
; stobjs-out is (st2); fn is f; f has input signature (st1); and args is (st2),
; i.e., we are considering the call (f st2). Then flg is ((st1 . st2)). We
; apply the mapping, flg, in reverse to stobjs-out = (st2), to deduce that the
; stobjs-out of fn is (st1) -- the point is that if we apply flg to (st1), then
; we get the expected stobjs-out of (st2).
(let ((bindings
(translate-bind stobjs-out2
(if (consp flg)
(apply-inverse-symbol-alist flg stobjs-out
nil)
stobjs-out)
bindings)))
(trans-er-let*
((args (translate11-lst args
stobjs-in-call
bindings known-stobjs
msg flet-alist form ctx wrld state-vars)))
(trans-value (fcons-term fn args)))))))
((consp stobjs-out-call) ; equivalently: (consp stobjs-out2)
(let ((bindings
(translate-bind stobjs-out stobjs-out-call bindings)))
(trans-er-let*
((targs (trans-or
(translate11-lst (if (eq fn 'wormhole-eval)
(list *nil* *nil* (nth 2 args))
args)
stobjs-in-call
bindings known-stobjs
msg flet-alist form ctx wrld state-vars)
; See the comment above about applying a stobj recognizer to be applied to an
; ordinary object.
(and (eq flg :failed)
(stobj-recognizer-p fn wrld))
(translate11-lst args
'(nil)
bindings known-stobjs
msg flet-alist form ctx wrld state-vars)
(msg " Observe that while it is permitted to apply ~x0 to ~
an ordinary object, this stobj recognizer must not be ~
applied to the wrong stobj."
fn))))
(cond ((eq fn 'wormhole-eval)
(translate11-wormhole-eval (car args)
(cadr args)
(caddr targs)
bindings flet-alist ctx wrld
state-vars))
(t (trans-value (fcons-term fn targs)))))))
(t (let ((bindings
; If the stobjs-in of fn are compatible with args, but only when mapping at
; least one input stobj to a congruent stobj (i.e., flg is a non-empty alist),
; then we cannot simply bind stobjs-out2 to stobjs-out. For example, suppose
; st1 and st2 are congruent stobjs and we are defining a function (f st1 st2)
; in a context where we do not know the expected result signature, i.e.,
; stobjs-out is a symbol, nor do we know the stobjs-out of f, which could for
; example be (st1 st2) or (st2 st1). (Is this example even possible? Not
; sure, so let's continue....) If we are looking at a call (f st2 st1), then
; we can actually be certain that the call does _not_ return the output
; signature of f!
(if (consp flg)
bindings
(translate-bind stobjs-out2 stobjs-out bindings))))
(trans-er-let*
((args (translate11-lst args
stobjs-in-call
bindings known-stobjs
msg flet-alist form ctx wrld state-vars)))
(trans-value (fcons-term fn args))))))))
(defun translate11 (x stobjs-out bindings known-stobjs flet-alist
cform ctx wrld state-vars)
; Warning: Keep this in sync with macroexpand1*-cmp. Also, for any new special
; operators (e.g., let and translate-and-test), consider extending
; *special-ops* in community book books/misc/check-acl2-exports.lisp.
; Bindings is an alist binding symbols either to their corresponding STOBJS-OUT
; or to symbols. The only symbols used are (about-to-be introduced) function
; symbols or the keyword :STOBJS-OUT. When fn is bound to gn it means we have
; determined that the STOBJS-OUT of fn is that of gn. We allow fn to be bound
; to itself -- indeed, it is required initially! (This allows bindings to
; double as a recording of all the names currently being introduced.) A
; special case is when :STOBJS-OUT is bound in bindings: initially it is bound
; to itself, but in the returned bindings it will be bound to the stobjs-out of
; the expression being translated.
; Stobjs-out is one of:
; t - meaning we do not care about multiple-value or stobj
; restrictions (as when translating proposed theorems).
; (s1 s2 ... sk) - a list of 1 or more stobj flags indicating where stobjs
; are returned in the translation of x
; fn - a function name, indicating that we are trying to deduce
; the stobjs-out setting for fn from some output branch, x,
; of its body, as we translate. We also enforce prohibitions
; against the use of DEFUN, IN-PACKAGE, etc inside bodies.
; :stobjs-out - like a function name, except we know we are NOT in a defun
; body and allow DEFUN, IN-PACKAGE, etc., but restrict certain
; calls of return-last.
; See the essay on STOBJS-IN and STOBJS-OUT, above.
; When stobjs-out is a symbol, it must be dereferenced through bindings
; before using it. [One might think that we follow the convention of keeping
; it dereferenced, e.g., by using the new value whenever we bind it.
; But that is hard since the binding may come deep in some recursive
; call of translate.]
; T always dereferences to t and nothing else dereferences to t. So you
; can check (eq stobjs-out t) without dereferencing to know whether we
; care about the stobjs-out conditions.
; Known-stobjs is a subset of the list of all stobjs known in world wrld (but
; may contain some NIL elements, to be ignored; see "slight abuse" comment in
; chk-acceptable-defuns1) or else known-stobjs is T and denotes all the stobjs
; in wrld. A name is considered a stobj iff it is in known-stobjs. This
; allows us to implement the :STOBJS declaration in defuns, by which the user
; can declare the stobjs in a function.
; The cform argument is a form that provides context -- it is the one to be
; printed by trans-er+ when there isn't another obvious contextual form to
; print. (Often x carries enough context.)
; Keep this in sync with oneify.
(cond
((or (atom x) (eq (car x) 'quote))
; We handle both the (quote x) and atom case together because both
; have the same effects on calculating the stobjs-out.
(let* ((stobjs-out (translate-deref stobjs-out bindings))
(vc (legal-variable-or-constant-namep x))
(const (and (eq vc 'constant)
(defined-constant x wrld))))
(cond
((and (symbolp x)
(not (keywordp x))
(not vc))
(trans-er+? cform x
ctx
"The symbol ~x0 is being used as a variable or constant ~
symbol but does not have the proper syntax. Such names ~
must ~@1. See :DOC name."
x
(tilde-@-illegal-variable-or-constant-name-phrase x)))
((and (eq vc 'constant)
(not const))
(trans-er+? cform x
ctx
"The symbol ~x0 (in package ~x1) has the syntax of a ~
constant, but has not been defined."
x
(symbol-package-name x)))
((and (not (atom x)) (not (termp x wrld)))
(trans-er+? cform x
ctx
"The proper form of a quoted constant is (quote x), but ~
~x0 is not of this form."
x))
; We now know that x denotes a term. Let transx be that term.
(t (let ((transx (cond ((keywordp x) (kwote x))
((symbolp x)
(cond ((eq vc 'constant) const)
(t x)))
((atom x) (kwote x))
(t x))))
; Now consider the specified stobjs-out. It is fully dereferenced.
; So there are three cases: (1) we don't care about stobjs-out, (2)
; stobjs-out tells us exactly what kind of output is legal here and we
; must check, or (3) stobjs-out is an unknown but we now know its
; value and can bind it.
(cond
((eq stobjs-out t) ;;; (1)
(trans-value transx))
((consp stobjs-out) ;;; (2)
(cond
((cdr stobjs-out)
(trans-er+? cform x
ctx
"One value, ~x0, is being returned where ~x1 ~
values were expected."
x (length stobjs-out)))
((and (null (car stobjs-out))
(stobjp transx known-stobjs wrld))
(trans-er+? cform x
ctx
"A single-threaded object, namely ~x0, is being ~
used where an ordinary object is expected."
transx))
((and (car stobjs-out)
(not (eq (car stobjs-out) transx)))
(cond
((stobjp transx known-stobjs wrld)
(trans-er+? cform x
ctx
"The single-threaded object ~x0 is being used ~
where the single-threaded object ~x1 was ~
expected."
transx (car stobjs-out)))
(t
(trans-er+? cform x
ctx
"The ordinary object ~x0 is being used where ~
the single-threaded object ~x1 was expected."
transx (car stobjs-out)))))
(t (trans-value transx))))
(t ;;; (3)
(trans-value transx
(translate-bind
stobjs-out
(list (if (stobjp transx known-stobjs wrld)
transx
nil))
bindings)))))))))
((not (true-listp (cdr x)))
(trans-er ctx
"Function (and macro) applications in ACL2 must end in NIL. ~
~x0 is not of this form."
x))
((not (symbolp (car x)))
(cond ((or (not (consp (car x)))
(not (eq (caar x) 'lambda)))
(trans-er ctx
"Function (and macro) applications in ACL2 must begin ~
with a symbol or LAMBDA expression. ~x0 is not of this ~
form."
x))
((or (not (true-listp (car x)))
(not (>= (length (car x)) 3))
(not (true-listp (cadr (car x)))))
(trans-er ctx
"Illegal LAMBDA expression: ~x0."
x))
((not (= (length (cadr (car x))) (length (cdr x))))
(trans-er+ x ctx
"The LAMBDA expression ~x0 takes ~#1~[no arguments~/1 ~
argument~/~x2 arguments~] and is being passed ~#3~[no ~
arguments~/1 argument~/~x4 arguments~]."
(car x)
(zero-one-or-more (length (cadr (car x))))
(length (cadr (car x)))
(zero-one-or-more (length (cdr x)))
(length (cdr x))))
(t (translate11
(list* 'let
(listlis (cadr (car x)) (cdr x))
(cddr (car x)))
stobjs-out bindings known-stobjs flet-alist x ctx wrld
state-vars))))
((and (not (eq stobjs-out t)) (eq (car x) 'mv))
; If stobjs-out is t we let normal macroexpansion handle mv.
(let ((stobjs-out (translate-deref stobjs-out bindings)))
(cond
((let ((len (length (cdr x))))
(or (< len 2)
(> len
; Keep the number below (which also occurs in the string) equal to the value of
; raw Lisp constant *number-of-return-values*.
32)))
(cond ((< (length (cdr x)) 2)
(trans-er ctx
"MV must be given at least two arguments, but ~x0 has ~
fewer than two arguments."
x))
(t
(trans-er ctx
"MV must be given no more than 32 arguments; thus ~x0 ~
has too many arguments."
x))))
((consp stobjs-out)
(cond
((not (int= (length stobjs-out) (length (cdr x))))
(trans-er+? cform x
ctx
"The expected number of return values for ~x0 is ~x1 ~
but the actual number of return values is ~x2."
x
(length stobjs-out)
(length (cdr x))))
(t
(trans-er-let*
((args (translate11-lst (cdr x) stobjs-out bindings known-stobjs 'mv
flet-alist x ctx wrld state-vars)))
(trans-value (listify args))))))
(t (let* ((new-stobjs-out (compute-stobj-flags (cdr x)
known-stobjs
wrld))
(bindings
(translate-bind stobjs-out new-stobjs-out bindings)))
; When we compute new-stobjs-out, above, we do with untranslated
; terms. The stobj slots of an mv must be occupied by stobj variable
; names! If a slot is occupied by anything else, the occupant must be
; a single non-stobj.
(cond
((not (no-duplicatesp (collect-non-x nil new-stobjs-out)))
(trans-er ctx
"It is illegal to return more than one reference to a ~
given single-threaded object in an MV form. The ~
form ~x0 is thus illegal."
x))
(t
(mv-let
(erp args bindings)
(translate11-lst (cdr x) new-stobjs-out
bindings known-stobjs
'mv flet-alist x ctx wrld state-vars)
(cond
(erp
(let ((st/call (find-stobj-out-and-call (cdr x) known-stobjs
ctx wrld state-vars)))
(cond
(st/call
(trans-er+ cform ctx
"The form ~x0 is being used as an argument ~
to a call of ~x1. This form evaluates to a ~
single-threaded object, ~x2; but for an ~
argument of ~x1, the stobj variable itself ~
(here, ~x2) is required, not merely a term ~
that returns such a single-threaded object. ~
~ So you may need to bind ~x2 with LET; see ~
:DOC stobj."
