/usr/include/android-22/hardware/camera3.h is in android-headers-22 23-0ubuntu4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 | /*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_INCLUDE_CAMERA3_H
#define ANDROID_INCLUDE_CAMERA3_H
#include <system/camera_metadata.h>
#include "camera_common.h"
/**
* Camera device HAL 3.2 [ CAMERA_DEVICE_API_VERSION_3_2 ]
*
* This is the current recommended version of the camera device HAL.
*
* Supports the android.hardware.Camera API, and as of v3.2, the
* android.hardware.camera2 API in LIMITED or FULL modes.
*
* Camera devices that support this version of the HAL must return
* CAMERA_DEVICE_API_VERSION_3_2 in camera_device_t.common.version and in
* camera_info_t.device_version (from camera_module_t.get_camera_info).
*
* CAMERA_DEVICE_API_VERSION_3_2:
* Camera modules that may contain version 3.2 devices must implement at
* least version 2.2 of the camera module interface (as defined by
* camera_module_t.common.module_api_version).
*
* <= CAMERA_DEVICE_API_VERSION_3_1:
* Camera modules that may contain version 3.1 (or 3.0) devices must
* implement at least version 2.0 of the camera module interface
* (as defined by camera_module_t.common.module_api_version).
*
* See camera_common.h for more versioning details.
*
* Documentation index:
* S1. Version history
* S2. Startup and operation sequencing
* S3. Operational modes
* S4. 3A modes and state machines
* S5. Cropping
* S6. Error management
* S7. Key Performance Indicator (KPI) glossary
* S8. Sample Use Cases
* S9. Notes on Controls and Metadata
*/
/**
* S1. Version history:
*
* 1.0: Initial Android camera HAL (Android 4.0) [camera.h]:
*
* - Converted from C++ CameraHardwareInterface abstraction layer.
*
* - Supports android.hardware.Camera API.
*
* 2.0: Initial release of expanded-capability HAL (Android 4.2) [camera2.h]:
*
* - Sufficient for implementing existing android.hardware.Camera API.
*
* - Allows for ZSL queue in camera service layer
*
* - Not tested for any new features such manual capture control, Bayer RAW
* capture, reprocessing of RAW data.
*
* 3.0: First revision of expanded-capability HAL:
*
* - Major version change since the ABI is completely different. No change to
* the required hardware capabilities or operational model from 2.0.
*
* - Reworked input request and stream queue interfaces: Framework calls into
* HAL with next request and stream buffers already dequeued. Sync framework
* support is included, necessary for efficient implementations.
*
* - Moved triggers into requests, most notifications into results.
*
* - Consolidated all callbacks into framework into one structure, and all
* setup methods into a single initialize() call.
*
* - Made stream configuration into a single call to simplify stream
* management. Bidirectional streams replace STREAM_FROM_STREAM construct.
*
* - Limited mode semantics for older/limited hardware devices.
*
* 3.1: Minor revision of expanded-capability HAL:
*
* - configure_streams passes consumer usage flags to the HAL.
*
* - flush call to drop all in-flight requests/buffers as fast as possible.
*
* 3.2: Minor revision of expanded-capability HAL:
*
* - Deprecates get_metadata_vendor_tag_ops. Please use get_vendor_tag_ops
* in camera_common.h instead.
*
* - register_stream_buffers deprecated. All gralloc buffers provided
* by framework to HAL in process_capture_request may be new at any time.
*
* - add partial result support. process_capture_result may be called
* multiple times with a subset of the available result before the full
* result is available.
*
* - add manual template to camera3_request_template. The applications may
* use this template to control the capture settings directly.
*
* - Rework the bidirectional and input stream specifications.
*
* - change the input buffer return path. The buffer is returned in
* process_capture_result instead of process_capture_request.
*
*/
/**
* S2. Startup and general expected operation sequence:
*
* 1. Framework calls camera_module_t->common.open(), which returns a
* hardware_device_t structure.
*
* 2. Framework inspects the hardware_device_t->version field, and instantiates
* the appropriate handler for that version of the camera hardware device. In
* case the version is CAMERA_DEVICE_API_VERSION_3_0, the device is cast to
* a camera3_device_t.
*
* 3. Framework calls camera3_device_t->ops->initialize() with the framework
* callback function pointers. This will only be called this one time after
* open(), before any other functions in the ops structure are called.
*
* 4. The framework calls camera3_device_t->ops->configure_streams() with a list
* of input/output streams to the HAL device.
*
* 5. <= CAMERA_DEVICE_API_VERSION_3_1:
*
* The framework allocates gralloc buffers and calls
* camera3_device_t->ops->register_stream_buffers() for at least one of the
* output streams listed in configure_streams. The same stream is registered
* only once.
*
* >= CAMERA_DEVICE_API_VERSION_3_2:
*
* camera3_device_t->ops->register_stream_buffers() is not called and must
* be NULL.
*
* 6. The framework requests default settings for some number of use cases with
* calls to camera3_device_t->ops->construct_default_request_settings(). This
* may occur any time after step 3.
*
* 7. The framework constructs and sends the first capture request to the HAL,
* with settings based on one of the sets of default settings, and with at
* least one output stream, which has been registered earlier by the
* framework. This is sent to the HAL with
* camera3_device_t->ops->process_capture_request(). The HAL must block the
* return of this call until it is ready for the next request to be sent.
*
* >= CAMERA_DEVICE_API_VERSION_3_2:
*
* The buffer_handle_t provided in the camera3_stream_buffer_t array
* in the camera3_capture_request_t may be new and never-before-seen
* by the HAL on any given new request.
*
* 8. The framework continues to submit requests, and call
* construct_default_request_settings to get default settings buffers for
* other use cases.
*
* <= CAMERA_DEVICE_API_VERSION_3_1:
*
* The framework may call register_stream_buffers() at this time for
* not-yet-registered streams.
*
* 9. When the capture of a request begins (sensor starts exposing for the
* capture), the HAL calls camera3_callback_ops_t->notify() with the SHUTTER
* event, including the frame number and the timestamp for start of exposure.
*
* <= CAMERA_DEVICE_API_VERSION_3_1:
*
* This notify call must be made before the first call to
* process_capture_result() for that frame number.
*
* >= CAMERA_DEVICE_API_VERSION_3_2:
*
* The camera3_callback_ops_t->notify() call with the SHUTTER event should
* be made as early as possible since the framework will be unable to
* deliver gralloc buffers to the application layer (for that frame) until
* it has a valid timestamp for the start of exposure.
*
* Both partial metadata results and the gralloc buffers may be sent to the
* framework at any time before or after the SHUTTER event.
*
* 10. After some pipeline delay, the HAL begins to return completed captures to
* the framework with camera3_callback_ops_t->process_capture_result(). These
* are returned in the same order as the requests were submitted. Multiple
* requests can be in flight at once, depending on the pipeline depth of the
* camera HAL device.
*
* >= CAMERA_DEVICE_API_VERSION_3_2:
*
* Once a buffer is returned by process_capture_result as part of the
* camera3_stream_buffer_t array, and the fence specified by release_fence
* has been signaled (this is a no-op for -1 fences), the ownership of that
* buffer is considered to be transferred back to the framework. After that,
* the HAL must no longer retain that particular buffer, and the
* framework may clean up the memory for it immediately.
*
* process_capture_result may be called multiple times for a single frame,
* each time with a new disjoint piece of metadata and/or set of gralloc
* buffers. The framework will accumulate these partial metadata results
* into one result.
*
* In particular, it is legal for a process_capture_result to be called
* simultaneously for both a frame N and a frame N+1 as long as the
* above rule holds for gralloc buffers (both input and output).
*
* 11. After some time, the framework may stop submitting new requests, wait for
* the existing captures to complete (all buffers filled, all results
* returned), and then call configure_streams() again. This resets the camera
* hardware and pipeline for a new set of input/output streams. Some streams
* may be reused from the previous configuration; if these streams' buffers
* had already been registered with the HAL, they will not be registered
* again. The framework then continues from step 7, if at least one
* registered output stream remains (otherwise, step 5 is required first).
*
* 12. Alternatively, the framework may call camera3_device_t->common->close()
* to end the camera session. This may be called at any time when no other
* calls from the framework are active, although the call may block until all
* in-flight captures have completed (all results returned, all buffers
* filled). After the close call returns, no more calls to the
* camera3_callback_ops_t functions are allowed from the HAL. Once the
* close() call is underway, the framework may not call any other HAL device
* functions.
*
* 13. In case of an error or other asynchronous event, the HAL must call
* camera3_callback_ops_t->notify() with the appropriate error/event
* message. After returning from a fatal device-wide error notification, the
* HAL should act as if close() had been called on it. However, the HAL must
* either cancel or complete all outstanding captures before calling
* notify(), so that once notify() is called with a fatal error, the
* framework will not receive further callbacks from the device. Methods
* besides close() should return -ENODEV or NULL after the notify() method
* returns from a fatal error message.
*/
/**
* S3. Operational modes:
*
* The camera 3 HAL device can implement one of two possible operational modes;
* limited and full. Full support is expected from new higher-end
* devices. Limited mode has hardware requirements roughly in line with those
* for a camera HAL device v1 implementation, and is expected from older or
* inexpensive devices. Full is a strict superset of limited, and they share the
* same essential operational flow, as documented above.
*
* The HAL must indicate its level of support with the
* android.info.supportedHardwareLevel static metadata entry, with 0 indicating
* limited mode, and 1 indicating full mode support.
*
* Roughly speaking, limited-mode devices do not allow for application control
* of capture settings (3A control only), high-rate capture of high-resolution
* images, raw sensor readout, or support for YUV output streams above maximum
* recording resolution (JPEG only for large images).
*
* ** Details of limited mode behavior:
*
* - Limited-mode devices do not need to implement accurate synchronization
* between capture request settings and the actual image data
* captured. Instead, changes to settings may take effect some time in the
* future, and possibly not for the same output frame for each settings
* entry. Rapid changes in settings may result in some settings never being
* used for a capture. However, captures that include high-resolution output
* buffers ( > 1080p ) have to use the settings as specified (but see below
* for processing rate).
