/usr/share/perl5/PAI_scripts/CutOff.pm is in alien-hunter 1.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 | =head1 NAME
PAI_scripts::CutOff
=head1 SYNOPSIS
determines dynamically a genome-specific score threshold using k-means clustering (k=3)
=head1 AUTHOR
George Vernikos <gsv(at)sanger.ac.uk>
=head1 LICENSE
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
=cut
package PAI_scripts::CutOff;
use Exporter;
@ISA = ("Exporter");
@EXPORT = qw (&Cutoff);
sub Cutoff{
$ScoresRef=$_[0];
$min=0;
%ALLscores;
%scores;
$cutoff=0;
$Func_prev=0;
$Func_max=0;
foreach $z ($ScoresRef){
foreach $key (keys %$z){
$ALLscores{$key}="$z->{$key}";
}
}
#@keys contains the keys sorted by their value (min->max)
@keys = sort {
$ALLscores{$a} <=> $ALLscores{$b}
} keys %ALLscores;
$NumKeys = keys %ALLscores;
if($NumKeys<2){
print "\n not enough data ($NumKeys) to determine threshold; T=0\n";
goto end;
}
#minimum value
$min=$ALLscores{$keys[0]};
print "\n scaling 0-100\n";
#it scales to zero
foreach $item (@keys){
$ALLscores{$item}=$ALLscores{$item}-$min;
}
#maximum value
$max=$ALLscores{$keys[$NumKeys-1]};
#it scales to maximum: Sx'=(Sx*100)/Smax
foreach $item (@keys){
$scores{$item}=sprintf("%.3f",($ALLscores{$item}*100)/$max);
$ALLscores{$item}=sprintf("%.3f",($ALLscores{$item}*100)/$max);
}
#@keys contains the keys sorted by their value (max->min)
@keys = sort {
$scores{$b} <=> $scores{$a}
} keys %scores;
#Exponential Smoothing (Damping factor = 0.5)
print "\n Exponential Smoothing (Damping factor = 0.5)\n\n";
for($i=1;$i<=$NumKeys-1;$i++){
$scores{$keys[$i]}=0.5*$scores{$keys[$i]}+0.5*$scores{$keys[$i-1]};
#print "$scores{$keys[$i]}\n";
}
#@keys contains the keys sorted by their value (min->max)
@keys = sort {
$scores{$a} <=> $scores{$b}
} keys %scores;
#for($i=0;$i<=$NumKeys-1;$i++){
#print "$scores{$keys[$i]}\n";
#}
############################################################
#check if not enough data for k-means
if($NumKeys>=300){
print " K-means Clustering:\n\nFunc_max\tCutoff\tCntrA\t\tCntrB\t\tCntrC\n";
#initialize the 3 centroids and redo - keeping the iteration with the maximum obj function, i.e. that seperates the 3 clusters the most
for($j=10;$j<=40;$j+=10){
for($k=0;$k<=(100-$j*2);$k+=10){
$a=$k;
$b=$k+$j;
$c=$k+($j*2);
#calculate distances of each Xi to each of the 3 centroids |Xi-Cj|^2
REDO:
for($i=0;$i<$NumKeys;$i++){
$dist_a{$i}=($scores{$keys[$i]}-$a)*($scores{$keys[$i]}-$a);
$dist_b{$i}=($scores{$keys[$i]}-$b)*($scores{$keys[$i]}-$b);
$dist_c{$i}=($scores{$keys[$i]}-$c)*($scores{$keys[$i]}-$c);
#calculates the objective function sum_j(sum_i(|Xi-Cj|^2))
$f+=$dist_a{$i}+$dist_b{$i}+$dist_c{$i};
}
$Func=$f;
$f=0;
#scan through each hash to find where the transition to the other cluster occurs
for($i=0;$i<$NumKeys;$i++){
if($dist_a{$i}<=$dist_b{$i}){
$trans_a=$i;
}
if($dist_b{$i}<=$dist_c{$i}){
$trans_b=$i;
}
}
#sets cutoff to the score value where the transition from cluster 1 -> 2 occurs
$cutoff=$scores{$keys[$trans_a+1]};
#recalculates mean for each cluster
#cluster a
$count=0;
$sum=0;
for($i=0;$i<=$trans_a;$i++){
$count++;
$sum+=$scores{$keys[$i]};
}
if($count!=0){
$mean_a=$sum/$count;
}
else{
$mean_a=0;
}
#cluster b
$count=0;
$sum=0;
for($i=$trans_a+1;$i<=$trans_b;$i++){
$count++;
$sum+=$scores{$keys[$i]};
}
if($count!=0){
$mean_b=$sum/$count;
}
else{
$mean_b=0;
}
#cluster c
$count=0;
$sum=0;
for($i=$trans_b+1;$i<$NumKeys;$i++){
$count++;
$sum+=$scores{$keys[$i]};
}
if($count!=0){
$mean_c=$sum/$count;
}
else{
$mean_c=0;
}
#convergence criteria
$dif=abs($Func-$Func_prev);
if($dif>0.1){
$Func_prev=$Func;
#re-initialize the centroids
$a=$mean_a;
$b=$mean_b;
$c=$mean_c;
#print "$Func\t$cutoff\t$a\t$b\t$c\n";
#re-iterate with the new centroids
goto REDO;
}
#keep the iteration with the highest objective function
if($Func>$Func_max){
$Func_max=$Func;
$cutoff_best=$cutoff;
$Fmax=sprintf("%.3f",$Func_max);
$mA=sprintf("%.3f",$mean_a);
$mB=sprintf("%.3f",$mean_b);
$mC=sprintf("%.3f",$mean_c);
$cutbest=sprintf("%.3f",$cutoff_best);
print "$Fmax\t$cutbest\t$mA\t\t$mB\t\t$mC\n";
}
}
}
$cutoff_best=sprintf("%.3f",$cutoff_best);
}
#if not enough data - simple statistics
else{
$count=0;
$average=0;
$sum=0;
foreach $k (keys %ALLscores){
$sum+=$ALLscores{$k};
$count++;
}
$average=$sum/$count;
foreach $k (keys %ALLscores){
$sco=$ALLscores{$k}-$average;
$scoSqr=$sco**2;
$sumSqr+=$scoSqr;
}
$STANDEV=sqrt($sumSqr/($count-1));
$STANDEV*=0.5;
$cutoff_best=sprintf("%.3f",$average+$STANDEV);
print "\n too little data to determine dynamically T;\n\n T=$cutoff_best(=average+0.5SD)\n";
goto end;
}
###############################################################
end:
return ($cutoff_best,\%ALLscores);
}
1;
|