(cdr st/call)
'mv
(car st/call)))
(t (mv erp args bindings)))))
(t (trans-value (listify args))))))))))))
((eq (car x) 'mv-let)
(translate11-mv-let x nil stobjs-out bindings known-stobjs
nil nil ; stobj info
flet-alist ctx wrld state-vars))
((assoc-eq (car x) flet-alist)
; The lambda-bodies in flet-alist are already translated. Our approach is to
; consider a call of an flet-bound function symbol to be a call of the lambda
; to which it is bound in flet-alist.
(let* ((entry (assoc-eq (car x) flet-alist))
(lambda-fn (cadr entry))
(formals (lambda-formals lambda-fn))
(stobjs-out (translate-deref stobjs-out bindings))
(stobjs-out2 (translate-deref (cddr entry) bindings)))
(cond ((not (eql (length formals) (length (cdr x))))
(trans-er ctx
"FLET-bound local function ~x0 takes ~#1~[no ~
arguments~/1 argument~/~x2 arguments~] but in the ~
call ~x3 it is given ~#4~[no arguments~/1 ~
argument~/~x5 arguments~]. The formal parameters ~
list for the applicable FLET-binding of ~x0 is ~X67."
(car x)
(zero-one-or-more (length formals))
(length formals)
x
(zero-one-or-more (length (cdr x)))
(length (cdr x))
formals
nil))
(t
(translate11-call x lambda-fn (cdr x) stobjs-out stobjs-out2
bindings known-stobjs
(msg "a call of FLET-bound function ~x0"
(car x))
flet-alist ctx wrld state-vars)))))
((and bindings
(not (eq (caar bindings) :stobjs-out))
(member-eq (car x) '(defun defmacro in-package progn defpkg
with-guard-checking-event)))
(trans-er+ x ctx
"We do not permit the use of ~x0 inside of code to be executed ~
by Common Lisp because its Common Lisp meaning differs from ~
its ACL2 meaning.~@1"
(car x)
(cond ((eq (car x) 'with-guard-checking-event)
(msg " Consider using ~x0 instead."
'with-guard-checking-error-triple))
(t ""))))
((and bindings
(not (eq (caar bindings) :stobjs-out))
(member-eq (car x)
; The following list should contain every symbol listed in
; primitive-event-macros for which the error message below applies. We keep
; both lists alphabetical to make it convenient to compare them. For
; efficiency, we may omit those that will ultimately expand to calls of table
; (or any other symbol in the list below). We also omit those handled in the
; previous case, above, such as defun.
'(
#+:non-standard-analysis defthm-std
#+:non-standard-analysis defun-std
add-custom-keyword-hint
add-include-book-dir ; definition explains inclusion
add-include-book-dir! ; definition explains inclusion
add-match-free-override
certify-book
comp
defattach
defaxiom
defchoose
defconst
deflabel
defstobj defabsstobj
deftheory
defthm
defuns
delete-include-book-dir ; definition explains inclusion
delete-include-book-dir! ; definition explains inclusion
encapsulate
in-arithmetic-theory
in-theory
include-book
local ; note: not in (primitive-event-macros)
make-event ; note: not in (primitive-event-macros)
mutual-recursion
progn!
push-untouchable
regenerate-tau-database
remove-untouchable
reset-prehistory
set-body
set-override-hints-macro
table
theory-invariant
value-triple
verify-guards
with-output ; note: not in (primitive-event-macros)
with-prover-step-limit ; not in (primitive-event-macros)
verify-termination-boot-strap
)))
(trans-er+ x ctx
"We do not permit the use of ~x0 inside of code to be executed ~
by Common Lisp because its Common Lisp runtime value and ~
effect differs from its ACL2 meaning.~@1"
(car x)
(cond ((eq (car x) 'with-output)
(msg " Consider using ~x0 instead."
'with-output!))
(t ""))))
((and (eq (car x) 'pargs)
(true-listp x)
(member (length x) '(2 3))
; Notice that we are restricting this error case to a pargs that is
; syntactically well-formed, in the sense that if this pargs has one or two
; arguments, then the form argument is a function call. The rest of the
; well-formedness checking will be done during macro expansion of pargs; by
; making the above restriction, we avoid the possibility that the error message
; below is confusing.
(let ((form (car (last x)))) ; should be a function call
(or flet-alist
(not (and (consp form)
(symbolp (car form))
(function-symbolp (car form) wrld))))))
(cond
(flet-alist
; It may be fine to have flet-bound functions as in:
; (defun g ()
; (flet ((foo (x) (+ x x)))
; (pargs (h (foo 3)))))
; But we haven't thought through whether closures really respect superior FLET
; bindings, so for now we simply punt.
(trans-er+ x ctx
"~x0 may not be called in the scope of ~x1. If you want ~
support for that capability, please contact the ACL2 ~
implementors."
'pargs
'flet))
(t
(let ((form (car (last x))))
(trans-er+ x ctx
"~x0 may only be used when its form argument is a function ~
call, unlike the argument ~x1.~@2 See :DOC pargs."
'pargs
form
(if (and (consp form)
(symbolp (car form))
(getpropc (car form) 'macro-body nil wrld))
(list " Note that ~x0 is a macro, not a function ~
symbol."
(cons #\0 (car form)))
""))))))
((eq (car x) 'check-vars-not-free) ; optimization; see check-vars-not-free
; Warning: Keep this in sync with the code for check-vars-not-free.
(cond ((not (equal (length x) 3))
(trans-er+ x ctx
"CHECK-VARS-NOT-FREE requires exactly two arguments."))
((null (cadr x)) ; optimization for perhaps a common case
(translate11 (caddr x) stobjs-out bindings
known-stobjs flet-alist x ctx wrld
state-vars))
((not (symbol-listp (cadr x)))
(trans-er+ x ctx
"CHECK-VARS-NOT-FREE requires its first argument to be ~
a true-list of symbols."))
(t
(trans-er-let*
((ans (translate11 (caddr x) stobjs-out bindings
known-stobjs flet-alist x ctx wrld
state-vars)))
(let ((msg (check-vars-not-free-test (cadr x) ans)))
(cond
((not (eq msg t))
(trans-er+ x ctx
"CHECK-VARS-NOT-FREE failed:~|~@0"
msg))
(t (trans-value ans))))))))
((eq (car x) 'translate-and-test)
(cond ((not (equal (length x) 3))
(trans-er+ x ctx
"TRANSLATE-AND-TEST requires exactly two arguments."))
(t (trans-er-let*
((ans (translate11 (caddr x) stobjs-out bindings
known-stobjs flet-alist x ctx wrld
state-vars)))
; The next mv-let is spiritually just a continuation of the trans-er-let*
; above, as though to say "and let test-term be (translate11 (list ...)...)"
; except that we do not want to touch the current setting of bindings nor
; do we wish to permit the current bindings to play a role in the translation
; of the test.
(mv-let
(test-erp test-term test-bindings)
(translate11 (list (cadr x) 'form)
'(nil) nil known-stobjs flet-alist x ctx wrld
state-vars)
(declare (ignore test-bindings))
(cond
(test-erp (mv test-erp test-term bindings))
(t
(mv-let (erp msg)
(ev-w test-term
(list (cons 'form ans)
(cons 'world wrld))
wrld
nil ; user-stobj-alist
(access state-vars state-vars :safe-mode)
(gc-off1 (access state-vars state-vars
:guard-checking-on))
nil
; We are conservative here, using nil for the following AOK argument in case
; the intended test-term is to be considered in the current theory, without
; attachments.
nil)
(cond
(erp
(trans-er+ x ctx
"The attempt to evaluate the ~
TRANSLATE-AND-TEST test, ~x0, when ~
FORM is ~x1, failed with the ~
evaluation error:~%~%``~@2''"
(cadr x) ans msg))
((or (consp msg)
(stringp msg))
(trans-er ctx "~@0" msg))
(t (trans-value ans)))))))))))
((eq (car x) 'with-local-stobj)
; Even if stobjs-out is t, we do not let normal macroexpansion handle
; with-local-stobj, because we want to make sure that we are dealing with a
; stobj. Otherwise, the raw lisp code will bind a bogus live stobj variable;
; although not particularly harmful, that will give rise to an inappropriate
; compiler warning about not declaring the variable unused.
(mv-let (erp st mv-let-form creator)
(parse-with-local-stobj (cdr x))
(cond
(erp
(trans-er ctx
"Ill-formed with-local-stobj form, ~x0. ~
See :DOC with-local-stobj."
x))
((assoc-eq :stobjs-out bindings)
; We need to disallow the use of ev etc. for with-local-stobj, because the
; latching mechanism assumes that all stobjs are global, i.e., in the
; user-stobj-alist.
(trans-er ctx
"Calls of with-local-stobj, such as ~x0, cannot be ~
evaluated directly, as in the top-level loop. ~
See :DOC with-local-stobj and see :DOC top-level."
x))
((untouchable-fn-p creator
wrld
(access state-vars state-vars
:temp-touchable-fns))
(trans-er ctx
"Illegal with-local-stobj form~@0~|~% ~y1:~%the stobj ~
creator function ~x2 is untouchable. See :DOC ~
remove-untouchable.~@3"
(if (eq creator 'create-state)
" (perhaps expanded from a corresponding ~
with-local-state form),"
",")
x
creator
(if (eq creator 'create-state)
" Also see :DOC with-local-state, which ~
describes how to get around this restriction and ~
when it may be appropriate to do so."
"")))
((and st
(if (eq st 'state)
(eq creator 'create-state)
(eq st (stobj-creatorp creator wrld))))
(translate11-mv-let mv-let-form nil stobjs-out bindings
known-stobjs st creator flet-alist ctx wrld
state-vars))
(t
(let ((actual-creator (get-stobj-creator st wrld)))
(cond
(actual-creator ; then st is a stobj
(trans-er ctx
"Illegal with-local-stobj form, ~x0. The creator ~
function for stobj ~x1 is ~x2, but ~@3. See ~
:DOC with-local-stobj."
x st actual-creator
(cond ((cdddr x) ; wrong creator was supplied
(msg "the function ~x0 was supplied instead"
creator))
(t
(msg "the creator was computed to be ~x0, ~
so you will need to supply the ~
creator explicitly for your call of ~
~x1"
creator
'with-local-stobj)))))
(t ; st is not a stobj
(trans-er ctx
"Illegal with-local-stobj form, ~x0. The first ~
argument must be the name of a stobj, but ~x1 is ~
not. See :DOC with-local-stobj."
x st))))))))
((and (assoc-eq (car x) *ttag-fns-and-macros*)
(not (ttag wrld))
(not (global-val 'boot-strap-flg wrld)))
(trans-er+ x ctx
"The ~x0 ~s1 cannot be called unless a trust tag is in effect. ~
~ See :DOC defttag.~@2"
(car x)
(if (getpropc (car x) 'macro-body nil wrld)
"macro"
"function")
(or (cdr (assoc-eq (car x) *ttag-fns-and-macros*))
"")))
((and (eq (car x) 'stobj-let)
(not (eq stobjs-out t))) ; else let stobj-let simply macroexpand
; Keep this in sync with the definition of the stobj-let macro. We use the
; following running example:
; (stobj-let
; ((st1 (fld1 st+))
; (st2 (fld2 st+) update-fld2)
; (st3 (fld3i 4 st+)))
; (st1) ; PRODUCER-VARS, below
; (producer st1 u st2 v st3) ; PRODUCER, below
; (consumer st+ u x y v w) ; CONSUMER, below
; )
; ==>
; (let ((st1 (fld1 st+)) ; sti are BOUND-VARS, below
; (st2 (fld2 st+) update-fld2) ; cadrs are ACTUALS, below
; (st3 (fld3i 4 st+))) ; st+ is STOBJ, below
; (let ((st1 (producer st1 u st2 v st3))) ; BODY2
; (declare (ignorable st1))
; (let ((st+ (update-fld1 st1 st+))) ; BODY1
; (consumer st+ u x y v w))))
(mv-let
(msg bound-vars actuals stobj producer-vars producer updaters
corresp-accessor-fns consumer)
(parse-stobj-let x)
(cond
(msg (trans-er ctx "~@0" msg))
((assoc-eq :stobjs-out bindings)
; We need to disallow the use of ev etc. for stobj-let, because the latching
; mechanism assumes that all stobjs are global, i.e., in the user-stobj-alist.