*
* - Limited-mode devices do not need to support most of the
* settings/result/static info metadata. Specifically, only the following settings
* are expected to be consumed or produced by a limited-mode HAL device:
*
* android.control.aeAntibandingMode (controls and dynamic)
* android.control.aeExposureCompensation (controls and dynamic)
* android.control.aeLock (controls and dynamic)
* android.control.aeMode (controls and dynamic)
* android.control.aeRegions (controls and dynamic)
* android.control.aeTargetFpsRange (controls and dynamic)
* android.control.aePrecaptureTrigger (controls and dynamic)
* android.control.afMode (controls and dynamic)
* android.control.afRegions (controls and dynamic)
* android.control.awbLock (controls and dynamic)
* android.control.awbMode (controls and dynamic)
* android.control.awbRegions (controls and dynamic)
* android.control.captureIntent (controls and dynamic)
* android.control.effectMode (controls and dynamic)
* android.control.mode (controls and dynamic)
* android.control.sceneMode (controls and dynamic)
* android.control.videoStabilizationMode (controls and dynamic)
* android.control.aeAvailableAntibandingModes (static)
* android.control.aeAvailableModes (static)
* android.control.aeAvailableTargetFpsRanges (static)
* android.control.aeCompensationRange (static)
* android.control.aeCompensationStep (static)
* android.control.afAvailableModes (static)
* android.control.availableEffects (static)
* android.control.availableSceneModes (static)
* android.control.availableVideoStabilizationModes (static)
* android.control.awbAvailableModes (static)
* android.control.maxRegions (static)
* android.control.sceneModeOverrides (static)
* android.control.aeState (dynamic)
* android.control.afState (dynamic)
* android.control.awbState (dynamic)
*
* android.flash.mode (controls and dynamic)
* android.flash.info.available (static)
*
* android.info.supportedHardwareLevel (static)
*
* android.jpeg.gpsCoordinates (controls and dynamic)
* android.jpeg.gpsProcessingMethod (controls and dynamic)
* android.jpeg.gpsTimestamp (controls and dynamic)
* android.jpeg.orientation (controls and dynamic)
* android.jpeg.quality (controls and dynamic)
* android.jpeg.thumbnailQuality (controls and dynamic)
* android.jpeg.thumbnailSize (controls and dynamic)
* android.jpeg.availableThumbnailSizes (static)
* android.jpeg.maxSize (static)
*
* android.lens.info.minimumFocusDistance (static)
*
* android.request.id (controls and dynamic)
*
* android.scaler.cropRegion (controls and dynamic)
* android.scaler.availableStreamConfigurations (static)
* android.scaler.availableMinFrameDurations (static)
* android.scaler.availableStallDurations (static)
* android.scaler.availableMaxDigitalZoom (static)
* android.scaler.maxDigitalZoom (static)
* android.scaler.croppingType (static)
*
* android.sensor.orientation (static)
* android.sensor.timestamp (dynamic)
*
* android.statistics.faceDetectMode (controls and dynamic)
* android.statistics.info.availableFaceDetectModes (static)
* android.statistics.faceIds (dynamic)
* android.statistics.faceLandmarks (dynamic)
* android.statistics.faceRectangles (dynamic)
* android.statistics.faceScores (dynamic)
*
* android.sync.frameNumber (dynamic)
* android.sync.maxLatency (static)
*
* - Captures in limited mode that include high-resolution (> 1080p) output
* buffers may block in process_capture_request() until all the output buffers
* have been filled. A full-mode HAL device must process sequences of
* high-resolution requests at the rate indicated in the static metadata for
* that pixel format. The HAL must still call process_capture_result() to
* provide the output; the framework must simply be prepared for
* process_capture_request() to block until after process_capture_result() for
* that request completes for high-resolution captures for limited-mode
* devices.
*
* - Full-mode devices must support below additional capabilities:
* - 30fps at maximum resolution is preferred, more than 20fps is required.
* - Per frame control (android.sync.maxLatency == PER_FRAME_CONTROL).
* - Sensor manual control metadata. See MANUAL_SENSOR defined in
* android.request.availableCapabilities.
* - Post-processing manual control metadata. See MANUAL_POST_PROCESSING defined
* in android.request.availableCapabilities.
*
*/
/**
* S4. 3A modes and state machines:
*
* While the actual 3A algorithms are up to the HAL implementation, a high-level
* state machine description is defined by the HAL interface, to allow the HAL
* device and the framework to communicate about the current state of 3A, and to
* trigger 3A events.
*
* When the device is opened, all the individual 3A states must be
* STATE_INACTIVE. Stream configuration does not reset 3A. For example, locked
* focus must be maintained across the configure() call.
*
* Triggering a 3A action involves simply setting the relevant trigger entry in
* the settings for the next request to indicate start of trigger. For example,
* the trigger for starting an autofocus scan is setting the entry
* ANDROID_CONTROL_AF_TRIGGER to ANDROID_CONTROL_AF_TRIGGER_START for one
* request, and cancelling an autofocus scan is triggered by setting
* ANDROID_CONTROL_AF_TRIGGER to ANDROID_CONTRL_AF_TRIGGER_CANCEL. Otherwise,
* the entry will not exist, or be set to ANDROID_CONTROL_AF_TRIGGER_IDLE. Each
* request with a trigger entry set to a non-IDLE value will be treated as an
* independent triggering event.
*
* At the top level, 3A is controlled by the ANDROID_CONTROL_MODE setting, which
* selects between no 3A (ANDROID_CONTROL_MODE_OFF), normal AUTO mode
* (ANDROID_CONTROL_MODE_AUTO), and using the scene mode setting
* (ANDROID_CONTROL_USE_SCENE_MODE).
*
* - In OFF mode, each of the individual AE/AF/AWB modes are effectively OFF,
* and none of the capture controls may be overridden by the 3A routines.
*
* - In AUTO mode, Auto-focus, auto-exposure, and auto-whitebalance all run
* their own independent algorithms, and have their own mode, state, and
* trigger metadata entries, as listed in the next section.
*
* - In USE_SCENE_MODE, the value of the ANDROID_CONTROL_SCENE_MODE entry must
* be used to determine the behavior of 3A routines. In SCENE_MODEs other than
* FACE_PRIORITY, the HAL must override the values of
* ANDROId_CONTROL_AE/AWB/AF_MODE to be the mode it prefers for the selected
* SCENE_MODE. For example, the HAL may prefer SCENE_MODE_NIGHT to use
* CONTINUOUS_FOCUS AF mode. Any user selection of AE/AWB/AF_MODE when scene
* must be ignored for these scene modes.
*
* - For SCENE_MODE_FACE_PRIORITY, the AE/AWB/AF_MODE controls work as in
* ANDROID_CONTROL_MODE_AUTO, but the 3A routines must bias toward metering
* and focusing on any detected faces in the scene.
*
* S4.1. Auto-focus settings and result entries:
*
* Main metadata entries:
*
* ANDROID_CONTROL_AF_MODE: Control for selecting the current autofocus
* mode. Set by the framework in the request settings.
*
* AF_MODE_OFF: AF is disabled; the framework/app directly controls lens
* position.
*
* AF_MODE_AUTO: Single-sweep autofocus. No lens movement unless AF is
* triggered.
*
* AF_MODE_MACRO: Single-sweep up-close autofocus. No lens movement unless
* AF is triggered.
*
* AF_MODE_CONTINUOUS_VIDEO: Smooth continuous focusing, for recording
* video. Triggering immediately locks focus in current
* position. Canceling resumes cotinuous focusing.
*
* AF_MODE_CONTINUOUS_PICTURE: Fast continuous focusing, for
* zero-shutter-lag still capture. Triggering locks focus once currently
* active sweep concludes. Canceling resumes continuous focusing.
*
* AF_MODE_EDOF: Advanced extended depth of field focusing. There is no
* autofocus scan, so triggering one or canceling one has no effect.
* Images are focused automatically by the HAL.
*
* ANDROID_CONTROL_AF_STATE: Dynamic metadata describing the current AF
* algorithm state, reported by the HAL in the result metadata.
*
* AF_STATE_INACTIVE: No focusing has been done, or algorithm was
* reset. Lens is not moving. Always the state for MODE_OFF or MODE_EDOF.
* When the device is opened, it must start in this state.
*
* AF_STATE_PASSIVE_SCAN: A continuous focus algorithm is currently scanning
* for good focus. The lens is moving.
*
* AF_STATE_PASSIVE_FOCUSED: A continuous focus algorithm believes it is
* well focused. The lens is not moving. The HAL may spontaneously leave
* this state.
*
* AF_STATE_PASSIVE_UNFOCUSED: A continuous focus algorithm believes it is
* not well focused. The lens is not moving. The HAL may spontaneously
* leave this state.
*
* AF_STATE_ACTIVE_SCAN: A scan triggered by the user is underway.
*
* AF_STATE_FOCUSED_LOCKED: The AF algorithm believes it is focused. The
* lens is not moving.
*
* AF_STATE_NOT_FOCUSED_LOCKED: The AF algorithm has been unable to
* focus. The lens is not moving.
*
* ANDROID_CONTROL_AF_TRIGGER: Control for starting an autofocus scan, the
* meaning of which is mode- and state- dependent. Set by the framework in
* the request settings.
*
* AF_TRIGGER_IDLE: No current trigger.
*
* AF_TRIGGER_START: Trigger start of AF scan. Effect is mode and state
* dependent.
*
* AF_TRIGGER_CANCEL: Cancel current AF scan if any, and reset algorithm to
* default.
*
* Additional metadata entries:
*
* ANDROID_CONTROL_AF_REGIONS: Control for selecting the regions of the FOV
* that should be used to determine good focus. This applies to all AF
* modes that scan for focus. Set by the framework in the request
* settings.
*
* S4.2. Auto-exposure settings and result entries:
*
* Main metadata entries:
*
* ANDROID_CONTROL_AE_MODE: Control for selecting the current auto-exposure
* mode. Set by the framework in the request settings.
*
* AE_MODE_OFF: Autoexposure is disabled; the user controls exposure, gain,
* frame duration, and flash.
*
* AE_MODE_ON: Standard autoexposure, with flash control disabled. User may
* set flash to fire or to torch mode.
*
* AE_MODE_ON_AUTO_FLASH: Standard autoexposure, with flash on at HAL's
* discretion for precapture and still capture. User control of flash
* disabled.
*
* AE_MODE_ON_ALWAYS_FLASH: Standard autoexposure, with flash always fired
* for capture, and at HAL's discretion for precapture.. User control of
* flash disabled.
*
* AE_MODE_ON_AUTO_FLASH_REDEYE: Standard autoexposure, with flash on at
* HAL's discretion for precapture and still capture. Use a flash burst
* at end of precapture sequence to reduce redeye in the final
* picture. User control of flash disabled.
*
* ANDROID_CONTROL_AE_STATE: Dynamic metadata describing the current AE
* algorithm state, reported by the HAL in the result metadata.
*
* AE_STATE_INACTIVE: Initial AE state after mode switch. When the device is
* opened, it must start in this state.
*
* AE_STATE_SEARCHING: AE is not converged to a good value, and is adjusting
* exposure parameters.
*
* AE_STATE_CONVERGED: AE has found good exposure values for the current
* scene, and the exposure parameters are not changing. HAL may
* spontaneously leave this state to search for better solution.
*
* AE_STATE_LOCKED: AE has been locked with the AE_LOCK control. Exposure
* values are not changing.
*
* AE_STATE_FLASH_REQUIRED: The HAL has converged exposure, but believes
* flash is required for a sufficiently bright picture. Used for
* determining if a zero-shutter-lag frame can be used.
*
* AE_STATE_PRECAPTURE: The HAL is in the middle of a precapture
* sequence. Depending on AE mode, this mode may involve firing the
* flash for metering, or a burst of flash pulses for redeye reduction.
*
* ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER: Control for starting a metering
* sequence before capturing a high-quality image. Set by the framework in
* the request settings.
*
* PRECAPTURE_TRIGGER_IDLE: No current trigger.
*
* PRECAPTURE_TRIGGER_START: Start a precapture sequence. The HAL should
* use the subsequent requests to measure good exposure/white balance
* for an upcoming high-resolution capture.
*
* Additional metadata entries:
*
* ANDROID_CONTROL_AE_LOCK: Control for locking AE controls to their current
* values
*
* ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION: Control for adjusting AE
* algorithm target brightness point.
*
* ANDROID_CONTROL_AE_TARGET_FPS_RANGE: Control for selecting the target frame
* rate range for the AE algorithm. The AE routine cannot change the frame
* rate to be outside these bounds.
*
* ANDROID_CONTROL_AE_REGIONS: Control for selecting the regions of the FOV
* that should be used to determine good exposure levels. This applies to
* all AE modes besides OFF.
*
* S4.3. Auto-whitebalance settings and result entries:
*
* Main metadata entries:
*
* ANDROID_CONTROL_AWB_MODE: Control for selecting the current white-balance
* mode.