(trans-er ctx
"Calls of stobj-let, such as ~x0, cannot be evaluated ~
directly, as in the top-level loop."
x))
(t
(let ((msg (chk-stobj-let bound-vars actuals stobj updaters
corresp-accessor-fns known-stobjs wrld)))
(cond
(msg (trans-er ctx
"~@0"
(illegal-stobj-let-msg msg x)))
(t
(let* ((new-known-stobjs (if (eq known-stobjs t)
t
(union-eq bound-vars known-stobjs)))
(guarded-producer
`(check-vars-not-free (,stobj) ,producer))
(guarded-consumer
`(check-vars-not-free ,bound-vars ,consumer))
(letp (null (cdr producer-vars)))
(updater-bindings (pairlis-x1 stobj
(pairlis-x2 updaters nil)))
(body1 `(let* ,updater-bindings
,guarded-consumer))
(body2 (cond (letp `(let ((,(car producer-vars)
,guarded-producer))
(declare (ignorable ,@producer-vars))
,body1))
(t `(mv-let ,producer-vars
,guarded-producer
(declare (ignorable ,@producer-vars))
,body1)))))
(trans-er-let*
((tactuals
(translate-stobj-calls actuals 3 bindings new-known-stobjs
flet-alist x ctx wrld state-vars))
(tupdaters
(translate-stobj-calls updaters 4 bindings new-known-stobjs
flet-alist x ctx wrld state-vars))
(tconsumer
(translate11 guarded-consumer stobjs-out bindings known-stobjs
flet-alist x ctx wrld state-vars))
(tbody1 (translate11-let* body1 tconsumer tupdaters stobjs-out
bindings known-stobjs flet-alist ctx
wrld state-vars))
(tbody2 (cond (letp (translate11-let body2 tbody1 nil
stobjs-out
bindings new-known-stobjs
flet-alist ctx wrld
state-vars))
(t (translate11-mv-let body2 tbody1 stobjs-out
bindings new-known-stobjs
nil nil ; local-stobj args
flet-alist ctx wrld
state-vars)))))
(let ((actual-stobjs-out
(translate-deref stobjs-out bindings))
(no-dups-exprs
(no-duplicatesp-checks-for-stobj-let-actuals actuals
nil))
(producer-stobjs
(collect-non-x
nil
(compute-stobj-flags producer-vars known-stobjs wrld))))
(cond
((and updaters
; It may be impossible for actual-stobjs-out to be an atom here (presumably
; :stobjs-out or a function symbol). But we cover that case, albeit with a
; potentially mysterious error message.
(or (not (consp actual-stobjs-out))
(not (member-eq stobj actual-stobjs-out))))
(let ((stobjs-returned
(and (consp actual-stobjs-out)
(collect-non-x nil actual-stobjs-out))))
(trans-er+ x ctx
"A STOBJ-LET form has been encountered that ~
specifies (with its list of producer ~
variables) ~#1~[a call~/calls~] of stobj ~
updater~#2~[~/s~] ~&2 of ~x0. It is ~
therefore a requirement that ~x0 be among the ~
outputs of the STOBJ-LET, but it is not. The ~
STOBJ-LET returns ~#3~[no single-threaded ~
objects~/the single-threaded object ~&4~/the ~
single-threaded objects ~&4~/an undetermined ~
output signature in this context~]. See :DOC ~
stobj-let."
stobj
updaters
(remove-duplicates-eq (strip-cars updaters))
(if (consp actual-stobjs-out)
(zero-one-or-more stobjs-returned)
3)
stobjs-returned)))
((and (atom actual-stobjs-out) ; impossible?
(set-difference-eq producer-stobjs bound-vars))
(trans-er+ x ctx
"A STOBJ-LET form has been encountered that ~
specifies stobj producer variable~#0~[~/s~] ~&0 ~
that cannot be determined to be returned by ~
that STOBJ-LET form, that is, by its consumer ~
form. See :DOC stobj-let."
(set-difference-eq producer-stobjs bound-vars)))
((set-difference-eq
(set-difference-eq producer-stobjs bound-vars)
actual-stobjs-out)
(trans-er+ x ctx
"A STOBJ-LET form has been encountered that ~
specifies stobj producer variable~#0~[ ~&0 that ~
is~/s ~&0~ that are~] not returned by that ~
STOBJ-LET form, that is, not returned by its ~
consumer form. See :DOC stobj-let."
(set-difference-eq
(set-difference-eq producer-stobjs bound-vars)
actual-stobjs-out)))
(t
(trans-er-let*
((val
(translate11-let `(let ,(pairlis$ bound-vars
(pairlis$ actuals nil))
(declare (ignorable ,@bound-vars))
,body2)
tbody2 tactuals stobjs-out bindings
known-stobjs flet-alist ctx wrld
state-vars)))
(cond (no-dups-exprs
(trans-er-let*
((chk (translate11 (cons 'and no-dups-exprs)
'(nil) bindings known-stobjs
flet-alist cform ctx wrld
state-vars)))
(trans-value (prog2$-call chk val))))
(t (trans-value val))))))))))))))))
((getpropc (car x) 'macro-body nil wrld)
(cond
((and (eq stobjs-out :stobjs-out)
(member-eq (car x) '(pand por pargs plet))
(eq (access state-vars state-vars :parallel-execution-enabled)
t))
(trans-er ctx
"Parallel evaluation is enabled, but is not implemented for ~
calls of parallelism primitives (~&0) made directly in the ~
ACL2 top-level loop, as opposed to being made inside a ~
function definition. The call ~x1 is thus illegal. To ~
allow such calls to be evaluated (but without parallelism), ~
either evaluate ~x2 or use the macro top-level. See :DOC ~
parallelism-at-the-top-level and :DOC ~
set-parallel-execution."
'(pand por pargs plet)
x
'(set-parallel-execution :bogus-parallelism-ok)))
((untouchable-fn-p (car x)
wrld
(access state-vars state-vars
:temp-touchable-fns))
; If this error burns you during system maintenance, you can subvert our
; security by setting untouchables to nil in raw Lisp:
; (setf (cadr (assoc 'global-value
; (get 'untouchable-fns *current-acl2-world-key*)))
; nil)
(trans-er+ x ctx
"It is illegal to call ~x0 because it has been placed on ~
untouchable-fns."
(car x)))
((and (eq (car x) 'ld) ; next check if we're in a definition body
(not (or (eq stobjs-out t)
(assoc-eq :stobjs-out bindings)))
; Here we enforce the requirement that a call of LD in a user definition body
; must specify :ld-user-stobjs-modified-warning. This requirement forces the
; tool writer who calls LD to confront the question of whether or not
; "user-stobjs-modified" warnings are appropriate.
(not (global-val 'boot-strap-flg wrld))
(true-listp x) ; else macroexpansion will disallow this anyhow
(not (member-eq :ld-user-stobjs-modified-warning (cdr x))))
(trans-er+ x ctx
"It is illegal to call ~x0 in a function body without ~
specifying a value for :ld-user-stobjs-modified-warning. ~
See :DOC user-stobjs-modified-warning."
(car x)))
(t
(mv-let
(erp expansion)
(macroexpand1-cmp x ctx wrld state-vars)
(cond
(erp (mv erp expansion bindings))
(t (translate11 expansion stobjs-out bindings known-stobjs flet-alist x
ctx wrld state-vars)))))))
((eq (car x) 'let)
(translate11-let x nil nil stobjs-out bindings known-stobjs
flet-alist ctx wrld state-vars))
((eq (car x) 'flet) ; (flet bindings form)
(translate11-flet x stobjs-out bindings known-stobjs flet-alist ctx
wrld state-vars))
((and (not (eq stobjs-out t))
(null (cdr x)) ; optimization
(stobj-creatorp (car x) wrld))
(trans-er+ x ctx
"It is illegal to call ~x0 in this context because it is a ~
stobj creator. Stobj creators cannot be called directly ~
except in theorems. If you did not explicitly call a stobj ~
creator, then this error is probably due to an attempt to ~
evaluate a with-local-stobj form directly in the top-level ~
loop. Such forms are only allowed in the bodies of functions ~
and in theorems. Also see :DOC with-local-stobj."
(car x)))
((equal (arity (car x) wrld) (length (cdr x)))
(cond ((untouchable-fn-p (car x)
wrld
(access state-vars state-vars
:temp-touchable-fns))
(trans-er+ x ctx
"It is illegal to call ~x0 because it has been placed ~
on untouchable-fns."
(car x)))
((eq (car x) 'if)
(cond
((stobjp (cadr x) known-stobjs wrld)
(trans-er+ x ctx
"It is illegal to test on a single-threaded object ~
such as ~x0."
(cadr x)))
; Because (cadr x) has not yet been translated, we do not really know it is not
; a stobj! It could be a macro call that expands to a stobj.' The error
; message above is just to be helpful. An accurate check is made below.
(t
(trans-er-let*
((arg1 (translate11 (cadr x)
(if (eq stobjs-out t)
t
'(nil))
bindings known-stobjs
flet-alist x ctx wrld state-vars)))
(mv-let
(erp2 arg2 bindings2)
(trans-er-let*
((arg2 (translate11 (caddr x)
stobjs-out bindings known-stobjs
flet-alist x ctx wrld state-vars)))
(trans-value arg2))
(cond
(erp2
(cond
((eq bindings2 :UNKNOWN-BINDINGS)
(mv-let
(erp3 arg3 bindings)
(translate11 (cadddr x)
stobjs-out bindings known-stobjs
flet-alist x ctx wrld state-vars)
(cond
(erp3 (mv erp2 arg2 bindings2))
(t (trans-er-let*
((arg2 (translate11 (caddr x)
stobjs-out bindings known-stobjs
flet-alist x ctx wrld state-vars)))
(trans-value (fcons-term* 'if arg1 arg2 arg3)))))))
(t (mv erp2 arg2 bindings2))))
(t
(let ((bindings bindings2))
(trans-er-let*
((arg3 (translate11 (cadddr x)
stobjs-out bindings known-stobjs
flet-alist x ctx wrld state-vars)))
(trans-value (fcons-term* 'if arg1 arg2 arg3)))))))))))
((eq (car x) 'synp)
; Synp is a bit odd. We store the quotation of the term to be evaluated in the
; third arg of the synp form. We store the quotation so that ACL2 will not see
; the term as a potential induction candidate. (Eric Smith first pointed out
; this issue.) This, however forces us to treat synp specially here in order
; to translate the term to be evaluated and thereby get a proper ACL2 term.
; Without this special treatment (cadr x), for instance, would be left alone
; whereas it needs to be translated into (car (cdr x)).
; This mangling of the third arg of synp is sound because synp always returns
; t.
; Robert Krug has mentioned the possibility that the known-stobjs below could
; perhaps be t. This would allow a function called by synp to use, although
; not change, stobjs. If this is changed, change the references to stobjs in
; the documentation for syntaxp and bind-free as appropriate. But before
; making such a change, consider this: no live user-defined stobj will ever
; appear in the unifying substitution that binds variables in the evg of
; (cadddr x). So it seems that such a relaxation would not be of much value.