*
* AWB_MODE_OFF: Auto-whitebalance is disabled. User controls color matrix.
*
* AWB_MODE_AUTO: Automatic white balance is enabled; 3A controls color
* transform, possibly using more complex transforms than a simple
* matrix.
*
* AWB_MODE_INCANDESCENT: Fixed white balance settings good for indoor
* incandescent (tungsten) lighting, roughly 2700K.
*
* AWB_MODE_FLUORESCENT: Fixed white balance settings good for fluorescent
* lighting, roughly 5000K.
*
* AWB_MODE_WARM_FLUORESCENT: Fixed white balance settings good for
* fluorescent lighting, roughly 3000K.
*
* AWB_MODE_DAYLIGHT: Fixed white balance settings good for daylight,
* roughly 5500K.
*
* AWB_MODE_CLOUDY_DAYLIGHT: Fixed white balance settings good for clouded
* daylight, roughly 6500K.
*
* AWB_MODE_TWILIGHT: Fixed white balance settings good for
* near-sunset/sunrise, roughly 15000K.
*
* AWB_MODE_SHADE: Fixed white balance settings good for areas indirectly
* lit by the sun, roughly 7500K.
*
* ANDROID_CONTROL_AWB_STATE: Dynamic metadata describing the current AWB
* algorithm state, reported by the HAL in the result metadata.
*
* AWB_STATE_INACTIVE: Initial AWB state after mode switch. When the device
* is opened, it must start in this state.
*
* AWB_STATE_SEARCHING: AWB is not converged to a good value, and is
* changing color adjustment parameters.
*
* AWB_STATE_CONVERGED: AWB has found good color adjustment values for the
* current scene, and the parameters are not changing. HAL may
* spontaneously leave this state to search for better solution.
*
* AWB_STATE_LOCKED: AWB has been locked with the AWB_LOCK control. Color
* adjustment values are not changing.
*
* Additional metadata entries:
*
* ANDROID_CONTROL_AWB_LOCK: Control for locking AWB color adjustments to
* their current values.
*
* ANDROID_CONTROL_AWB_REGIONS: Control for selecting the regions of the FOV
* that should be used to determine good color balance. This applies only
* to auto-WB mode.
*
* S4.4. General state machine transition notes
*
* Switching between AF, AE, or AWB modes always resets the algorithm's state
* to INACTIVE. Similarly, switching between CONTROL_MODE or
* CONTROL_SCENE_MODE if CONTROL_MODE == USE_SCENE_MODE resets all the
* algorithm states to INACTIVE.
*
* The tables below are per-mode.
*
* S4.5. AF state machines
*
* when enabling AF or changing AF mode
*| state | trans. cause | new state | notes |
*+--------------------+---------------+--------------------+------------------+
*| Any | AF mode change| INACTIVE | |
*+--------------------+---------------+--------------------+------------------+
*
* mode = AF_MODE_OFF or AF_MODE_EDOF
*| state | trans. cause | new state | notes |
*+--------------------+---------------+--------------------+------------------+
*| INACTIVE | | INACTIVE | Never changes |
*+--------------------+---------------+--------------------+------------------+
*
* mode = AF_MODE_AUTO or AF_MODE_MACRO
*| state | trans. cause | new state | notes |
*+--------------------+---------------+--------------------+------------------+
*| INACTIVE | AF_TRIGGER | ACTIVE_SCAN | Start AF sweep |
*| | | | Lens now moving |
*+--------------------+---------------+--------------------+------------------+
*| ACTIVE_SCAN | AF sweep done | FOCUSED_LOCKED | If AF successful |
*| | | | Lens now locked |
*+--------------------+---------------+--------------------+------------------+
*| ACTIVE_SCAN | AF sweep done | NOT_FOCUSED_LOCKED | If AF successful |
*| | | | Lens now locked |
*+--------------------+---------------+--------------------+------------------+
*| ACTIVE_SCAN | AF_CANCEL | INACTIVE | Cancel/reset AF |
*| | | | Lens now locked |
*+--------------------+---------------+--------------------+------------------+
*| FOCUSED_LOCKED | AF_CANCEL | INACTIVE | Cancel/reset AF |
*+--------------------+---------------+--------------------+------------------+
*| FOCUSED_LOCKED | AF_TRIGGER | ACTIVE_SCAN | Start new sweep |
*| | | | Lens now moving |
*+--------------------+---------------+--------------------+------------------+
*| NOT_FOCUSED_LOCKED | AF_CANCEL | INACTIVE | Cancel/reset AF |
*+--------------------+---------------+--------------------+------------------+
*| NOT_FOCUSED_LOCKED | AF_TRIGGER | ACTIVE_SCAN | Start new sweep |
*| | | | Lens now moving |
*+--------------------+---------------+--------------------+------------------+
*| All states | mode change | INACTIVE | |
*+--------------------+---------------+--------------------+------------------+
*
* mode = AF_MODE_CONTINUOUS_VIDEO
*| state | trans. cause | new state | notes |
*+--------------------+---------------+--------------------+------------------+
*| INACTIVE | HAL initiates | PASSIVE_SCAN | Start AF scan |
*| | new scan | | Lens now moving |
*+--------------------+---------------+--------------------+------------------+
*| INACTIVE | AF_TRIGGER | NOT_FOCUSED_LOCKED | AF state query |
*| | | | Lens now locked |
*+--------------------+---------------+--------------------+------------------+
*| PASSIVE_SCAN | HAL completes | PASSIVE_FOCUSED | End AF scan |
*| | current scan | | Lens now locked |
*+--------------------+---------------+--------------------+------------------+
*| PASSIVE_SCAN | HAL fails | PASSIVE_UNFOCUSED | End AF scan |
*| | current scan | | Lens now locked |
*+--------------------+---------------+--------------------+------------------+
*| PASSIVE_SCAN | AF_TRIGGER | FOCUSED_LOCKED | Immediate trans. |
*| | | | if focus is good |
*| | | | Lens now locked |
*+--------------------+---------------+--------------------+------------------+
*| PASSIVE_SCAN | AF_TRIGGER | NOT_FOCUSED_LOCKED | Immediate trans. |
*| | | | if focus is bad |
*| | | | Lens now locked |
*+--------------------+---------------+--------------------+------------------+
*| PASSIVE_SCAN | AF_CANCEL | INACTIVE | Reset lens |
*| | | | position |
*| | | | Lens now locked |
*+--------------------+---------------+--------------------+------------------+
*| PASSIVE_FOCUSED | HAL initiates | PASSIVE_SCAN | Start AF scan |
*| | new scan | | Lens now moving |
*+--------------------+---------------+--------------------+------------------+
*| PASSIVE_UNFOCUSED | HAL initiates | PASSIVE_SCAN | Start AF scan |
*| | new scan | | Lens now moving |
*+--------------------+---------------+--------------------+------------------+
*| PASSIVE_FOCUSED | AF_TRIGGER | FOCUSED_LOCKED | Immediate trans. |
*| | | | Lens now locked |
*+--------------------+---------------+--------------------+------------------+
*| PASSIVE_UNFOCUSED | AF_TRIGGER | NOT_FOCUSED_LOCKED | Immediate trans. |
*| | | | Lens now locked |
*+--------------------+---------------+--------------------+------------------+
*| FOCUSED_LOCKED | AF_TRIGGER | FOCUSED_LOCKED | No effect |
*+--------------------+---------------+--------------------+------------------+
*| FOCUSED_LOCKED | AF_CANCEL | INACTIVE | Restart AF scan |
*+--------------------+---------------+--------------------+------------------+
*| NOT_FOCUSED_LOCKED | AF_TRIGGER | NOT_FOCUSED_LOCKED | No effect |
*+--------------------+---------------+--------------------+------------------+
*| NOT_FOCUSED_LOCKED | AF_CANCEL | INACTIVE | Restart AF scan |
*+--------------------+---------------+--------------------+------------------+
*
* mode = AF_MODE_CONTINUOUS_PICTURE
*| state | trans. cause | new state | notes |
*+--------------------+---------------+--------------------+------------------+
*| INACTIVE | HAL initiates | PASSIVE_SCAN | Start AF scan |
*| | new scan | | Lens now moving |
*+--------------------+---------------+--------------------+------------------+
*| INACTIVE | AF_TRIGGER | NOT_FOCUSED_LOCKED | AF state query |
*| | | | Lens now locked |
*+--------------------+---------------+--------------------+------------------+
*| PASSIVE_SCAN | HAL completes | PASSIVE_FOCUSED | End AF scan |
*| | current scan | | Lens now locked |
*+--------------------+---------------+--------------------+------------------+
*| PASSIVE_SCAN | HAL fails | PASSIVE_UNFOCUSED | End AF scan |
*| | current scan | | Lens now locked |
*+--------------------+---------------+--------------------+------------------+
*| PASSIVE_SCAN | AF_TRIGGER | FOCUSED_LOCKED | Eventual trans. |
*| | | | once focus good |
*| | | | Lens now locked |
*+--------------------+---------------+--------------------+------------------+
*| PASSIVE_SCAN | AF_TRIGGER | NOT_FOCUSED_LOCKED | Eventual trans. |
*| | | | if cannot focus |
*| | | | Lens now locked |
*+--------------------+---------------+--------------------+------------------+
*| PASSIVE_SCAN | AF_CANCEL | INACTIVE | Reset lens |
*| | | | position |
*| | | | Lens now locked |
*+--------------------+---------------+--------------------+------------------+
*| PASSIVE_FOCUSED | HAL initiates | PASSIVE_SCAN | Start AF scan |
*| | new scan | | Lens now moving |
*+--------------------+---------------+--------------------+------------------+
*| PASSIVE_UNFOCUSED | HAL initiates | PASSIVE_SCAN | Start AF scan |
*| | new scan | | Lens now moving |
*+--------------------+---------------+--------------------+------------------+
*| PASSIVE_FOCUSED | AF_TRIGGER | FOCUSED_LOCKED | Immediate trans. |
*| | | | Lens now locked |
*+--------------------+---------------+--------------------+------------------+
*| PASSIVE_UNFOCUSED | AF_TRIGGER | NOT_FOCUSED_LOCKED | Immediate trans. |
*| | | | Lens now locked |
*+--------------------+---------------+--------------------+------------------+
*| FOCUSED_LOCKED | AF_TRIGGER | FOCUSED_LOCKED | No effect |
*+--------------------+---------------+--------------------+------------------+
*| FOCUSED_LOCKED | AF_CANCEL | INACTIVE | Restart AF scan |
*+--------------------+---------------+--------------------+------------------+
*| NOT_FOCUSED_LOCKED | AF_TRIGGER | NOT_FOCUSED_LOCKED | No effect |
*+--------------------+---------------+--------------------+------------------+
*| NOT_FOCUSED_LOCKED | AF_CANCEL | INACTIVE | Restart AF scan |
*+--------------------+---------------+--------------------+------------------+
*
* S4.6. AE and AWB state machines
*
* The AE and AWB state machines are mostly identical. AE has additional
* FLASH_REQUIRED and PRECAPTURE states. So rows below that refer to those two
* states should be ignored for the AWB state machine.