(cond ((not (eq stobjs-out t))
(trans-er ctx
"A call to synp is not allowed here. This ~
call may have come from the use of syntaxp ~
or bind-free within a function definition ~
since these two macros expand into calls to ~
synp. The form we were translating when we ~
encountered this problem is ~x0. If you ~
believe this error message is itself in error ~
or that we have been too restrictive, please ~
contact the maintainers of ACL2."
x))
((eql (length x) 4)
(mv-let
(erp val bindings)
(trans-er-let*
((quoted-vars (translate11 (cadr x)
'(nil) ; stobjs-out
bindings
'(state) ; known-stobjs
flet-alist x ctx wrld state-vars))
(quoted-user-form (translate11 (caddr x)
'(nil) ; stobjs-out
bindings
'(state) ; known-stobjs
flet-alist x ctx wrld
state-vars))
(quoted-term (translate11 (cadddr x)
'(nil) ; stobjs-out
bindings
'(state) ; known-stobjs
flet-alist x ctx wrld state-vars)))
(let ((quoted-term (if (quotep quoted-term)
quoted-term
(sublis-var nil quoted-term))))
(cond ((quotep quoted-term)
(trans-er-let*
((term-to-be-evaluated
(translate11 (cadr quoted-term)
'(nil) ; stobjs-out
bindings
'(state) ; known-stobjs
flet-alist x ctx wrld state-vars)))
(let ((quoted-vars (if (quotep quoted-vars)
quoted-vars
(sublis-var nil quoted-vars)))
(quoted-user-form (if (quotep quoted-user-form)
quoted-user-form
(sublis-var nil
quoted-user-form))))
(cond ((and (quotep quoted-vars)
(quotep quoted-user-form))
(trans-value
(fcons-term* 'synp quoted-vars
quoted-user-form
(kwote
term-to-be-evaluated))))
(t (trans-er ctx
*synp-trans-err-string*
x))))))
(t
(trans-er ctx
*synp-trans-err-string*
x)))))
(cond (erp
(let ((quoted-user-form (caddr x)))
(case-match quoted-user-form
(('QUOTE ('SYNTAXP form))
(mv erp
(msg "The form ~x0, from a ~x1 hypothesis, ~
is not suitable for evaluation in an ~
environment where its variables are ~
bound to terms. See :DOC ~x1. Here ~
is further explanation:~|~t2~@3"
form 'syntaxp 5 val)
bindings))
(& (mv erp val bindings)))))
(t (mv erp val bindings)))))
(t
(trans-er ctx
*synp-trans-err-string*
x))))
((eq stobjs-out t)
(trans-er-let*
((args (translate11-lst (cdr x) t bindings known-stobjs
nil flet-alist x ctx wrld state-vars)))
(trans-value (fcons-term (car x) args))))
((eq (car x) 'mv-list) ; and stobjs-out is not t
(trans-er-let*
((arg1 (translate11 (cadr x)
stobjs-out bindings known-stobjs
flet-alist x ctx wrld state-vars)))
(cond ((not (and (quotep arg1)
(integerp (unquote arg1))
(<= 2 (unquote arg1))))
(trans-er ctx
"A call of ~x0 can only be made when the first ~
argument is explicitly an integer that is at ~
least 2. The call ~x1 is thus illegal."
'mv-list x))
(t
(trans-er-let*
((arg2 (translate11 (caddr x)
(make-list (unquote arg1)
:initial-element nil)
bindings known-stobjs
flet-alist x ctx wrld state-vars)))
(trans-value (fcons-term* 'mv-list arg1 arg2)))))))
((stobj-field-fn-of-stobj-type-p
(car x) wrld) ; and stobjs-out is not t
(trans-er+ x ctx
"It is illegal to call ~x0 because it is a stobj ~
updater or accessor for a field of stobj type. For a ~
way to generate such a call, see :DOC stobj-let."
(car x)))
((eq (car x) 'return-last) ; and stobjs-out is not t
(let* ((arg1 (nth 1 x))
(arg2 (nth 2 x))
(arg3 (nth 3 x))
(key (and (consp arg1)
(eq (car arg1) 'quote)
(consp (cdr arg1))
(cadr arg1)))
(keyp (and (symbolp key) key)))
(trans-er-let*
((targ1 (translate11 arg1
'(nil) bindings known-stobjs
flet-alist x ctx wrld state-vars)))
(cond
((and keyp (not (equal targ1 arg1))) ; an optional extra check
(trans-er ctx
"Implementation error: We have thought that a ~
quotep must translate to itself, but ~x0 did not!"
arg1))
((eq key 'mbe1-raw)
; We need to know that the two arguments of mbe1 have the same signature. If
; for example we have (mv-let (x y) (mbe1 <exec-form> <logic-form>)), but
; <exec-form> has signature *, then Common Lisp will get confused during
; evaluation. This signature requirement is enforced by the trans-er-let*
; bindings below.
; At one time we disallowed the use of mbe inside a non-trivial encapsulate
; when translating for execution (stobjs-out not equal to t). To see why, see
; the example in the comment near the top of :DOC note-3-4. However, we
; subsequently disallowed guard verification for functions defined non-locally
; inside an encapsulate (see :DOC note-4-0), which is the proper fix for this
; issue. What then is this issue? The issue is that we need to be able to
; trust guard verification; evaluating the :exec branch of an mbe is just a
; special case.
(trans-er-let*
((targ2 (translate11 arg2
(if (inside-defabsstobj wrld)
t
stobjs-out)
bindings known-stobjs
flet-alist x ctx wrld state-vars))
(targ3 (translate11 arg3 stobjs-out bindings known-stobjs
flet-alist x ctx wrld state-vars)))
(trans-value
(fcons-term* 'return-last targ1 targ2 targ3))))
((and
(eq key 'ec-call1-raw)
(not
(and
(consp arg3)
(true-listp arg3)
(and
(symbolp (car arg3))
(let ((fn (if (function-symbolp (car arg3) wrld)
(car arg3)
(corresponding-inline-fn (car arg3) wrld))))
(and fn
(not (member-eq fn *ec-call-bad-ops*))))))))
(trans-er ctx
"The argument ~x0 is illegal for ~x2, because ~@1. ~
A call of ~x2 must only be made on an argument of ~
the form (FN ...), where FN is a known function ~
symbol of the current ACL2 world not belonging to ~
the list that is the value of the constant ~x3, or ~
is a macro expanding in a certain direct way (as ~
with defun-inline) to a call of FN$INLINE (i.e., ~
the result of adding suffix \"$INLINE\" to the ~
symbol-name of FN). See :DOC ec-call."
(car (last x))
(let* ((fn0 (and (consp arg3)
(car arg3)))
(fn (and fn0
(symbolp fn0)
(if (function-symbolp fn0 wrld)
fn0
(corresponding-inline-fn fn0
wrld)))))
(cond ((not (and fn0
(true-listp arg3)))
(msg "~x0 does not have the form of a ~
function call"
arg3))
((not (symbolp fn0))
(msg "~x0 is not a symbol" fn0))
((member-eq fn *ec-call-bad-ops*)
(msg "~x0 belongs to ~x1"
fn
'*ec-call-bad-ops*))
((eq (getpropc fn0 'macro-args t wrld)
t)
; At this point we know that fn is nil and fn0 is not nil. So
; (corresponding-inline-fn fn0 wrld) is nil. So fn0 is not a function symbol.
; From the test just above we also know that fn0 is not a macro.
(msg "~x0 is not defined"
fn0))
(t (msg "~x0 is a macro, not a function ~
symbol~@1"
fn0
(let ((sym (deref-macro-name
fn0
(macro-aliases wrld))))
(cond
((eq sym fn0) "")
(t
(msg ". Note that ~x0 is a ~
macro-alias for ~x1 (see ~
:DOC ~
macro-aliases-table), so ~
a solution might be to ~
replace ~x0 by ~x1"
fn0 sym))))))))
'ec-call '*ec-call-bad-ops*))
((and
(eq key 'with-guard-checking1-raw)
(or (not (case-match arg2
(('chk-with-guard-checking-arg &) t)
(& nil)))
(not (case-match arg3
(('translate-and-test gate form)
(equal gate (with-guard-checking-gate form)))
(& nil))))
(not (global-val 'boot-strap-flg
wrld)) ; see ev-rec-return-last
(not (ttag wrld)))
(trans-er+? cform x ctx
"The form ~x0 is essentially a call of ~x1, but ~
without certain checks performed. This is ~
illegal unless there is an active trust tag; see ~
:DOC defttag. To avoid this error without use ~
of a trust tag, call ~x1 directly."
x 'with-guard-checking))
((and keyp
(let ((val
(or (return-last-lookup key wrld)
(and (global-val 'boot-strap-flg wrld)
(cdr (assoc-eq
key
*initial-return-last-table*))))))
(or (null val)
(and (consp val) ; see chk-return-last-entry
(eq stobjs-out :stobjs-out)))))
; In an early implementation of return-last, we insisted that keyp be true. But
; when we attempted to update the "GL" work of Sol Swords to use return-last,
; we encountered the creation of symbolic terms (presumably for some sort of
; meta reasoning) for which the first argument was not quoted. Rather than try
; to understand whether this was necessary, we decided that others might also
; want to write meta-level functions that cons up return-last terms without a
; quoted first argument; and since it is easy to support that, we do so.
(cond
((not (or (return-last-lookup key wrld)
(and (global-val 'boot-strap-flg wrld)
(cdr (assoc-eq key
*initial-return-last-table*)))))
(trans-er ctx
"The symbol ~x0 is specified in the first ~
argument of the form ~x1. But ~x0 is not ~
associated in the table ~x2 with a non-nil ~
value. See :DOC return-last."
key x 'return-last-table))
(t
(trans-er ctx
"Illegal call, ~x0: the association of ~x1 with ~
the symbol ~x2 has been restricted to avoid ~
top-level evaluation of such calls of ~x3. See ~
:DOC return-last. Also consider placing the ~
offending call inside a call of ~x4; see :DOC ~
~x4."
x key
(car (return-last-lookup key wrld))
'return-last 'top-level))))
(t
(mv-let
(erp targ2 targ2-bindings)
(translate11 arg2 '(nil) bindings known-stobjs flet-alist x
ctx wrld state-vars)
(declare (ignore targ2-bindings))
(cond
(erp (mv erp targ2 bindings))
((throw-nonexec-error-p1 targ1 targ2 :non-exec nil)
(mv-let
(erp targ3 targ3-bindings)
(translate11
arg3
t ; stobjs-out
bindings
nil ; known-stobjs is irrelevant
flet-alist x ctx wrld state-vars)
(declare (ignore targ3-bindings))
(cond
(erp (mv erp targ3 bindings))
(t (trans-value
(fcons-term* 'return-last
targ1 targ2 targ3))))))
(t
(trans-er-let*
((targ3 (translate11 arg3 stobjs-out bindings known-stobjs
flet-alist x ctx wrld state-vars)))
(trans-value
(fcons-term* 'return-last
targ1 targ2 targ3)))))))))))
((eq (getpropc (car x) 'non-executablep nil wrld)
t)
(let ((computed-stobjs-out (compute-stobj-flags (cdr x)
known-stobjs
wrld)))
(trans-er-let*
((args (translate11-lst (cdr x) computed-stobjs-out bindings
known-stobjs nil flet-alist x ctx wrld
state-vars)))
(trans-value (fcons-term (car x) args)))))
((and (member-eq (car x) '(makunbound-global put-global))
(not (eq (access state-vars state-vars :temp-touchable-vars)
t))
(or ; Keep this case in sync with the cond cases below
(not (and (consp (cadr x))
(eq (car (cadr x)) 'quote)
(null (cddr (cadr x)))
(symbolp (cadr (cadr x)))))
(and (member-eq (cadr (cadr x))
(global-val 'untouchable-vars wrld))
(not (member-eq (cadr (cadr x))
(access state-vars state-vars
:temp-touchable-vars))))
(and (eq (car x) 'makunbound-global)
(or (always-boundp-global (cadr (cadr x)))
(member-eq (cadr (cadr x)) *brr-globals*)))
; It is tempting to get the following value of boot-strap from state-vars. But
; some calls of translate11 supply state-vars using (default-state-vars nil),
; which sets field :boot-strap-flg to nil. So we pay the price of checking the
; boot-strap-flg directly in wrld. This seems a relatively minor deal, since
; presumably makunbound-global and put-global are not called by users all that
; often. If performance becomes an issue, we can try deal with the issue at
; that point.
(and (global-val 'boot-strap-flg wrld)
(not (or (always-boundp-global (cadr (cadr x)))
(member-eq (cadr (cadr x)) *brr-globals*))))))
(cond ( ; Keep this case the same as its twin above
(not (and (consp (cadr x))
(eq (car (cadr x)) 'quote)
(null (cddr (cadr x)))
(symbolp (cadr (cadr x)))))
(trans-er+ x ctx
"The first arg of ~x0 must be a quoted symbol, ~
unlike ~x1. We make this requirement in ~
support of untouchable-vars."
(car x) (cadr x)))
( ; Keep this case the same as its twin above
(and (member-eq (cadr (cadr x))
(global-val 'untouchable-vars wrld))
(not (member-eq (cadr (cadr x))
(access state-vars state-vars
:temp-touchable-vars))))
(trans-er ctx
"State global variable ~x0 has been rendered ~
untouchable and thus may not be directly ~
altered, as in ~x1.~@2"
(cadr (cadr x))
x
(let ((set-fn (intern-in-package-of-symbol
(concatenate 'string
"SET-"
(symbol-name
(cadr (cadr x))))
(cadr (cadr x)))))
(cond ((function-symbolp set-fn wrld)
(msg "~|There is a function ~x0, which ~
(from the name) may provide the ~
functionality you desire."
set-fn))
(t "")))))
((always-boundp-global (cadr (cadr x)))
(trans-er ctx
"Built-in state global variables may not be made ~
unbound, as in ~x0."
x))
(t ; (global-val 'boot-strap-flg wrld)
(trans-er ctx
"State global ~x0 needs to be declared for the ~
build by adding it to *initial-global-table*, ~
*initial-ld-special-bindings*, or *brr-globals*."
(cadr (cadr x))))))
(t
(let ((stobjs-out (translate-deref stobjs-out bindings))
(stobjs-out2 (let ((temp (translate-deref (car x) bindings)))
(cond (temp temp)
(t (stobjs-out (car x) wrld))))))
(translate11-call x (car x) (cdr x) stobjs-out stobjs-out2
bindings known-stobjs (car x) flet-alist
ctx wrld state-vars)))))
((arity (car x) wrld)
(trans-er ctx
"~x0 takes ~#1~[no arguments~/1 argument~/~x2 arguments~] but ~
in the call ~x3 it is given ~#4~[no arguments~/1 argument~/~x5 ~
arguments~]. The formal parameters list for ~x0 is ~X67."
(car x)
(zero-one-or-more (arity (car x) wrld))
(arity (car x) wrld)
x
(zero-one-or-more (length (cdr x)))
(length (cdr x))
(formals (car x) wrld)
nil))
((eq (car x) 'declare)
(trans-er ctx
"It is illegal to use DECLARE as a function symbol, as in ~x0. ~
DECLARE forms are permitted only in very special places, e.g., ~
before the bodies of function definitions, LETs, and MV-LETs. ~
DECLARE forms are never permitted in places in which their ~
``values'' are relevant. If you already knew this, it is ~
likely you have made a typographical mistake, e.g., including ~
the body in the DECLARE form or closing the superior form ~
before typing the body."
x))
(t (let ((syms (macros-and-functions-in-other-packages
(car x)
wrld)))
(trans-er+ x ctx
"The symbol ~x0 (in package ~x1) has neither a function ~
nor macro definition in ACL2. ~#2~[Please define ~
it~@3~/Moreover, this symbol is in the main Lisp package; ~
hence, you cannot define it in ACL2.~] See :DOC ~
near-misses."
(car x)
(symbol-package-name (car x))
(if (equal (symbol-package-name (car x))
*main-lisp-package-name*)
1
0)
(cond
((null syms) ".")
((null (cdr syms))
(msg "; or perhaps you meant ~x0, which has the same ~
name but is in a different package."
(car syms)))
(t
(msg "; or perhaps you meant one of the following, each ~
with the same name but in a different package: ~v0."
syms))))))))
(defun translate11-lst (lst stobjs-out bindings known-stobjs
msg flet-alist cform ctx wrld state-vars)
; WARNING: This function's treatment of stobjs-out is unusual:
; (1) stobjs-out must be either t, nil, or list of stobj flags.
; It CANNOT be a function name (``an unknown'').
; (2) If stobjs-out is nil, it is treated as though it were a list of
; nils as long as lst.
; If stobjs-out is t, we translate each element of lst (with stobjs-out t)
; and return the resulting list.
; If stobjs-out is not t, it is a list of stobj flags as long as lst.
; We consider each element, x, of list in correspondence with each
; flag, flg. If flg is nil, we insist that the translation of x
; return one non-stobj result. If flg is a stobj, we insist that x BE
; flg -- except that x ``is'' a stobj, flg, only if x is flg and x is
; among known-stobjs (with proper treatment of known-stobjs = t).
; Msg is used to describe the form that contains the list, lst, of
; forms being translated. It is only used if an error is caused when
; some element of lst violates the stobj restrictions of stobjs-out.
; If msg is nil, no allusion to the containing form is made. If msg
; is a symbol, we describe the containing form as though it were a
; call of that function symbol. Otherwise, we print msg with ~@ in
; ``the form x is being used, @msg, where a stobj...''.
; The cform argument is a form that provides context -- it is the one to be
; printed by trans-er+ when there isn't another obvious contextual form to
; print. (Often x carries enough context.)
(cond ((atom lst) (trans-value nil))
((eq stobjs-out t)
(trans-er-let*
((x (translate11 (car lst) t bindings known-stobjs flet-alist
(car lst) ctx wrld state-vars))
(y (translate11-lst (cdr lst) t bindings known-stobjs msg flet-alist
cform ctx wrld state-vars)))
(trans-value (cons x y))))
((car stobjs-out)
(trans-er-let*
((x (cond
((eq (if (or (eq known-stobjs t)
(member-eq (car lst) known-stobjs))
(car lst)
nil)
(car stobjs-out))
(trans-value (car lst)))
; The following case is checked to allow our use of big-clock-entry to control
; recursion, a violation of our normal rule that state-producing forms are not
; allowed where STATE is expected (except when binding STATE). We have to look
; for the unexpanded form of the macro f-decrement-big-clock as well.
((and (eq (car stobjs-out) 'state)
(or (equal (car lst)
'(decrement-big-clock state))
(equal (car lst)
'(f-decrement-big-clock state))))
(trans-value '(decrement-big-clock state)))
((eq (car lst) (car stobjs-out))
; In this case, we failed because (car lst) is not considered a stobj even
; though it has the right name.
(let ((known-stobjs (collect-non-x nil known-stobjs)))
(trans-er+ cform ctx
"The form ~x0 is being used~#1~[ ~/, as an ~
argument to a call of ~x2,~/, ~@2,~] where the ~
single-threaded object of that name is ~
required. But in the current context, ~
~#3~[there are no declared stobj names~/the ~
only declared stobj name is ~&4~/the only ~
declared stobj names are ~&4~]."
(car lst)
(if (null msg) 0 (if (symbolp msg) 1 2))
msg
(cond ((null known-stobjs) 0)
((null (cdr known-stobjs)) 1)
(t 2))
known-stobjs)))
((and (symbolp (car lst))
(congruent-stobjsp (car lst)
(car stobjs-out)
wrld))
(trans-er+ cform ctx
"The form ~x0 is being used~#1~[ ~/, as an ~
argument to a call of ~x2,~/, ~@2,~] where the ~
single-threaded object ~x3 was expected, even ~
though these are congruent stobjs. See :DOC ~
defstobj, in particular the discussion of ~
congruent stobjs."
(car lst)
(if (null msg) 0 (if (symbolp msg) 1 2))
msg
(car stobjs-out)))
(t (trans-er+ cform ctx
"The form ~x0 is being used~#1~[ ~/, as an ~
argument to a call of ~x2,~/, ~@2,~] where the ~
single-threaded object ~x3 is required. Note ~
that the variable ~x3 is required, not merely a ~
term that returns such a single-threaded ~
object, so you may need to bind ~x3 with LET; ~
see :DOC stobj."
(car lst)
(if (null msg) 0 (if (symbolp msg) 1 2))
msg
(car stobjs-out)))))
(y (translate11-lst (cdr lst) (cdr stobjs-out)
bindings known-stobjs msg flet-alist cform ctx
wrld state-vars)))
(trans-value (cons x y))))
(t (trans-er-let*
((x (translate11 (car lst) '(nil) bindings known-stobjs flet-alist
; At one time we passed in (car lst) here for cform (to represent the
; surrounding context). But it makes more sense to preserve cform. To see
; why, first note that translate11-call passes the call down to
; translate11-lst. Now suppose we have an error, for example from the
; following where st is a stobj and the call should be (foo x st), not (foo st
; x).
; (defun bar (x st) (declare (xargs :stobjs st)) (foo st x))
; We want to see the call of foo when told that st is being used where an
; ordinary object is expected.
cform ctx wrld state-vars))
(y (translate11-lst (cdr lst) (cdr stobjs-out)
bindings known-stobjs msg flet-alist cform ctx
wrld state-vars)))
(trans-value (cons x y))))))
)
(defun translate1-cmp (x stobjs-out bindings known-stobjs ctx w state-vars)
; See also translate1 for a corresponding version that also returns state.
; Stobjs-out should be t, a proper STOBJS-OUT setting, a function symbol, or
; the symbol :stobjs-out.
; Stobjs-out t means we do not enforce mv-let or stobjs restrictions. A proper
; STOBJS-OUT setting (a list of stobj flags) enforces the given restrictions.
; A function symbol means we enforce the rules and determine the stobjs-out,
; binding the symbol in the returned bindings alist. In addition, a function
; symbol tells us we are in a definition body and enforce certain rules
; prohibiting calls of functions like DEFUN and IN-PACKAGE. The symbol
; :stobjs-out -- which is not a function symbol -- has the same meaning as a
; function symbol except that it tells us we are NOT processing a definition
; body. As is noted below, if the initial stobjs-out is :stobjs-out, bindings
; MUST be '((:stobjs-out . :stobjs-out)) and we use (eq (caar bindings)
; :stobjs-out) to determine that we are not in a definition.
; CAUTION: If you call this function with stobjs-out being a symbol, say fn,
; make sure that
; (a) fn is bound to itself in bindings, e.g., bindings = ((fn . fn)), and
; (b) fn is not an existing function name in w, in particular, it must not have
; a STOBJS-OUT setting, since that is what we use fn to compute.
; In general, bindings is a list of pairs, one for each fn in the clique being
; introduced, and each is initially bound to itself. If a function symbol is
; not bound in bindings, its STOBJS-OUT is obtained from w.
; Known-stobjs is either a list of stobj names (but may contain some NIL
; elements, to be ignored; see "slight abuse" comment in
; chk-acceptable-defuns1) or T (meaning, all stobj names in world w). A name
; is considered a stobj only if it is in this list.
; State-vars is a state-vars record, typically (default-state-vars t) unless
; one does not have state available, and then (default-state-vars nil).
; We return (mv erp transx bindings), where transx is the translation and
; bindings has been modified to bind every fn (ultimately) to a proper
; stobjs-out setting. A special case is when the initial stobjs-out is
; :stobjs-out; in that case, :stobjs-out is bound in the returned bindings to
; the stobjs-out of the expression being translated. Use translate-deref to
; recover the bindings.
(trans-er-let*
((result
(translate11 x stobjs-out bindings known-stobjs nil x ctx w state-vars)))
(cond ((and bindings
(null (cdr bindings))
(symbolp (caar bindings))
(eq (caar bindings) (cdar bindings)))
; This case can happen because x is the call of a non-executable function. We
; return a proper stobjs-out value, for example as passed by trans-eval to
; ev-for-trans-eval. This treatment is necessary for the following example, to
; avoid being unable to determine the output signature of g.
; (defun-nx f (x) x)
; (defun g (x) (f x))
; This treatment is consistent with our use of stobjs-out = (nil) for
; non-executable functions.
(trans-value result
(translate-bind (caar bindings) '(nil) bindings)))
(t (trans-value result)))))
(defun@par translate1 (x stobjs-out bindings known-stobjs ctx w state)
(cmp-and-value-to-error-quadruple@par
(translate1-cmp x stobjs-out bindings known-stobjs ctx w
(default-state-vars t))))
(defun collect-programs (names wrld)
; Names is a list of function symbols. Collect the :program ones.