*
* when enabling AE/AWB or changing AE/AWB mode
*| state | trans. cause | new state | notes |
*+--------------------+---------------+--------------------+------------------+
*| Any | mode change | INACTIVE | |
*+--------------------+---------------+--------------------+------------------+
*
* mode = AE_MODE_OFF / AWB mode not AUTO
*| state | trans. cause | new state | notes |
*+--------------------+---------------+--------------------+------------------+
*| INACTIVE | | INACTIVE | AE/AWB disabled |
*+--------------------+---------------+--------------------+------------------+
*
* mode = AE_MODE_ON_* / AWB_MODE_AUTO
*| state | trans. cause | new state | notes |
*+--------------------+---------------+--------------------+------------------+
*| INACTIVE | HAL initiates | SEARCHING | |
*| | AE/AWB scan | | |
*+--------------------+---------------+--------------------+------------------+
*| INACTIVE | AE/AWB_LOCK | LOCKED | values locked |
*| | on | | |
*+--------------------+---------------+--------------------+------------------+
*| SEARCHING | HAL finishes | CONVERGED | good values, not |
*| | AE/AWB scan | | changing |
*+--------------------+---------------+--------------------+------------------+
*| SEARCHING | HAL finishes | FLASH_REQUIRED | converged but too|
*| | AE scan | | dark w/o flash |
*+--------------------+---------------+--------------------+------------------+
*| SEARCHING | AE/AWB_LOCK | LOCKED | values locked |
*| | on | | |
*+--------------------+---------------+--------------------+------------------+
*| CONVERGED | HAL initiates | SEARCHING | values locked |
*| | AE/AWB scan | | |
*+--------------------+---------------+--------------------+------------------+
*| CONVERGED | AE/AWB_LOCK | LOCKED | values locked |
*| | on | | |
*+--------------------+---------------+--------------------+------------------+
*| FLASH_REQUIRED | HAL initiates | SEARCHING | values locked |
*| | AE/AWB scan | | |
*+--------------------+---------------+--------------------+------------------+
*| FLASH_REQUIRED | AE/AWB_LOCK | LOCKED | values locked |
*| | on | | |
*+--------------------+---------------+--------------------+------------------+
*| LOCKED | AE/AWB_LOCK | SEARCHING | values not good |
*| | off | | after unlock |
*+--------------------+---------------+--------------------+------------------+
*| LOCKED | AE/AWB_LOCK | CONVERGED | values good |
*| | off | | after unlock |
*+--------------------+---------------+--------------------+------------------+
*| LOCKED | AE_LOCK | FLASH_REQUIRED | exposure good, |
*| | off | | but too dark |
*+--------------------+---------------+--------------------+------------------+
*| All AE states | PRECAPTURE_ | PRECAPTURE | Start precapture |
*| | START | | sequence |
*+--------------------+---------------+--------------------+------------------+
*| PRECAPTURE | Sequence done.| CONVERGED | Ready for high- |
*| | AE_LOCK off | | quality capture |
*+--------------------+---------------+--------------------+------------------+
*| PRECAPTURE | Sequence done.| LOCKED | Ready for high- |
*| | AE_LOCK on | | quality capture |
*+--------------------+---------------+--------------------+------------------+
*
*/
/**
* S5. Cropping:
*
* Cropping of the full pixel array (for digital zoom and other use cases where
* a smaller FOV is desirable) is communicated through the
* ANDROID_SCALER_CROP_REGION setting. This is a per-request setting, and can
* change on a per-request basis, which is critical for implementing smooth
* digital zoom.
*
* The region is defined as a rectangle (x, y, width, height), with (x, y)
* describing the top-left corner of the rectangle. The rectangle is defined on
* the coordinate system of the sensor active pixel array, with (0,0) being the
* top-left pixel of the active pixel array. Therefore, the width and height
* cannot be larger than the dimensions reported in the
* ANDROID_SENSOR_ACTIVE_PIXEL_ARRAY static info field. The minimum allowed
* width and height are reported by the HAL through the
* ANDROID_SCALER_MAX_DIGITAL_ZOOM static info field, which describes the
* maximum supported zoom factor. Therefore, the minimum crop region width and
* height are:
*
* {width, height} =
* { floor(ANDROID_SENSOR_ACTIVE_PIXEL_ARRAY[0] /
* ANDROID_SCALER_MAX_DIGITAL_ZOOM),
* floor(ANDROID_SENSOR_ACTIVE_PIXEL_ARRAY[1] /
* ANDROID_SCALER_MAX_DIGITAL_ZOOM) }
*
* If the crop region needs to fulfill specific requirements (for example, it
* needs to start on even coordinates, and its width/height needs to be even),
* the HAL must do the necessary rounding and write out the final crop region
* used in the output result metadata. Similarly, if the HAL implements video
* stabilization, it must adjust the result crop region to describe the region
* actually included in the output after video stabilization is applied. In
* general, a camera-using application must be able to determine the field of
* view it is receiving based on the crop region, the dimensions of the image
* sensor, and the lens focal length.
*
* It is assumed that the cropping is applied after raw to other color space
* conversion. Raw streams (RAW16 and RAW_OPAQUE) don't have this conversion stage,
* and are not croppable. Therefore, the crop region must be ignored by the HAL
* for raw streams.
*
* Since the crop region applies to all non-raw streams, which may have different aspect
* ratios than the crop region, the exact sensor region used for each stream may
* be smaller than the crop region. Specifically, each stream should maintain
* square pixels and its aspect ratio by minimally further cropping the defined
* crop region. If the stream's aspect ratio is wider than the crop region, the
* stream should be further cropped vertically, and if the stream's aspect ratio
* is narrower than the crop region, the stream should be further cropped
* horizontally.
*
* In all cases, the stream crop must be centered within the full crop region,
* and each stream is only either cropped horizontally or vertical relative to
* the full crop region, never both.
*
* For example, if two streams are defined, a 640x480 stream (4:3 aspect), and a
* 1280x720 stream (16:9 aspect), below demonstrates the expected output regions
* for each stream for a few sample crop regions, on a hypothetical 3 MP (2000 x
* 1500 pixel array) sensor.
*
* Crop region: (500, 375, 1000, 750) (4:3 aspect ratio)
*
* 640x480 stream crop: (500, 375, 1000, 750) (equal to crop region)
* 1280x720 stream crop: (500, 469, 1000, 562) (marked with =)
*
* 0 1000 2000
* +---------+---------+---------+----------+
* | Active pixel array |
* | |
* | |
* + +-------------------+ + 375
* | | | |
* | O===================O |
* | I 1280x720 stream I |
* + I I + 750
* | I I |
* | O===================O |
* | | | |
* + +-------------------+ + 1125
* | Crop region, 640x480 stream |
* | |
* | |
* +---------+---------+---------+----------+ 1500
*
* Crop region: (500, 375, 1333, 750) (16:9 aspect ratio)
*
* 640x480 stream crop: (666, 375, 1000, 750) (marked with =)
* 1280x720 stream crop: (500, 375, 1333, 750) (equal to crop region)
*
* 0 1000 2000
* +---------+---------+---------+----------+
* | Active pixel array |
* | |
* | |
* + +---O==================O---+ + 375
* | | I 640x480 stream I | |
* | | I I | |
* | | I I | |
* + | I I | + 750
* | | I I | |
* | | I I | |
* | | I I | |
* + +---O==================O---+ + 1125
* | Crop region, 1280x720 stream |
* | |
* | |
* +---------+---------+---------+----------+ 1500
*
* Crop region: (500, 375, 750, 750) (1:1 aspect ratio)
*
* 640x480 stream crop: (500, 469, 750, 562) (marked with =)
* 1280x720 stream crop: (500, 543, 750, 414) (marged with #)
*
* 0 1000 2000
* +---------+---------+---------+----------+
* | Active pixel array |
* | |
* | |
* + +--------------+ + 375
* | O==============O |
* | ################ |
* | # # |
* + # # + 750
* | # # |
* | ################ 1280x720 |
* | O==============O 640x480 |
* + +--------------+ + 1125
* | Crop region |
* | |
* | |
* +---------+---------+---------+----------+ 1500
*
* And a final example, a 1024x1024 square aspect ratio stream instead of the
* 480p stream:
*
* Crop region: (500, 375, 1000, 750) (4:3 aspect ratio)
*
* 1024x1024 stream crop: (625, 375, 750, 750) (marked with #)
* 1280x720 stream crop: (500, 469, 1000, 562) (marked with =)
*
* 0 1000 2000
* +---------+---------+---------+----------+
* | Active pixel array |
* | |
* | 1024x1024 stream |
* + +--###############--+ + 375
* | | # # | |
* | O===================O |
* | I 1280x720 stream I |
* + I I + 750
* | I I |
* | O===================O |
* | | # # | |
* + +--###############--+ + 1125
* | Crop region |
* | |
* | |
* +---------+---------+---------+----------+ 1500
*
*/
/**
* S6. Error management:
*
* Camera HAL device ops functions that have a return value will all return
* -ENODEV / NULL in case of a serious error. This means the device cannot
* continue operation, and must be closed by the framework. Once this error is
* returned by some method, or if notify() is called with ERROR_DEVICE, only
* the close() method can be called successfully. All other methods will return
* -ENODEV / NULL.
*
* If a device op is called in the wrong sequence, for example if the framework
* calls configure_streams() is called before initialize(), the device must
* return -ENOSYS from the call, and do nothing.
*
* Transient errors in image capture must be reported through notify() as follows:
*
* - The failure of an entire capture to occur must be reported by the HAL by
* calling notify() with ERROR_REQUEST. Individual errors for the result
* metadata or the output buffers must not be reported in this case.
*
* - If the metadata for a capture cannot be produced, but some image buffers
* were filled, the HAL must call notify() with ERROR_RESULT.
*
* - If an output image buffer could not be filled, but either the metadata was
* produced or some other buffers were filled, the HAL must call notify() with
* ERROR_BUFFER for each failed buffer.
*
* In each of these transient failure cases, the HAL must still call
* process_capture_result, with valid output and input (if an input buffer was
* submitted) buffer_handle_t. If the result metadata could not be produced, it
* should be NULL. If some buffers could not be filled, they must be returned with
* process_capture_result in the error state, their release fences must be set to
* the acquire fences passed by the framework, or -1 if they have been waited on by
* the HAL already.
*
* Invalid input arguments result in -EINVAL from the appropriate methods. In
* that case, the framework must act as if that call had never been made.
*
*/
/**
* S7. Key Performance Indicator (KPI) glossary:
*
* This includes some critical definitions that are used by KPI metrics.
*
* Pipeline Latency:
* For a given capture request, the duration from the framework calling
* process_capture_request to the HAL sending capture result and all buffers
* back by process_capture_result call. To make the Pipeline Latency measure
* independent of frame rate, it is measured by frame count.
*
* For example, when frame rate is 30 (fps), the frame duration (time interval
* between adjacent frame capture time) is 33 (ms).
* If it takes 5 frames for framework to get the result and buffers back for
* a given request, then the Pipeline Latency is 5 (frames), instead of
* 5 x 33 = 165 (ms).
*
* The Pipeline Latency is determined by android.request.pipelineDepth and
* android.request.pipelineMaxDepth, see their definitions for more details.
*
*/
/**
* S8. Sample Use Cases:
*
* This includes some typical use case examples the camera HAL may support.
*
* S8.1 Zero Shutter Lag (ZSL) with CAMERA3_STREAM_BIDIRECTIONAL stream.
*
* For this use case, the bidirectional stream will be used by the framework as follows:
*
* 1. The framework includes a buffer from this stream as output buffer in a
* request as normal.
*
* 2. Once the HAL device returns a filled output buffer to the framework,
* the framework may do one of two things with the filled buffer:
*
* 2. a. The framework uses the filled data, and returns the now-used buffer
* to the stream queue for reuse. This behavior exactly matches the
* OUTPUT type of stream.