(cond ((null names) nil)
((programp (car names) wrld)
(cons (car names) (collect-programs (cdr names) wrld)))
(t (collect-programs (cdr names) wrld))))
; The following is made more efficient below by eliminating the mutual
; recursion. This cut the time of a proof using bdds by nearly a factor of 4;
; it was of the form (implies (pred n) (prop n)) where pred has about 1800
; conjuncts. The culprit was the call(s) of all-fnnames in bdd-rules-alist1, I
; think.
; (mutual-recursion
;
; (defun all-fnnames (term)
; (cond ((variablep term) nil)
; ((fquotep term) nil)
; ((flambda-applicationp term)
; (union-eq (all-fnnames (lambda-body (ffn-symb term)))
; (all-fnnames-lst (fargs term))))
; (t
; (add-to-set-eq (ffn-symb term)
; (all-fnnames-lst (fargs term))))))
;
; (defun all-fnnames-lst (lst)
; (cond ((null lst) nil)
; (t (union-eq (all-fnnames (car lst))
; (all-fnnames-lst (cdr lst))))))
; )
(defun all-fnnames1 (flg x acc)
; Flg is nil for all-fnnames, t for all-fnnames-lst. Note that this includes
; function names occurring in the :exec part of an mbe. Keep this in sync with
; all-fnnames1-exec.
(cond (flg ; x is a list of terms
(cond ((null x) acc)
(t (all-fnnames1 nil (car x)
(all-fnnames1 t (cdr x) acc)))))
((variablep x) acc)
((fquotep x) acc)
((flambda-applicationp x)
(all-fnnames1 nil (lambda-body (ffn-symb x))
(all-fnnames1 t (fargs x) acc)))
(t
(all-fnnames1 t (fargs x)
(add-to-set-eq (ffn-symb x) acc)))))
(defmacro all-fnnames (term)
`(all-fnnames1 nil ,term nil))
(defmacro all-fnnames-lst (lst)
`(all-fnnames1 t ,lst nil))
(mutual-recursion
(defun logic-fnsp (term wrld)
; We check for the absence of calls (f ...) in term for which the symbol-class
; of f is :program. If f is a term (not merely a pseudo-term), that's
; equivalent to saying that every function symbol called in term is in :logic
; mode, i.e., has a 'symbol-class property of :ideal or :common-lisp-compliant.
(declare (xargs :guard (and (plist-worldp wrld)
(pseudo-termp term))))
(cond ((mbe :logic (atom term)
:exec (variablep term))
t)
((fquotep term) t)
((flambdap (ffn-symb term))
(and (logic-fnsp (lambda-body (ffn-symb term)) wrld)
(logic-fns-listp (fargs term) wrld)))
((programp (ffn-symb term) wrld) nil)
(t (logic-fns-listp (fargs term) wrld))))
(defun logic-fns-listp (lst wrld)
(declare (xargs :guard (and (plist-worldp wrld)
(pseudo-term-listp lst))))
(cond ((endp lst) t)
(t (and (logic-fnsp (car lst) wrld)
(logic-fns-listp (cdr lst) wrld)))))
)
(defun logic-termp (x wrld)
; Warning: Checks in rewrite-with-lemma, eval-clause-processor, and
; eval-clause-processor@par check logical-termp by separately checking termp
; and (not (program-termp ...)). If you change logical-termp, consider whether
; it's also necessary to modify those checks.
(declare (xargs :guard (plist-worldp-with-formals wrld)))
(and (termp x wrld)
(logic-fnsp x wrld)))
(defun logic-term-listp (x w)
; We could define this recursively, but proofs about logical-termp can involve
; program-termp and hence its mutual-recursion nest-mate, program-term-listp.
; So we here we avoid introducing a second recursion.
(declare (xargs :guard (plist-worldp-with-formals w)))
(and (term-listp x w)
(logic-fns-listp x w)))
(defun logic-fns-list-listp (x wrld)
(declare (xargs :guard (and (plist-worldp wrld)
(pseudo-term-list-listp x))))
(cond ((endp x) t)
(t (and (logic-fns-listp (car x) wrld)
(logic-fns-list-listp (cdr x) wrld)))))
(defun logic-term-list-listp (x w)
(declare (xargs :guard (plist-worldp-with-formals w)))
(and (term-list-listp x w)
(logic-fns-list-listp x w)))
(defun translate-cmp (x stobjs-out logic-modep known-stobjs ctx w state-vars)
; See translate. Here we return a context-message pair; see the Essay on
; Context-message Pairs. State-vars is a state-vars record, typically
; (default-state-vars t) unless one does not have state available, and then
; (default-state-vars nil).
(mv-let (erp val bindings)
(translate1-cmp x stobjs-out nil known-stobjs ctx w state-vars)
(declare (ignore bindings))
(cond (erp ; erp is a ctx and val is a msg
(mv erp val))
((and logic-modep
(not (logic-fnsp val w)))
(er-cmp ctx
"Function symbols of mode :program are not allowed ~
in the present context. Yet, the function ~
symbol~#0~[ ~&0 occurs~/s ~&0 occur~] in the ~
translation of the form~|~% ~x1,~%~%which is~|~% ~
~x2."
(collect-programs (all-fnnames val) w)
x
val))
(t (value-cmp val)))))
(defun@par translate (x stobjs-out logic-modep known-stobjs ctx w state)
; This is the toplevel entry into translation throughout ACL2,
; excepting translate-bodies, which translates the bodies of
; definitions. The output of translate is (mv erp transx state).
; Stobjs-out should be
; * t - to indicate that we are translating only for logical use, as
; in theorems etc. Do NOT use t for defuns, defmacros,
; defconst, or other events involving Common Lisp execution.
; * (s1 ... sn) - where each si is either nil or a stobj name (possibly
; STATE) to indicate that the mv-let and stobj
; restrictions should be enforced AND that x is to have
; the indicated stobj signature. See the Essay on
; STOBJS-IN and STOBJS-OUT.
; Logic-modep should be set when we want to ensure that the resulting
; term does not mention any function symbols of defun-mode :program.
; This check is NOT made on-the-fly (in translate1) but as an
; after-the-fact convenience here.
; Known-stobjs is either a list of stobj names (but may contain some NIL
; elements, to be ignored; see "slight abuse" comment in
; chk-acceptable-defuns1) or T (meaning, all stobj names in world w). A name
; is considered a stobj only if it is in this list.
(cmp-to-error-triple@par
(translate-cmp x stobjs-out logic-modep known-stobjs ctx w
(default-state-vars t))))
(defun translatable-p (form stobjs-out bindings known-stobjs ctx wrld)
(mv-let (erp val bindings)
(translate1-cmp form stobjs-out bindings known-stobjs ctx wrld
(default-state-vars nil))
(declare (ignore val bindings))
(null erp)))
(defmacro chk-translatable (form shape)
`(translate-and-test
(lambda (qform)
(cond ((translatable-p (cadr qform)
',(cond ((eq shape 'state)
'(state))
(t (cdr shape)))
nil t 'chk-translatable
world)
t)
(t (msg "IO? was given the following body, which fails to ~
translate for the expected shape, STATE:~|~ ~y0"
',form))))
',form))
; We now move on to the definition of the function trans-eval, which
; evaluates a form containing references to the free variable STATE,
; and possibly to other stobj names, by binding 'STATE to the given
; state and the other stobj names to their current values in that
; state. Consing STATE and other stobjs into a list is a gross
; violation of our rules on the use of stobjs. We believe it is
; legitimate in the special case that a stobj variable name is used in
; the appropriate places in the form, a check that we can make by
; translating the form and inspecting the STOBJS-IN and STOBJS-OUT.
; We arrange to admit trans-eval to the logic by special dispensation.
(defun replaced-stobj (name)
(if (eq name 'STATE)
; This is just an optimization because it is so common.
'REPLACED-STATE
(packn (list "REPLACED-" name))))
(defun replace-stobjs1 (stobjs-out val)
(cond ((endp val) val)
((car stobjs-out)
(cons (replaced-stobj (car stobjs-out))
(replace-stobjs1 (cdr stobjs-out) (cdr val))))
(t (cons (car val)
(replace-stobjs1 (cdr stobjs-out) (cdr val))))))
(defun replace-stobjs (stobjs-out val)
; Replace the stobj objects indicated by the stobj flags in stobjs-out
; by an ordinary symbol derived from the stobj name. In the case that
; the stobj objects are the live ones, this is crucial to do before
; returning out of trans-eval. Val is either a single value or a list
; of 2 or more values, as indicated by stobjs-out. If stobjs-out is
; nil it is treated as a list of as many nils as necessary and no
; change is made to val.
(cond ((null stobjs-out) val)
((null (cdr stobjs-out))
(cond ((car stobjs-out)
(replaced-stobj (car stobjs-out)))
(t val)))
(t (replace-stobjs1 stobjs-out val))))
; The following is from an old attempt to make the read-eval-print loop handle
; free variables as references to globals. We abandoned this attempt because
; the LAMBDA abstraction handling introduced by mv-let was forcing globals to
; be evaluated before they had been set, making it confusing which value of a
; global was to be used. We have left in trans-eval the code that used this,
; within comments. Note that such an attempt now would need to change
; 'untouchables to 'untouchable-vars.
; (defun build-alist (vars state)
; (declare (xargs :guard (true-listp vars)))
; (cond ((null vars) (value nil))
; ((eq (car vars) 'state)
; (build-alist (cdr vars) state))
; ((member (car vars) (global-val 'untouchables (w state)))
; (er soft 'trans-eval
; "The global variable ~x0 is on untouchables."
; (car vars)))
; (t (er-let* ((alist (build-alist (cdr vars) state)))
; (value (cons (cons (car vars)
; (list 'get-global
; (list 'quote (car vars)) 'state))
; alist))))))
;
(defun non-stobjps (vars known-stobjs w)
(cond ((endp vars) nil)
((stobjp (car vars) known-stobjs w)
(non-stobjps (cdr vars) known-stobjs w))
(t (cons (car vars)
(non-stobjps (cdr vars) known-stobjs w)))))
(defun user-stobjsp (stobjs-out)
(cond ((endp stobjs-out) nil)
((or (null (car stobjs-out))
(eq (car stobjs-out) 'state))
(user-stobjsp (cdr stobjs-out)))
(t t)))
(defun put-assoc-eq-alist (alist1 alist2)
; Setting: A form has been evaluated, producing a state with alist1 as its
; user-stobj-alist. The evaluation also produced some latches, which are
; alist2. We wish to merge the latches into the user-stobj-alist of the state
; and this is the workhorse. We know that the form returns at least one user
; stobj (and so, we know the form is not a DEFSTOBJ or DEFABSSTOBJ or its undo
; or redo). Given this knowledge, we wish to store the new stobjs in latches
; back into the user-stobj-alist.
; Spec for this function: Both arguments are duplicate-free symbol alists. For
; every (key . val) in alist2 we a put-assoc-eq of key and val into alist1.
(cond ((endp alist2) alist1)
; The following clause is an optimization. If alist1 and alist2 are equal and
; we continued as though this clause weren't here, then we would store each
; (key . val) pair of alist2 into an already identical pair of alist1,
; affecting no change of alist1. So we can stop and return alist1 now. (Note
; that if the two alists contained duplicate keys, this would not be an
; optimization: alist1 = alist2 = '((a . 1) (a . 2)) would yeild '((a . 1) (a
; . 2)) with this optimization in place but would yeild '((a . 2) (a . 2))
; without this optimization.) This optimization increases the efficiency of
; trans-eval's handling of latches. See the Essay on the Handling of
; User-Stobj-Alist in Trans-Eval.
((equal alist2 alist1) alist1)
(t
(put-assoc-eq-alist (put-assoc-eq (caar alist2)
(cdar alist2)
alist1)
(cdr alist2)))))
#-acl2-loop-only
(defun-one-output chk-user-stobj-alist (stobjs alist acc ctx)
(if (endp alist)
(if acc
; We use interface-er rather than (er hard ...) because we do not expect to be
; in the context of a (catch 'raw-ev-fncall ...).