*
* 2. b. The framework wants to reprocess the filled data, and uses the
* buffer as an input buffer for a request. Once the HAL device has
* used the reprocessing buffer, it then returns it to the
* framework. The framework then returns the now-used buffer to the
* stream queue for reuse.
*
* 3. The HAL device will be given the buffer again as an output buffer for
* a request at some future point.
*
* For ZSL use case, the pixel format for bidirectional stream will be
* HAL_PIXEL_FORMAT_RAW_OPAQUE or HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED if it
* is listed in android.scaler.availableInputOutputFormatsMap. When
* HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED is used, the gralloc
* usage flags for the consumer endpoint will be set to GRALLOC_USAGE_HW_CAMERA_ZSL.
* A configuration stream list that has BIDIRECTIONAL stream used as input, will
* usually also have a distinct OUTPUT stream to get the reprocessing data. For example,
* for the ZSL use case, the stream list might be configured with the following:
*
* - A HAL_PIXEL_FORMAT_RAW_OPAQUE bidirectional stream is used
* as input.
* - And a HAL_PIXEL_FORMAT_BLOB (JPEG) output stream.
*
*/
/**
* S9. Notes on Controls and Metadata
*
* This section contains notes about the interpretation and usage of various metadata tags.
*
* S9.1 HIGH_QUALITY and FAST modes.
*
* Many camera post-processing blocks may be listed as having HIGH_QUALITY,
* FAST, and OFF operating modes. These blocks will typically also have an
* 'available modes' tag representing which of these operating modes are
* available on a given device. The general policy regarding implementing
* these modes is as follows:
*
* 1. Operating mode controls of hardware blocks that cannot be disabled
* must not list OFF in their corresponding 'available modes' tags.
*
* 2. OFF will always be included in their corresponding 'available modes'
* tag if it is possible to disable that hardware block.
*
* 3. FAST must always be included in the 'available modes' tags for all
* post-processing blocks supported on the device. If a post-processing
* block also has a slower and higher quality operating mode that does
* not meet the framerate requirements for FAST mode, HIGH_QUALITY should
* be included in the 'available modes' tag to represent this operating
* mode.
*/
__BEGIN_DECLS
struct camera3_device;
/**********************************************************************
*
* Camera3 stream and stream buffer definitions.
*
* These structs and enums define the handles and contents of the input and
* output streams connecting the HAL to various framework and application buffer
* consumers. Each stream is backed by a gralloc buffer queue.
*
*/
/**
* camera3_stream_type_t:
*
* The type of the camera stream, which defines whether the camera HAL device is
* the producer or the consumer for that stream, and how the buffers of the
* stream relate to the other streams.
*/
typedef enum camera3_stream_type {
/**
* This stream is an output stream; the camera HAL device will be
* responsible for filling buffers from this stream with newly captured or
* reprocessed image data.
*/
CAMERA3_STREAM_OUTPUT = 0,
/**
* This stream is an input stream; the camera HAL device will be responsible
* for reading buffers from this stream and sending them through the camera
* processing pipeline, as if the buffer was a newly captured image from the
* imager.
*
* The pixel format for input stream can be any format reported by
* android.scaler.availableInputOutputFormatsMap. The pixel format of the
* output stream that is used to produce the reprocessing data may be any
* format reported by android.scaler.availableStreamConfigurations. The
* supported input/output stream combinations depends the camera device
* capabilities, see android.scaler.availableInputOutputFormatsMap for
* stream map details.
*
* This kind of stream is generally used to reprocess data into higher
* quality images (that otherwise would cause a frame rate performance
* loss), or to do off-line reprocessing.
*
*/
CAMERA3_STREAM_INPUT = 1,
/**
* This stream can be used for input and output. Typically, the stream is
* used as an output stream, but occasionally one already-filled buffer may
* be sent back to the HAL device for reprocessing.
*
* This kind of stream is meant generally for Zero Shutter Lag (ZSL)
* features, where copying the captured image from the output buffer to the
* reprocessing input buffer would be expensive. See S8.1 for more details.
*
* Note that the HAL will always be reprocessing data it produced.
*
*/
CAMERA3_STREAM_BIDIRECTIONAL = 2,
/**
* Total number of framework-defined stream types
*/
CAMERA3_NUM_STREAM_TYPES
} camera3_stream_type_t;
/**
* camera3_stream_t:
*
* A handle to a single camera input or output stream. A stream is defined by
* the framework by its buffer resolution and format, and additionally by the
* HAL with the gralloc usage flags and the maximum in-flight buffer count.
*
* The stream structures are owned by the framework, but pointers to a
* camera3_stream passed into the HAL by configure_streams() are valid until the
* end of the first subsequent configure_streams() call that _does not_ include
* that camera3_stream as an argument, or until the end of the close() call.
*
* All camera3_stream framework-controlled members are immutable once the
* camera3_stream is passed into configure_streams(). The HAL may only change
* the HAL-controlled parameters during a configure_streams() call, except for
* the contents of the private pointer.
*
* If a configure_streams() call returns a non-fatal error, all active streams
* remain valid as if configure_streams() had not been called.
*
* The endpoint of the stream is not visible to the camera HAL device.
* In DEVICE_API_VERSION_3_1, this was changed to share consumer usage flags
* on streams where the camera is a producer (OUTPUT and BIDIRECTIONAL stream
* types) see the usage field below.
*/
typedef struct camera3_stream {
/*****
* Set by framework before configure_streams()
*/
/**
* The type of the stream, one of the camera3_stream_type_t values.
*/
int stream_type;
/**
* The width in pixels of the buffers in this stream
*/
uint32_t width;
/**
* The height in pixels of the buffers in this stream
*/
uint32_t height;
/**
* The pixel format for the buffers in this stream. Format is a value from
* the HAL_PIXEL_FORMAT_* list in system/core/include/system/graphics.h, or
* from device-specific headers.
*
* If HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED is used, then the platform
* gralloc module will select a format based on the usage flags provided by
* the camera device and the other endpoint of the stream.
*
* <= CAMERA_DEVICE_API_VERSION_3_1:
*
* The camera HAL device must inspect the buffers handed to it in the
* subsequent register_stream_buffers() call to obtain the
* implementation-specific format details, if necessary.
*
* >= CAMERA_DEVICE_API_VERSION_3_2:
*
* register_stream_buffers() won't be called by the framework, so the HAL
* should configure the ISP and sensor pipeline based purely on the sizes,
* usage flags, and formats for the configured streams.
*/
int format;
/*****
* Set by HAL during configure_streams().
*/
/**
* The gralloc usage flags for this stream, as needed by the HAL. The usage
* flags are defined in gralloc.h (GRALLOC_USAGE_*), or in device-specific
* headers.
*
* For output streams, these are the HAL's producer usage flags. For input
* streams, these are the HAL's consumer usage flags. The usage flags from
* the producer and the consumer will be combined together and then passed
* to the platform gralloc HAL module for allocating the gralloc buffers for
* each stream.
*
* Version information:
*
* == CAMERA_DEVICE_API_VERSION_3_0:
*
* No initial value guaranteed when passed via configure_streams().
* HAL may not use this field as input, and must write over this field
* with its usage flags.
*
* >= CAMERA_DEVICE_API_VERSION_3_1:
*
* For stream_type OUTPUT and BIDIRECTIONAL, when passed via
* configure_streams(), the initial value of this is the consumer's
* usage flags. The HAL may use these consumer flags to decide stream
* configuration.
* For stream_type INPUT, when passed via configure_streams(), the initial
* value of this is 0.
* For all streams passed via configure_streams(), the HAL must write
* over this field with its usage flags.
*/
uint32_t usage;
/**
* The maximum number of buffers the HAL device may need to have dequeued at
* the same time. The HAL device may not have more buffers in-flight from
* this stream than this value.
*/
uint32_t max_buffers;
/**
* A handle to HAL-private information for the stream. Will not be inspected
* by the framework code.
*/
void *priv;
} camera3_stream_t;
/**
* camera3_stream_configuration_t:
*
* A structure of stream definitions, used by configure_streams(). This
* structure defines all the output streams and the reprocessing input
* stream for the current camera use case.
*/
typedef struct camera3_stream_configuration {
/**
* The total number of streams requested by the framework. This includes
* both input and output streams. The number of streams will be at least 1,
* and there will be at least one output-capable stream.
*/
uint32_t num_streams;
/**
* An array of camera stream pointers, defining the input/output
* configuration for the camera HAL device.
*
* At most one input-capable stream may be defined (INPUT or BIDIRECTIONAL)
* in a single configuration.
*
* At least one output-capable stream must be defined (OUTPUT or
* BIDIRECTIONAL).
*/
camera3_stream_t **streams;
} camera3_stream_configuration_t;
/**
* camera3_buffer_status_t:
*
* The current status of a single stream buffer.
*/
typedef enum camera3_buffer_status {
/**
* The buffer is in a normal state, and can be used after waiting on its
* sync fence.
*/
CAMERA3_BUFFER_STATUS_OK = 0,
/**
* The buffer does not contain valid data, and the data in it should not be
* used. The sync fence must still be waited on before reusing the buffer.
*/
CAMERA3_BUFFER_STATUS_ERROR = 1
} camera3_buffer_status_t;
/**
* camera3_stream_buffer_t:
*
* A single buffer from a camera3 stream. It includes a handle to its parent
* stream, the handle to the gralloc buffer itself, and sync fences
*
* The buffer does not specify whether it is to be used for input or output;
* that is determined by its parent stream type and how the buffer is passed to
* the HAL device.
*/
typedef struct camera3_stream_buffer {
/**
* The handle of the stream this buffer is associated with
*/
camera3_stream_t *stream;
/**
* The native handle to the buffer
*/
buffer_handle_t *buffer;
/**
* Current state of the buffer, one of the camera3_buffer_status_t
* values. The framework will not pass buffers to the HAL that are in an
* error state. In case a buffer could not be filled by the HAL, it must
* have its status set to CAMERA3_BUFFER_STATUS_ERROR when returned to the
* framework with process_capture_result().
*/
int status;
/**
* The acquire sync fence for this buffer. The HAL must wait on this fence
* fd before attempting to read from or write to this buffer.
*
* The framework may be set to -1 to indicate that no waiting is necessary
* for this buffer.
*
* When the HAL returns an output buffer to the framework with
* process_capture_result(), the acquire_fence must be set to -1. If the HAL
* never waits on the acquire_fence due to an error in filling a buffer,
* when calling process_capture_result() the HAL must set the release_fence
* of the buffer to be the acquire_fence passed to it by the framework. This
* will allow the framework to wait on the fence before reusing the buffer.
*
* For input buffers, the HAL must not change the acquire_fence field during
* the process_capture_request() call.
*
* >= CAMERA_DEVICE_API_VERSION_3_2:
*
* When the HAL returns an input buffer to the framework with
* process_capture_result(), the acquire_fence must be set to -1. If the HAL
* never waits on input buffer acquire fence due to an error, the sync
* fences should be handled similarly to the way they are handled for output
* buffers.
*/
int acquire_fence;
/**
* The release sync fence for this buffer. The HAL must set this fence when
* returning buffers to the framework, or write -1 to indicate that no
* waiting is required for this buffer.
*
* For the output buffers, the fences must be set in the output_buffers
* array passed to process_capture_result().
*
* <= CAMERA_DEVICE_API_VERSION_3_1:
*
* For the input buffer, the release fence must be set by the
* process_capture_request() call.