(interface-er
"It is illegal to run ACL2 evaluators trans-eval and ~
simple-translate-and-eval on any term that mentions a stobj that ~
has been bound by with-local-stobj or stobj-let. The reason is ~
that those evaluators expect each stobj to match perfectly the ~
corresponding global stobj that is stored in the ACL2 state. The ~
offending stobj name~#0~[ is~/s are~]: ~&0."
acc)
t)
(if (and (member-eq (caar alist) stobjs)
(not (eq (symbol-value (the-live-var (caar alist)))
(cdar alist))))
(chk-user-stobj-alist stobjs
(cdr alist)
(cons (caar alist) acc)
ctx)
(chk-user-stobj-alist stobjs (cdr alist) acc ctx))))
(defun user-stobj-alist-safe (ctx stobjs state)
#-acl2-loop-only
(if stobjs ; optimization
(chk-user-stobj-alist stobjs (user-stobj-alist state) nil ctx)
(user-stobj-alist state))
#+acl2-loop-only
(declare (ignore ctx stobjs))
(user-stobj-alist state))
(defun collect-user-stobjs (stobjs-out)
(cond ((endp stobjs-out) nil)
((or (null (car stobjs-out))
(eq (car stobjs-out) 'state))
(collect-user-stobjs (cdr stobjs-out)))
(t (cons (car stobjs-out)
(collect-user-stobjs (cdr stobjs-out))))))
(defun ev-for-trans-eval (trans vars stobjs-out ctx state aok
user-stobjs-modified-warning)
; WARNING: This function must never be in :logic mode, because it can violate
; single-threadedness! See :doc user-stobjs-modified-warnings. Fortunately,
; it depends hereditarily on the function ev, which has raw Lisp code and is
; thus (as of this writing) prevented from being promoted to :logic mode.
; Warning: Keep in sync with ev-w-for-trans-eval.
; Trans is a translated term with the indicated stobjs-out, and vars is
; (all-vars term). We return the result of evaluating trans, but formulated as
; an error triple with possibly updated state as described in trans-eval.
; This function is called by trans-eval, and is a suitable alternative to
; trans-eval when the term to be evaluated has already been translated by
; translate1 with stobjs-out = :stobjs-out.
(let ((alist (cons (cons 'state
(coerce-state-to-object state))
(user-stobj-alist-safe 'trans-eval vars state)))
(user-stobjs (collect-user-stobjs stobjs-out)))
(mv-let
(erp val latches)
(ev trans alist state alist
; The next argument is hard-error-returns-nilp. Think hard before changing it!
; For example, ev-for-trans-eval is called by eval-clause-processor; hence if a
; clause-processor invokes sys-call, the call (er hard ...) under sys-call will
; be guaranteed to cause an error that the user can see (and react to).
nil aok)
; The first state binding below is the state produced by the evaluation of the
; form. The second state is the first, but with the user-stobj-alist of that
; state (possibly) updated to contain the modified latches. Note that we don't
; bother to modify the user-stobj-alist if the form's output signature does not
; involve a user-defined stobj. The particular forms we have in mind for this
; case are DEFSTOBJ and DEFABSSTOBJ forms and their ``undoers'' and
; ``re-doers''. They compute the state they mean and we shouldn't mess with
; the user-stobj-alist of their results, else we risk overturning carefully
; computed answers by restoring old stobjs.
(pprogn
(coerce-object-to-state (cdr (car latches)))
(cond (user-stobjs
(pprogn
(update-user-stobj-alist
(put-assoc-eq-alist (user-stobj-alist state)
(cdr latches))
state)
(cond
(user-stobjs-modified-warning
(warning$ ctx "User-stobjs-modified"
"A call of the ACL2 evaluator on the term ~x0 has ~
modified the user stobj~#1~[~/s~] ~&1. See :DOC ~
user-stobjs-modified-warning."
trans
user-stobjs))
(t state))))
(t state))
(cond
(erp
; If ev caused an error, then val is a pair (str . alist) explaining the error.
; We will process it here (as we have already processed the translate errors
; that might have arisen) so that all the errors that might be caused by this
; translation and evaluation are handled within this function.
(error1 ctx (car val) (cdr val) state))
(t (mv nil
(cons stobjs-out
(replace-stobjs stobjs-out val))
state)))))))
#+acl2-par
(defun ev-w-for-trans-eval (trans vars stobjs-out ctx state aok
user-stobjs-modified-warning)
; Warning: Keep in sync with ev-for-trans-eval.
; Parallelism wart: add an assertion that stobjs-out does not contain state (or
; any other stobj). Perhaps the assertion should be that stobjs-out equals the
; representation for an ordinary value.
(let ((alist (cons (cons 'state
(coerce-state-to-object state))
(user-stobj-alist-safe 'trans-eval vars state)))
(user-stobjs (collect-user-stobjs stobjs-out)))
(mv-let
(erp val)
(ev-w trans alist
(w state)
(user-stobj-alist state)
(f-get-global 'safe-mode state) (gc-off state)
nil aok)
(prog2$
(and user-stobjs-modified-warning
(warning$@par ctx "User-stobjs-modified"
"A call of the ACL2 evaluator on the term ~x0 has modified the ~
user stobj~#1~[~/s~] ~&1. See :DOC ~
user-stobjs-modified-warning."
trans
user-stobjs))
(cond
(erp
; If ev caused an error, then val is a pair (str . alist) explaining
; the error. We will process it here (as we have already processed the
; translate errors that might have arisen) so that all the errors that
; might be caused by this translation and evaluation are handled within
; this function.
; Parallelism wart: check that the above comment is true and applicable in this
; function, even though we call ev-w instead of ev.
(error1@par ctx (car val) (cdr val) state))
(t (mv nil
(cons stobjs-out
(replace-stobjs stobjs-out val)))))))))
(defun macroexpand1* (x ctx wrld state)
; See macroexpand1*-cmp, including the Warning there to keep in sync with
; translate11.
(cmp-to-error-triple
(macroexpand1*-cmp x ctx wrld (default-state-vars t))))
(defun trans-eval1 (term stobjs-out ctx wrld state aok
user-stobjs-modified-warning)
; WARNING: This function must never be in :logic mode, because it can violate
; single-threadedness! See :doc user-stobjs-modified-warnings. Fortunately,
; it depends hereditarily on the function ev, which has raw Lisp code and is
; thus (as of this writing) prevented from being promoted to :logic mode.
(let ((vars (all-vars term)))
(cond
((non-stobjps vars t wrld) ;;; known-stobjs = t
(er soft ctx
"Global variables, such as ~&0, are not allowed. See :DOC ASSIGN ~
and :DOC @."
(non-stobjps vars t wrld))) ;;; known-stobjs = t
(t (ev-for-trans-eval term vars stobjs-out ctx state aok
user-stobjs-modified-warning)))))
(defun trans-eval0 (form ctx state aok user-stobjs-modified-warning)
; WARNING: This function must never be in :logic mode, because it can violate
; single-threadedness! See :doc user-stobjs-modified-warnings. Fortunately,
; it depends hereditarily on the function ev, which has raw Lisp code and is
; thus (as of this writing) prevented from being promoted to :logic mode.
(let ((wrld (w state)))
(er-let* ((form (macroexpand1* form ctx wrld state)))
(cond
((and (consp form)
(eq (car form) 'if)
(true-listp form)
(equal (length form) 4))
; Do some lazy evaluation, in order to avoid translating the unnecessary
; branch.
(let ((simple-stobjs-out '(nil)))
(er-let* ((arg0 (translate (cadr form) simple-stobjs-out nil t ctx wrld
state))
(val0 (trans-eval1 arg0 simple-stobjs-out ctx wrld state
aok user-stobjs-modified-warning)))
(if (cdr val0) ; the actual value
(trans-eval0 (caddr form) ctx state aok
user-stobjs-modified-warning)
(trans-eval0 (cadddr form) ctx state aok
user-stobjs-modified-warning)))))
(t
(mv-let
(erp trans bindings state)
(translate1 form
:stobjs-out '((:stobjs-out . :stobjs-out))
t
ctx wrld state)
; Known-stobjs = t. We expect trans-eval to be used only when the
; user is granted full access to the stobjs in state. Of course, some
; applications of trans-eval, e.g., in eval-event-lst, first check
; that the form doesn't access stobjs or state.
(cond
(erp (mv t nil state))
(t (trans-eval1 trans (translate-deref :stobjs-out bindings) ctx wrld
state aok user-stobjs-modified-warning)))))))))
(defun trans-eval (form ctx state aok)
; WARNING: This function must never be in :logic mode, because it can violate
; single-threadedness! See :doc user-stobjs-modified-warnings. Fortunately,
; it depends hereditarily on the function ev, which has raw Lisp code and is
; thus (as of this writing) prevented from being promoted to :logic mode.
; Advice: See if simple-translate-and-eval will do the job.
; This function translates form and then evaluates it, with 'state
; bound to state and the user's stobj names bound to their current
; values in (user-stobj-alist state).
; We return an error triple: (mv erp val state'). If erp is t, then
; an error occurred (which has been printed into state'). State' will
; reflect changes caused to single-threaded objects prior to the
; error.
; If erp is nil, val is (stobjs-out . replaced-val), where stobjs-out
; is the stobjs out of the translated form and replaced-val is the
; value of the evaluation of form, with any output stobjs replaced by
; symbols as per replace-stobjs. The final values of the stobjs may
; be found in (user-stobj-alist state'). Note that this change to
; state -- the storage of the final stobjs -- is done at the
; conclusion of the computation and is not directed by form.
(trans-eval0 form ctx state aok t))
(defun trans-eval-no-warning (form ctx state aok)
; WARNING: This function must never be in :logic mode, because it can violate
; single-threadedness! See :doc user-stobjs-modified-warnings. Fortunately,
; it depends hereditarily on the function ev, which has raw Lisp code and is
; thus (as of this writing) prevented from being promoted to :logic mode.
; See :doc user-stobjs-modified-warning.
(trans-eval0 form ctx state aok nil))
(defun trans-eval-default-warning (form ctx state aok)
; WARNING: This function must never be in :logic mode, because it can violate
; single-threadedness! See :doc user-stobjs-modified-warnings. Fortunately,
; it depends hereditarily on the function ev, which has raw Lisp code and is
; thus (as of this writing) prevented from being promoted to :logic mode.
; This version of trans-eval is appropriate when the relevant LD special is to
; be consulted for when to invoke the user-stobjs-modified-warning. See :doc
; user-stobjs-modified-warning.
(trans-eval0 form ctx state aok
(f-get-global 'ld-user-stobjs-modified-warning state)))
(defun simple-translate-and-eval (x alist ok-stobj-names msg ctx wrld state
aok)
; A Note on the Reason this Function Exists:
; This function is a cousin of trans-eval that is much easier to use
; in simple cases. Trans-eval can handle any well-formed term. Thus,
; it must have a way to communicate to the caller how many results are
; being returned and what they are. The obvious thing for trans-eval
; to do is to list the results. But if one of them is STATE or some
; other stobj, it cannot. So trans-eval has a rather complicated
; interface that permits the caller to determine the multiplicity of
; the result and whether and where the stobjs appear (or, more precisely,
; are supposed to appear) in the output vector. See the documentation
; of trans-eval for its specification.
; This function, simple-translate-and-eval, is designed to handle more
; simply the most common case, namely, when x is supposed to be a term
; that returns one result and that result is not state or any other
; stobj. In that case, we can return the result directly.
; While trans-eval may be used whenever translation and evaluation are
; needed, we recommend using simple-translate-and-eval if the given
; term returns a single, non-stobj result, simply because the
; interface is simpler.
; The Spec of SIMPLE-TRANSLATE-AND-EVAL: We translate x, requiring
; that it be a term that returns one non-stobj result. We verify that
; the translation mentions no variables other than those bound in
; alist and the stobj names listed in ok-stobj-names. We then
; evaluate the translation of x under alist', where alist' is obtained
; from alist by appending the bindings of 'state to state and
; (user-stobj-alist state). (The extra bindings can't hurt. The
; bindings of alist have priority.) If no errors arise, we return a
; pair, (term . val), where term is the translation of x and val is
; its value under alist'.