*
* >= CAMERA_DEVICE_API_VERSION_3_2:
*
* For the input buffer, the fences must be set in the input_buffer
* passed to process_capture_result().
*
* After signaling the release_fence for this buffer, the HAL
* should not make any further attempts to access this buffer as the
* ownership has been fully transferred back to the framework.
*
* If a fence of -1 was specified then the ownership of this buffer
* is transferred back immediately upon the call of process_capture_result.
*/
int release_fence;
} camera3_stream_buffer_t;
/**
* camera3_stream_buffer_set_t:
*
* The complete set of gralloc buffers for a stream. This structure is given to
* register_stream_buffers() to allow the camera HAL device to register/map/etc
* newly allocated stream buffers.
*
* >= CAMERA_DEVICE_API_VERSION_3_2:
*
* Deprecated (and not used). In particular,
* register_stream_buffers is also deprecated and will never be invoked.
*
*/
typedef struct camera3_stream_buffer_set {
/**
* The stream handle for the stream these buffers belong to
*/
camera3_stream_t *stream;
/**
* The number of buffers in this stream. It is guaranteed to be at least
* stream->max_buffers.
*/
uint32_t num_buffers;
/**
* The array of gralloc buffer handles for this stream. If the stream format
* is set to HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, the camera HAL device
* should inspect the passed-in buffers to determine any platform-private
* pixel format information.
*/
buffer_handle_t **buffers;
} camera3_stream_buffer_set_t;
/**
* camera3_jpeg_blob:
*
* Transport header for compressed JPEG buffers in output streams.
*
* To capture JPEG images, a stream is created using the pixel format
* HAL_PIXEL_FORMAT_BLOB. The buffer size for the stream is calculated by the
* framework, based on the static metadata field android.jpeg.maxSize. Since
* compressed JPEG images are of variable size, the HAL needs to include the
* final size of the compressed image using this structure inside the output
* stream buffer. The JPEG blob ID field must be set to CAMERA3_JPEG_BLOB_ID.
*
* Transport header should be at the end of the JPEG output stream buffer. That
* means the jpeg_blob_id must start at byte[buffer_size -
* sizeof(camera3_jpeg_blob)], where the buffer_size is the size of gralloc buffer.
* Any HAL using this transport header must account for it in android.jpeg.maxSize
* The JPEG data itself starts at the beginning of the buffer and should be
* jpeg_size bytes long.
*/
typedef struct camera3_jpeg_blob {
uint16_t jpeg_blob_id;
uint32_t jpeg_size;
} camera3_jpeg_blob_t;
enum {
CAMERA3_JPEG_BLOB_ID = 0x00FF
};
/**********************************************************************
*
* Message definitions for the HAL notify() callback.
*
* These definitions are used for the HAL notify callback, to signal
* asynchronous events from the HAL device to the Android framework.
*
*/
/**
* camera3_msg_type:
*
* Indicates the type of message sent, which specifies which member of the
* message union is valid.
*
*/
typedef enum camera3_msg_type {
/**
* An error has occurred. camera3_notify_msg.message.error contains the
* error information.
*/
CAMERA3_MSG_ERROR = 1,
/**
* The exposure of a given request has
* begun. camera3_notify_msg.message.shutter contains the information
* the capture.
*/
CAMERA3_MSG_SHUTTER = 2,
/**
* Number of framework message types
*/
CAMERA3_NUM_MESSAGES
} camera3_msg_type_t;
/**
* Defined error codes for CAMERA_MSG_ERROR
*/
typedef enum camera3_error_msg_code {
/**
* A serious failure occured. No further frames or buffer streams will
* be produced by the device. Device should be treated as closed. The
* client must reopen the device to use it again. The frame_number field
* is unused.
*/
CAMERA3_MSG_ERROR_DEVICE = 1,
/**
* An error has occurred in processing a request. No output (metadata or
* buffers) will be produced for this request. The frame_number field
* specifies which request has been dropped. Subsequent requests are
* unaffected, and the device remains operational.
*/
CAMERA3_MSG_ERROR_REQUEST = 2,
/**
* An error has occurred in producing an output result metadata buffer
* for a request, but output stream buffers for it will still be
* available. Subsequent requests are unaffected, and the device remains
* operational. The frame_number field specifies the request for which
* result metadata won't be available.
*/
CAMERA3_MSG_ERROR_RESULT = 3,
/**
* An error has occurred in placing an output buffer into a stream for a
* request. The frame metadata and other buffers may still be
* available. Subsequent requests are unaffected, and the device remains
* operational. The frame_number field specifies the request for which the
* buffer was dropped, and error_stream contains a pointer to the stream
* that dropped the frame.u
*/
CAMERA3_MSG_ERROR_BUFFER = 4,
/**
* Number of error types
*/
CAMERA3_MSG_NUM_ERRORS
} camera3_error_msg_code_t;
/**
* camera3_error_msg_t:
*
* Message contents for CAMERA3_MSG_ERROR
*/
typedef struct camera3_error_msg {
/**
* Frame number of the request the error applies to. 0 if the frame number
* isn't applicable to the error.
*/
uint32_t frame_number;
/**
* Pointer to the stream that had a failure. NULL if the stream isn't
* applicable to the error.
*/
camera3_stream_t *error_stream;
/**
* The code for this error; one of the CAMERA_MSG_ERROR enum values.
*/
int error_code;
} camera3_error_msg_t;
/**
* camera3_shutter_msg_t:
*
* Message contents for CAMERA3_MSG_SHUTTER
*/
typedef struct camera3_shutter_msg {
/**
* Frame number of the request that has begun exposure
*/
uint32_t frame_number;
/**
* Timestamp for the start of capture. This must match the capture result
* metadata's sensor exposure start timestamp.
*/
uint64_t timestamp;
} camera3_shutter_msg_t;
/**
* camera3_notify_msg_t:
*
* The message structure sent to camera3_callback_ops_t.notify()
*/
typedef struct camera3_notify_msg {
/**
* The message type. One of camera3_notify_msg_type, or a private extension.
*/
int type;
union {
/**
* Error message contents. Valid if type is CAMERA3_MSG_ERROR
*/
camera3_error_msg_t error;
/**
* Shutter message contents. Valid if type is CAMERA3_MSG_SHUTTER
*/
camera3_shutter_msg_t shutter;
/**
* Generic message contents. Used to ensure a minimum size for custom
* message types.
*/
uint8_t generic[32];
} message;
} camera3_notify_msg_t;
/**********************************************************************
*
* Capture request/result definitions for the HAL process_capture_request()
* method, and the process_capture_result() callback.
*
*/
/**
* camera3_request_template_t:
*
* Available template types for
* camera3_device_ops.construct_default_request_settings()
*/
typedef enum camera3_request_template {
/**
* Standard camera preview operation with 3A on auto.
*/
CAMERA3_TEMPLATE_PREVIEW = 1,
/**
* Standard camera high-quality still capture with 3A and flash on auto.
*/
CAMERA3_TEMPLATE_STILL_CAPTURE = 2,
/**
* Standard video recording plus preview with 3A on auto, torch off.
*/
CAMERA3_TEMPLATE_VIDEO_RECORD = 3,
/**
* High-quality still capture while recording video. Application will
* include preview, video record, and full-resolution YUV or JPEG streams in
* request. Must not cause stuttering on video stream. 3A on auto.
*/
CAMERA3_TEMPLATE_VIDEO_SNAPSHOT = 4,
/**
* Zero-shutter-lag mode. Application will request preview and
* full-resolution data for each frame, and reprocess it to JPEG when a
* still image is requested by user. Settings should provide highest-quality
* full-resolution images without compromising preview frame rate. 3A on
* auto.
*/
CAMERA3_TEMPLATE_ZERO_SHUTTER_LAG = 5,
/**
* A basic template for direct application control of capture
* parameters. All automatic control is disabled (auto-exposure, auto-white
* balance, auto-focus), and post-processing parameters are set to preview
* quality. The manual capture parameters (exposure, sensitivity, etc.)
* are set to reasonable defaults, but should be overridden by the
* application depending on the intended use case.
*/
CAMERA3_TEMPLATE_MANUAL = 6,
/* Total number of templates */
CAMERA3_TEMPLATE_COUNT,
/**
* First value for vendor-defined request templates
*/
CAMERA3_VENDOR_TEMPLATE_START = 0x40000000
} camera3_request_template_t;
/**
* camera3_capture_request_t:
*
* A single request for image capture/buffer reprocessing, sent to the Camera
* HAL device by the framework in process_capture_request().
*
* The request contains the settings to be used for this capture, and the set of
* output buffers to write the resulting image data in. It may optionally
* contain an input buffer, in which case the request is for reprocessing that
* input buffer instead of capturing a new image with the camera sensor. The
* capture is identified by the frame_number.
*
* In response, the camera HAL device must send a camera3_capture_result
* structure asynchronously to the framework, using the process_capture_result()
* callback.
*/
typedef struct camera3_capture_request {
/**
* The frame number is an incrementing integer set by the framework to
* uniquely identify this capture. It needs to be returned in the result
* call, and is also used to identify the request in asynchronous
* notifications sent to camera3_callback_ops_t.notify().
*/
uint32_t frame_number;
/**
* The settings buffer contains the capture and processing parameters for
* the request. As a special case, a NULL settings buffer indicates that the
* settings are identical to the most-recently submitted capture request. A
* NULL buffer cannot be used as the first submitted request after a
* configure_streams() call.
*/
const camera_metadata_t *settings;
/**
* The input stream buffer to use for this request, if any.
*
* If input_buffer is NULL, then the request is for a new capture from the
* imager. If input_buffer is valid, the request is for reprocessing the
* image contained in input_buffer.
*
* In the latter case, the HAL must set the release_fence of the
* input_buffer to a valid sync fence, or to -1 if the HAL does not support
* sync, before process_capture_request() returns.
*
* The HAL is required to wait on the acquire sync fence of the input buffer
* before accessing it.
*
* <= CAMERA_DEVICE_API_VERSION_3_1:
*
* Any input buffer included here will have been registered with the HAL
* through register_stream_buffers() before its inclusion in a request.
*
* >= CAMERA_DEVICE_API_VERSION_3_2:
*
* The buffers will not have been pre-registered with the HAL.
* Subsequent requests may reuse buffers, or provide entirely new buffers.
*/
camera3_stream_buffer_t *input_buffer;
/**
* The number of output buffers for this capture request. Must be at least
* 1.
*/
uint32_t num_output_buffers;
/**
* An array of num_output_buffers stream buffers, to be filled with image
* data from this capture/reprocess. The HAL must wait on the acquire fences
* of each stream buffer before writing to them.
*
* The HAL takes ownership of the actual buffer_handle_t entries in
* output_buffers; the framework does not access them until they are
* returned in a camera3_capture_result_t.
*
* <= CAMERA_DEVICE_API_VERSION_3_1:
*
* All the buffers included here will have been registered with the HAL
* through register_stream_buffers() before their inclusion in a request.
*
* >= CAMERA_DEVICE_API_VERSION_3_2:
*
* Any or all of the buffers included here may be brand new in this
* request (having never before seen by the HAL).
*/
const camera3_stream_buffer_t *output_buffers;
} camera3_capture_request_t;
/**
* camera3_capture_result_t:
*
* The result of a single capture/reprocess by the camera HAL device. This is
* sent to the framework asynchronously with process_capture_result(), in
* response to a single capture request sent to the HAL with
* process_capture_request(). Multiple process_capture_result() calls may be
* performed by the HAL for each request.
*
* Each call, all with the same frame
* number, may contain some subset of the output buffers, and/or the result
* metadata. The metadata may only be provided once for a given frame number;
* all other calls must set the result metadata to NULL.
*
* The result structure contains the output metadata from this capture, and the
* set of output buffers that have been/will be filled for this capture. Each
* output buffer may come with a release sync fence that the framework will wait
* on before reading, in case the buffer has not yet been filled by the HAL.
*
* >= CAMERA_DEVICE_API_VERSION_3_2:
*
* The metadata may be provided multiple times for a single frame number. The
* framework will accumulate together the final result set by combining each
* partial result together into the total result set.
*
* If an input buffer is given in a request, the HAL must return it in one of
* the process_capture_result calls, and the call may be to just return the input
* buffer, without metadata and output buffers; the sync fences must be handled
* the same way they are done for output buffers.
*
*
* Performance considerations:
*
* Applications will also receive these partial results immediately, so sending
* partial results is a highly recommended performance optimization to avoid
* the total pipeline latency before sending the results for what is known very
* early on in the pipeline.
*
* A typical use case might be calculating the AF state halfway through the
* pipeline; by sending the state back to the framework immediately, we get a
* 50% performance increase and perceived responsiveness of the auto-focus.
*
*/
typedef struct camera3_capture_result {
/**
* The frame number is an incrementing integer set by the framework in the
* submitted request to uniquely identify this capture. It is also used to
* identify the request in asynchronous notifications sent to
* camera3_callback_ops_t.notify().
*/
uint32_t frame_number;
/**
* The result metadata for this capture. This contains information about the
* final capture parameters, the state of the capture and post-processing
* hardware, the state of the 3A algorithms, if enabled, and the output of
* any enabled statistics units.
*
* Only one call to process_capture_result() with a given frame_number may
* include the result metadata. All other calls for the same frame_number
* must set this to NULL.
*
* If there was an error producing the result metadata, result must be an
* empty metadata buffer, and notify() must be called with ERROR_RESULT.
*
* >= CAMERA_DEVICE_API_VERSION_3_2:
*
* Multiple calls to process_capture_result() with a given frame_number
* may include the result metadata.
*
* Partial metadata submitted should not include any metadata key returned
* in a previous partial result for a given frame. Each new partial result
* for that frame must also set a distinct partial_result value.
*
* If notify has been called with ERROR_RESULT, all further partial
* results for that frame are ignored by the framework.
*/
const camera_metadata_t *result;
/**
* The number of output buffers returned in this result structure. Must be
* less than or equal to the matching capture request's count. If this is
* less than the buffer count in the capture request, at least one more call
* to process_capture_result with the same frame_number must be made, to
* return the remaining output buffers to the framework. This may only be
* zero if the structure includes valid result metadata or an input buffer
* is returned in this result.
*/
uint32_t num_output_buffers;
/**
* The handles for the output stream buffers for this capture. They may not
* yet be filled at the time the HAL calls process_capture_result(); the
* framework will wait on the release sync fences provided by the HAL before
* reading the buffers.
*
* The HAL must set the stream buffer's release sync fence to a valid sync
* fd, or to -1 if the buffer has already been filled.
*
* If the HAL encounters an error while processing the buffer, and the
* buffer is not filled, the buffer's status field must be set to
* CAMERA3_BUFFER_STATUS_ERROR. If the HAL did not wait on the acquire fence
* before encountering the error, the acquire fence should be copied into
* the release fence, to allow the framework to wait on the fence before
* reusing the buffer.
*
* The acquire fence must be set to -1 for all output buffers. If
* num_output_buffers is zero, this may be NULL. In that case, at least one
* more process_capture_result call must be made by the HAL to provide the
* output buffers.
*
* When process_capture_result is called with a new buffer for a frame,
* all previous frames' buffers for that corresponding stream must have been
* already delivered (the fences need not have yet been signaled).
*
* >= CAMERA_DEVICE_API_VERSION_3_2:
*
* Gralloc buffers for a frame may be sent to framework before the
* corresponding SHUTTER-notify.
*
* Performance considerations:
*
* Buffers delivered to the framework will not be dispatched to the
* application layer until a start of exposure timestamp has been received
* via a SHUTTER notify() call. It is highly recommended to
* dispatch that call as early as possible.
*/
const camera3_stream_buffer_t *output_buffers;
/**
* >= CAMERA_DEVICE_API_VERSION_3_2:
*
* The handle for the input stream buffer for this capture. It may not
* yet be consumed at the time the HAL calls process_capture_result(); the
* framework will wait on the release sync fences provided by the HAL before
* reusing the buffer.
*
* The HAL should handle the sync fences the same way they are done for
* output_buffers.
*
* Only one input buffer is allowed to be sent per request. Similarly to
* output buffers, the ordering of returned input buffers must be
* maintained by the HAL.
*
* Performance considerations:
*
* The input buffer should be returned as early as possible. If the HAL
* supports sync fences, it can call process_capture_result to hand it back
* with sync fences being set appropriately. If the sync fences are not
* supported, the buffer can only be returned when it is consumed, which
* may take long time; the HAL may choose to copy this input buffer to make
* the buffer return sooner.
*/
const camera3_stream_buffer_t *input_buffer;
/**
* >= CAMERA_DEVICE_API_VERSION_3_2:
*
* In order to take advantage of partial results, the HAL must set the
* static metadata android.request.partialResultCount to the number of
* partial results it will send for each frame.
*
* Each new capture result with a partial result must set
* this field (partial_result) to a distinct inclusive value between
* 1 and android.request.partialResultCount.
*
* HALs not wishing to take advantage of this feature must not
* set an android.request.partialResultCount or partial_result to a value
* other than 1.
*
* This value must be set to 0 when a capture result contains buffers only
* and no metadata.
*/
uint32_t partial_result;
} camera3_capture_result_t;
/**********************************************************************
*
* Callback methods for the HAL to call into the framework.
*
* These methods are used to return metadata and image buffers for a completed
* or failed captures, and to notify the framework of asynchronous events such
* as errors.
*
* The framework will not call back into the HAL from within these callbacks,
* and these calls will not block for extended periods.
*
*/
typedef struct camera3_callback_ops {
/**
* process_capture_result:
*
* Send results from a completed capture to the framework.
* process_capture_result() may be invoked multiple times by the HAL in
* response to a single capture request. This allows, for example, the
* metadata and low-resolution buffers to be returned in one call, and
* post-processed JPEG buffers in a later call, once it is available. Each
* call must include the frame number of the request it is returning
* metadata or buffers for.
*
* A component (buffer or metadata) of the complete result may only be
* included in one process_capture_result call. A buffer for each stream,
* and the result metadata, must be returned by the HAL for each request in
* one of the process_capture_result calls, even in case of errors producing
* some of the output. A call to process_capture_result() with neither
* output buffers or result metadata is not allowed.
*
* The order of returning metadata and buffers for a single result does not
* matter, but buffers for a given stream must be returned in FIFO order. So
* the buffer for request 5 for stream A must always be returned before the
* buffer for request 6 for stream A. This also applies to the result
* metadata; the metadata for request 5 must be returned before the metadata
* for request 6.
*
* However, different streams are independent of each other, so it is
* acceptable and expected that the buffer for request 5 for stream A may be
* returned after the buffer for request 6 for stream B is. And it is
* acceptable that the result metadata for request 6 for stream B is
* returned before the buffer for request 5 for stream A is.
*
* The HAL retains ownership of result structure, which only needs to be
* valid to access during this call. The framework will copy whatever it
* needs before this call returns.
*
* The output buffers do not need to be filled yet; the framework will wait
* on the stream buffer release sync fence before reading the buffer
* data. Therefore, this method should be called by the HAL as soon as
* possible, even if some or all of the output buffers are still in
* being filled. The HAL must include valid release sync fences into each
* output_buffers stream buffer entry, or -1 if that stream buffer is
* already filled.
*
* If the result buffer cannot be constructed for a request, the HAL should
* return an empty metadata buffer, but still provide the output buffers and
* their sync fences. In addition, notify() must be called with an
* ERROR_RESULT message.
*
* If an output buffer cannot be filled, its status field must be set to
* STATUS_ERROR. In addition, notify() must be called with a ERROR_BUFFER
* message.
*
* If the entire capture has failed, then this method still needs to be
* called to return the output buffers to the framework. All the buffer
* statuses should be STATUS_ERROR, and the result metadata should be an
* empty buffer. In addition, notify() must be called with a ERROR_REQUEST
* message. In this case, individual ERROR_RESULT/ERROR_BUFFER messages
* should not be sent.
*
* Performance requirements:
*
* This is a non-blocking call. The framework will return this call in 5ms.
*
* The pipeline latency (see S7 for definition) should be less than or equal to
* 4 frame intervals, and must be less than or equal to 8 frame intervals.
*
*/
void (*process_capture_result)(const struct camera3_callback_ops *,
const camera3_capture_result_t *result);
/**
* notify:
*
* Asynchronous notification callback from the HAL, fired for various
* reasons. Only for information independent of frame capture, or that
* require specific timing. The ownership of the message structure remains
* with the HAL, and the msg only needs to be valid for the duration of this
* call.
*
* Multiple threads may call notify() simultaneously.
*
* <= CAMERA_DEVICE_API_VERSION_3_1:
*
* The notification for the start of exposure for a given request must be
* sent by the HAL before the first call to process_capture_result() for
* that request is made.
*
* >= CAMERA_DEVICE_API_VERSION_3_2:
*
* Buffers delivered to the framework will not be dispatched to the
* application layer until a start of exposure timestamp has been received
* via a SHUTTER notify() call. It is highly recommended to
* dispatch this call as early as possible.
*
* ------------------------------------------------------------------------
* Performance requirements:
*
* This is a non-blocking call. The framework will return this call in 5ms.
*/
void (*notify)(const struct camera3_callback_ops *,
const camera3_notify_msg_t *msg);
} camera3_callback_ops_t;
/**********************************************************************
*
* Camera device operations
*
*/
typedef struct camera3_device_ops {
/**
* initialize:
*
* One-time initialization to pass framework callback function pointers to
* the HAL. Will be called once after a successful open() call, before any
* other functions are called on the camera3_device_ops structure.
*
* Performance requirements:
*
* This should be a non-blocking call. The HAL should return from this call
* in 5ms, and must return from this call in 10ms.
*
* Return values:
*
* 0: On successful initialization
*
* -ENODEV: If initialization fails. Only close() can be called successfully
* by the framework after this.
*/
int (*initialize)(const struct camera3_device *,
const camera3_callback_ops_t *callback_ops);
/**********************************************************************
* Stream management
*/
/**
* configure_streams:
*
* CAMERA_DEVICE_API_VERSION_3_0 only:
*
* Reset the HAL camera device processing pipeline and set up new input and
* output streams. This call replaces any existing stream configuration with
* the streams defined in the stream_list. This method will be called at
* least once after initialize() before a request is submitted with
* process_capture_request().
*
* The stream_list must contain at least one output-capable stream, and may
* not contain more than one input-capable stream.
*
* The stream_list may contain streams that are also in the currently-active
* set of streams (from the previous call to configure_stream()). These
* streams will already have valid values for usage, max_buffers, and the
* private pointer.
*
* If such a stream has already had its buffers registered,
* register_stream_buffers() will not be called again for the stream, and
* buffers from the stream can be immediately included in input requests.
*
* If the HAL needs to change the stream configuration for an existing
* stream due to the new configuration, it may rewrite the values of usage
* and/or max_buffers during the configure call.