; Msg is a ~@ message that should describe x and begin with a capital
; letter. For example, msg might be the string "The second argument
; to foo".
; Note that we call translate with logic-modep nil. Thus, :program
; mode functions may appear in x.
; Keep in sync with simple-translate-and-eval@par.
(er-let* ((term (translate x '(nil) nil t ctx wrld state)))
; known-stobjs = t. We expect simple-translate-and-eval to be used
; only when the user is granted full access to the stobjs in state
; (without modification rights, of course).
(let ((vars (all-vars term))
(legal-vars (append (strip-cars alist)
ok-stobj-names)))
(cond ((not (subsetp-eq vars legal-vars))
(er soft ctx
"~@0 may contain ~#1~[no variables~/only the ~
variable ~&2~/only the variables ~&2~], but ~
~x3 contains ~&4."
msg
(cond ((null legal-vars) 0)
((null (cdr legal-vars)) 1)
(t 2))
legal-vars
x
vars))
(t (mv-let (erp val latches)
(ev term
(append alist
(cons (cons 'state
(coerce-state-to-object
state))
(user-stobj-alist-safe
'simple-translate-and-eval
(intersection-eq
ok-stobj-names
vars)
state)))
state nil nil aok)
(declare (ignore latches))
; Parallelism wart: since we ignore latches, we should be able to create a
; version of simple-translate-and-eval that returns cmp's.
(cond
(erp (pprogn
(error-fms nil ctx (car val) (cdr val)
state)
(er soft ctx
"~@0 could not be evaluated."
msg)))
(t (value (cons term val))))))))))
(defun error-fms-cw (hardp ctx str alist)
(wormhole 'comment-window-io
'(lambda (whs)
(set-wormhole-entry-code whs :ENTER))
(list hardp ctx str alist)
`(let ((hardp (nth 0 (@ wormhole-input)))
(ctx (nth 1 (@ wormhole-input)))
(str (nth 2 (@ wormhole-input)))
(alist (nth 3 (@ wormhole-input))))
(pprogn (error-fms hardp ctx str alist state)
(value :q)))
:ld-error-action :error ; for robustness; no error is expected
:ld-verbose nil
:ld-pre-eval-print nil
:ld-prompt nil))
#+acl2-par
(defmacro error-fms@par (&rest args)
`(error-fms-cw ,@args))
(defun simple-translate-and-eval-cmp (x alist ok-stobj-names msg ctx wrld state
aok safe-mode gc-off)
; Warning: Errors printed by this function are not inhibited by
; set-inhibit-output-lst.
; This version of simple-translate-and-eval returns a context-message pair; see
; the Essay on Context-message Pairs. See simple-translate-and-eval for
; documentation, for example that translation is done under the assumption that
; the user is granted full access to the stobjs in state.
; Notice that we pass in safe-mode and gc-off explicitly, rather than reading
; them from state, because there are occasions (e.g., eval-theory-expr@par)
; where at least one of these parameters could differ from its corresponding
; state value. But couldn't we have simply state-global-let*-bound the
; relevant state globals? Well, no, not in contexts like eval-theory-expr@par
; that do not allow modification of state.
(er-let*-cmp
((term (translate-cmp x '(nil) nil t ctx wrld (default-state-vars t))))
(let ((vars (all-vars term))
(legal-vars (append (strip-cars alist)
ok-stobj-names)))
(cond ((not (subsetp-eq vars legal-vars))
(er-cmp ctx
"~@0 may contain ~#1~[no variables~/only the variable ~
~&2~/only the variables ~&2~], but ~x3 contains ~&4."
msg
(cond ((null legal-vars) 0)
((null (cdr legal-vars)) 1)
(t 2))
legal-vars
x
vars))
(t (mv-let (erp val)
; Note that because translate-cmp is called above with parameter stobjs-out =
; '(nil), we have met the requirement on ev-w; specifically, evaluation of the
; given form cannot modify any stobj.
(ev-w term
(append alist
(cons (cons 'state
(coerce-state-to-object
state))
(user-stobj-alist-safe
'simple-translate-and-eval
(intersection-eq
ok-stobj-names
vars)
state)))
(w state)
(user-stobj-alist state)
safe-mode gc-off nil aok)
(cond
(erp (prog2$
(error-fms-cw nil ctx (car val) (cdr val))
(er-cmp ctx
"~@0 could not be evaluated."
msg)))
(t (value-cmp (cons term val))))))))))
(defun simple-translate-and-eval-error-double (x alist ok-stobj-names msg ctx
wrld state aok safe-mode
gc-off)
; Warning: Errors printed by this function are not inhibited by
; set-inhibit-output-lst.
; This version of simple-translate-and-eval returns an error double (mv erp
; val). See simple-translate-and-eval for documentation, for example that
; translation is done under the assumption that the user is granted full access
; to the stobjs in state.
; This function was requested by David Rager so that he could make the
; community book books/cutil/wizard.lisp thread-safe for ACL2(p). We return an
; error double (mv erp val).
; Our plan is to introduce simple-translate-and-eval-cmp first, because we have
; nice idioms for context-message pairs. Then we trivially define
; simple-translate-and-eval-error-double in terms of
; simple-translate-and-eval-cmp.
; See a comment in simple-translate-and-eval-cmp for why we pass in safe-mode
; and gc-off explicitly, rather than reading them from state.
(cmp-to-error-double
(simple-translate-and-eval-cmp x alist ok-stobj-names msg ctx wrld state
aok safe-mode gc-off)))
#+acl2-par
(defun simple-translate-and-eval@par (x alist ok-stobj-names msg ctx wrld state
aok safe-mode gc-off)
; This function is just an ACL2(p) wrapper for
; simple-translate-and-eval-error-double. The history is that this function
; was defined first, but David Rager needed a version that worked in
; non-parallel ACL2 as well; see simple-translate-and-eval-error-double.
; We keep the function simple-translate-and-eval@par because of its handling in
; bodies of functions defined using defun@par according to the table
; *@par-mappings*. See for example the call of simple-translate-and-eval@par
; in (defun@par translate-do-not-hint ...).
(simple-translate-and-eval-error-double x alist ok-stobj-names msg ctx wrld
state aok safe-mode gc-off))
(defun tilde-*-alist-phrase1 (alist evisc-tuple level)
(cond ((null alist) nil)
(t (cons (msg "~t0~s1 : ~Y23~|" level (caar alist) (cdar alist)
evisc-tuple)
(tilde-*-alist-phrase1 (cdr alist) evisc-tuple level )))))
(defun tilde-*-alist-phrase (alist evisc-tuple level)
; This prints out a substitution alist, e.g., ((x . a) (y . b) (z . c))
; in the form
; x : a
; y : b
; z : c
; when the output is printed with ~*.
(list "" "~@*" "~@*" "~@*"
(tilde-*-alist-phrase1 alist evisc-tuple level)))
(defun set-temp-touchable-fns (x state)
; Keep this in sync with set-temp-touchable-vars.
; Why make the indicated check below, rather than using a guard? Because we
; want that check to be made even when this function is called underneath
; :program mode functions, hence even when guards aren't checked.
(cond ((or (eq x t) (symbol-listp x))
(f-put-global 'temp-touchable-fns x state))
(t (prog2$ (er hard 'set-temp-touchable-fns
"The first argument to ~x0 may must be either ~x0 or a ~
true list of symbols, unlike:~| ~x1"
'temp-touchable-fns
x)
state))))
(defun set-temp-touchable-vars (x state)
; Keep this in sync with set-temp-touchable-fns.
; Why make the indicated check below, rather than using a guard? Because we
; want that check to be made even when this function is called underneath
; :program mode functions, hence even when guards aren't checked.
(cond ((or (eq x t) (symbol-listp x))
(f-put-global 'temp-touchable-vars x state))
(t (prog2$ (er hard 'set-temp-touchable-vars
"The first argument to ~x0 may must be either ~x0 or a ~
true list of symbols, unlike:~| ~x1"
'temp-touchable-vars
x)
state))))
(defun clear-temp-touchable-fns (state)
(f-put-global 'temp-touchable-fns nil state))
(defun clear-temp-touchable-vars (state)
(f-put-global 'temp-touchable-vars nil state))
; Note on functional programming.
; Lest anyone think that ACL2 fails to have a functional programming
; component, we here illustrate how to code some of the traditional
; function manipulating operations of Lisp in ACL2. All these
; operations depend upon the function trans-eval. These functions are
; at the moment not very efficient because they involve a runtime call
; to translate. Furthermore, proving interesting theorems about these
; functions would not be easy because they are tied up with the
; ``big-clock'' story which makes our evaluator primitive recursive.
; But nevertheless it is worth pointing out that this capability at
; least exists in ACL2.
(defun mapcar$ (fn l state)
; A version of the traditional lisp mapper, e.g.
; (mapcar$ 'reverse '((1 2 3) (4 5)) state) =>
; ((3 2 1) (5 4))
(cond ((null l) (value nil))
(t (er-let* ((ans (trans-eval (list fn (list 'quote (car l)))
'mapcar$ state t))
(rst (mapcar$ fn (cdr l) state)))
; Ans is (stobjs-out . replaced-val), where stobjs-out indicates where
; stobjs are located in replaced-val. However, those stobjs have been
; replaced by simple symbols. The final value of state produced by fn
; is state, which may be among the stobjs-out. We just cons the
; replaced-val into our answer, which is a little peculiar since it
; may contain 'replaced-state, but it's sufficient to indicate what is
; happening and the final state has been side-effected in the proper
; sequence.
(value (cons (cdr ans) rst))))))
(defun mapdo (fn l state)
; A mapper that simply applies the fn for side effect (on the
; free variable state), e.g.
; (mapdo '(lambda (x) (princ$ x *standard-co* state)) '(1 2 3) state)
; prints 123 and returns nil.
(cond ((null l) (value nil))
(t (er-let* ((ans (trans-eval (list fn (list 'quote (car l)))
'mapdo state t))
(rst (mapdo fn (cdr l) state)))
(value nil)))))
(defun always (fn l state)
; A universal quantifier, e.g. (always 'rationalp '(1 2 3) state) =>
; t
(cond ((null l) (value t))
(t (er-let* ((ans
(trans-eval
(list fn (list 'quote (car l)))
'always
state t)))
(cond ((null (cdr ans)) (value nil))
(t (always fn (cdr l) state)))))))
(defun thereis (fn l state)
; An existential quantifier, e.g.
; (thereis 'rationalp '(a 2 b) state) => '(2 B)
(cond ((null l) (value nil))
(t (er-let* ((ans
(trans-eval
(list fn (list 'quote (car l)))
'thereis
state t)))
(cond ((cdr ans) (value l))
(t (thereis fn (cdr l) state)))))))
; Now that ev-w, translate, untranslate, and so on are all defined, let us
; populate guard-msg-table.
(table guard-msg-table nil nil
:guard
(and (symbolp key)
(or (null val)
(termp val world))))
(defmacro set-guard-msg (fn form)
(declare (xargs :guard (symbolp fn)))
`(table guard-msg-table
',fn
(mv-let
(erp term bindings)
(translate1-cmp ',form
'(nil) ; stobjs-out
nil ; bindings
t ; known-stobjs
'set-guard-msg ; ctx
world
(default-state-vars nil))
(declare (ignore bindings))
(prog2$ (and erp ; erp is ctx, term is msg
(er hard! erp "~@0" term))
term))))
(set-guard-msg the-check
(msg "The object ~x0 does not satisfy the type declaration ~
~x1.~@2"
(nth 2 args)
(nth 1 args)
coda))
(set-guard-msg the-check-for-*1*
(msg "The object ~x0 does not satisfy the type declaration ~x1 ~
for bound variable ~x2.~@3"
(nth 2 args)
(nth 1 args)
(nth 3 args)
coda))
(set-guard-msg check-dcl-guardian
(msg "The guard condition ~x0, which was generated from a type ~
declaration, has failed.~@1"
(untranslate (cadr args) t world)
coda))
|