*
* The framework will detect such a change, and will then reallocate the
* stream buffers, and call register_stream_buffers() again before using
* buffers from that stream in a request.
*
* If a currently-active stream is not included in stream_list, the HAL may
* safely remove any references to that stream. It will not be reused in a
* later configure() call by the framework, and all the gralloc buffers for
* it will be freed after the configure_streams() call returns.
*
* The stream_list structure is owned by the framework, and may not be
* accessed once this call completes. The address of an individual
* camera3_stream_t structure will remain valid for access by the HAL until
* the end of the first configure_stream() call which no longer includes
* that camera3_stream_t in the stream_list argument. The HAL may not change
* values in the stream structure outside of the private pointer, except for
* the usage and max_buffers members during the configure_streams() call
* itself.
*
* If the stream is new, the usage, max_buffer, and private pointer fields
* of the stream structure will all be set to 0. The HAL device must set
* these fields before the configure_streams() call returns. These fields
* are then used by the framework and the platform gralloc module to
* allocate the gralloc buffers for each stream.
*
* Before such a new stream can have its buffers included in a capture
* request, the framework will call register_stream_buffers() with that
* stream. However, the framework is not required to register buffers for
* _all_ streams before submitting a request. This allows for quick startup
* of (for example) a preview stream, with allocation for other streams
* happening later or concurrently.
*
* ------------------------------------------------------------------------
* CAMERA_DEVICE_API_VERSION_3_1 only:
*
* Reset the HAL camera device processing pipeline and set up new input and
* output streams. This call replaces any existing stream configuration with
* the streams defined in the stream_list. This method will be called at
* least once after initialize() before a request is submitted with
* process_capture_request().
*
* The stream_list must contain at least one output-capable stream, and may
* not contain more than one input-capable stream.
*
* The stream_list may contain streams that are also in the currently-active
* set of streams (from the previous call to configure_stream()). These
* streams will already have valid values for usage, max_buffers, and the
* private pointer.
*
* If such a stream has already had its buffers registered,
* register_stream_buffers() will not be called again for the stream, and
* buffers from the stream can be immediately included in input requests.
*
* If the HAL needs to change the stream configuration for an existing
* stream due to the new configuration, it may rewrite the values of usage
* and/or max_buffers during the configure call.
*
* The framework will detect such a change, and will then reallocate the
* stream buffers, and call register_stream_buffers() again before using
* buffers from that stream in a request.
*
* If a currently-active stream is not included in stream_list, the HAL may
* safely remove any references to that stream. It will not be reused in a
* later configure() call by the framework, and all the gralloc buffers for
* it will be freed after the configure_streams() call returns.
*
* The stream_list structure is owned by the framework, and may not be
* accessed once this call completes. The address of an individual
* camera3_stream_t structure will remain valid for access by the HAL until
* the end of the first configure_stream() call which no longer includes
* that camera3_stream_t in the stream_list argument. The HAL may not change
* values in the stream structure outside of the private pointer, except for
* the usage and max_buffers members during the configure_streams() call
* itself.
*
* If the stream is new, max_buffer, and private pointer fields of the
* stream structure will all be set to 0. The usage will be set to the
* consumer usage flags. The HAL device must set these fields before the
* configure_streams() call returns. These fields are then used by the
* framework and the platform gralloc module to allocate the gralloc
* buffers for each stream.
*
* Before such a new stream can have its buffers included in a capture
* request, the framework will call register_stream_buffers() with that
* stream. However, the framework is not required to register buffers for
* _all_ streams before submitting a request. This allows for quick startup
* of (for example) a preview stream, with allocation for other streams
* happening later or concurrently.
*
* ------------------------------------------------------------------------
* >= CAMERA_DEVICE_API_VERSION_3_2:
*
* Reset the HAL camera device processing pipeline and set up new input and
* output streams. This call replaces any existing stream configuration with
* the streams defined in the stream_list. This method will be called at
* least once after initialize() before a request is submitted with
* process_capture_request().
*
* The stream_list must contain at least one output-capable stream, and may
* not contain more than one input-capable stream.
*
* The stream_list may contain streams that are also in the currently-active
* set of streams (from the previous call to configure_stream()). These
* streams will already have valid values for usage, max_buffers, and the
* private pointer.
*
* If the HAL needs to change the stream configuration for an existing
* stream due to the new configuration, it may rewrite the values of usage
* and/or max_buffers during the configure call.
*
* The framework will detect such a change, and may then reallocate the
* stream buffers before using buffers from that stream in a request.
*
* If a currently-active stream is not included in stream_list, the HAL may
* safely remove any references to that stream. It will not be reused in a
* later configure() call by the framework, and all the gralloc buffers for
* it will be freed after the configure_streams() call returns.
*
* The stream_list structure is owned by the framework, and may not be
* accessed once this call completes. The address of an individual
* camera3_stream_t structure will remain valid for access by the HAL until
* the end of the first configure_stream() call which no longer includes
* that camera3_stream_t in the stream_list argument. The HAL may not change
* values in the stream structure outside of the private pointer, except for
* the usage and max_buffers members during the configure_streams() call
* itself.
*
* If the stream is new, max_buffer, and private pointer fields of the
* stream structure will all be set to 0. The usage will be set to the
* consumer usage flags. The HAL device must set these fields before the
* configure_streams() call returns. These fields are then used by the
* framework and the platform gralloc module to allocate the gralloc
* buffers for each stream.
*
* Newly allocated buffers may be included in a capture request at any time
* by the framework. Once a gralloc buffer is returned to the framework
* with process_capture_result (and its respective release_fence has been
* signaled) the framework may free or reuse it at any time.
*
* ------------------------------------------------------------------------
*
* Preconditions:
*
* The framework will only call this method when no captures are being
* processed. That is, all results have been returned to the framework, and
* all in-flight input and output buffers have been returned and their
* release sync fences have been signaled by the HAL. The framework will not
* submit new requests for capture while the configure_streams() call is
* underway.
*
* Postconditions:
*
* The HAL device must configure itself to provide maximum possible output
* frame rate given the sizes and formats of the output streams, as
* documented in the camera device's static metadata.
*
* Performance requirements:
*
* This call is expected to be heavyweight and possibly take several hundred
* milliseconds to complete, since it may require resetting and
* reconfiguring the image sensor and the camera processing pipeline.
* Nevertheless, the HAL device should attempt to minimize the
* reconfiguration delay to minimize the user-visible pauses during
* application operational mode changes (such as switching from still
* capture to video recording).
*
* The HAL should return from this call in 500ms, and must return from this
* call in 1000ms.
*
* Return values:
*
* 0: On successful stream configuration
*
* -EINVAL: If the requested stream configuration is invalid. Some examples
* of invalid stream configurations include:
*
* - Including more than 1 input-capable stream (INPUT or
* BIDIRECTIONAL)
*
* - Not including any output-capable streams (OUTPUT or
* BIDIRECTIONAL)
*
* - Including streams with unsupported formats, or an unsupported
* size for that format.
*
* - Including too many output streams of a certain format.
*
* Note that the framework submitting an invalid stream
* configuration is not normal operation, since stream
* configurations are checked before configure. An invalid
* configuration means that a bug exists in the framework code, or
* there is a mismatch between the HAL's static metadata and the
* requirements on streams.
*
* -ENODEV: If there has been a fatal error and the device is no longer
* operational. Only close() can be called successfully by the
* framework after this error is returned.
*/
int (*configure_streams)(const struct camera3_device *,
camera3_stream_configuration_t *stream_list);
/**
* register_stream_buffers:
*
* >= CAMERA_DEVICE_API_VERSION_3_2:
*
* DEPRECATED. This will not be called and must be set to NULL.
*
* <= CAMERA_DEVICE_API_VERSION_3_1:
*
* Register buffers for a given stream with the HAL device. This method is
* called by the framework after a new stream is defined by
* configure_streams, and before buffers from that stream are included in a
* capture request. If the same stream is listed in a subsequent
* configure_streams() call, register_stream_buffers will _not_ be called
* again for that stream.
*
* The framework does not need to register buffers for all configured
* streams before it submits the first capture request. This allows quick
* startup for preview (or similar use cases) while other streams are still
* being allocated.
*
* This method is intended to allow the HAL device to map or otherwise
* prepare the buffers for later use. The buffers passed in will already be
* locked for use. At the end of the call, all the buffers must be ready to
* be returned to the stream. The buffer_set argument is only valid for the
* duration of this call.
*
* If the stream format was set to HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED,
* the camera HAL should inspect the passed-in buffers here to determine any
* platform-private pixel format information.
*
* Performance requirements:
*
* This should be a non-blocking call. The HAL should return from this call
* in 1ms, and must return from this call in 5ms.
*
* Return values:
*
* 0: On successful registration of the new stream buffers
*
* -EINVAL: If the stream_buffer_set does not refer to a valid active
* stream, or if the buffers array is invalid.
*
* -ENOMEM: If there was a failure in registering the buffers. The framework
* must consider all the stream buffers to be unregistered, and can
* try to register again later.
*
* -ENODEV: If there is a fatal error, and the device is no longer
* operational. Only close() can be called successfully by the
* framework after this error is returned.
*/
int (*register_stream_buffers)(const struct camera3_device *,
const camera3_stream_buffer_set_t *buffer_set);
/**********************************************************************
* Request creation and submission
*/
/**
* construct_default_request_settings:
*
* Create capture settings for standard camera use cases.
*
* The device must return a settings buffer that is configured to meet the
* requested use case, which must be one of the CAMERA3_TEMPLATE_*
* enums. All request control fields must be included.
*
* The HAL retains ownership of this structure, but the pointer to the
* structure must be valid until the device is closed. The framework and the
* HAL may not modify the buffer once it is returned by this call. The same
* buffer may be returned for subsequent calls for the same template, or for
* other templates.
*
* Performance requirements:
*
* This should be a non-blocking call. The HAL should return from this call
* in 1ms, and must return from this call in 5ms.
*
* Return values:
*
* Valid metadata: On successful creation of a default settings
* buffer.
*
* NULL: In case of a fatal error. After this is returned, only
* the close() method can be called successfully by the
* framework.
*/
const camera_metadata_t* (*construct_default_request_settings)(
const struct camera3_device *,
int type);
/**
* process_capture_request:
*
* Send a new capture request to the HAL. The HAL should not return from
* this call until it is ready to accept the next request to process. Only
* one call to process_capture_request() will be made at a time by the
* framework, and the calls will all be from the same thread. The next call
* to process_capture_request() will be made as soon as a new request and
* its associated buffers are available. In a normal preview scenario, this
* means the function will be called again by the framework almost
* instantly.
*
* The actual request processing is asynchronous, with the results of
* capture being returned by the HAL through the process_capture_result()
* call. This call requires the result metadata to be available, but output
* buffers may simply provide sync fences to wait on. Multiple requests are
* expected to be in flight at once, to maintain full output frame rate.
*
* The framework retains ownership of the request structure. It is only
* guaranteed to be valid during this call. The HAL device must make copies
* of the information it needs to retain for the capture processing. The HAL
* is responsible for waiting on and closing the buffers' fences and
* returning the buffer handles to the framework.
*
* The HAL must write the file descriptor for the input buffer's release
* sync fence into input_buffer->release_fence, if input_buffer is not
* NULL. If the HAL returns -1 for the input buffer release sync fence, the
* framework is free to immediately reuse the input buffer. Otherwise, the
* framework will wait on the sync fence before refilling and reusing the
* input buffer.
*
* >= CAMERA_DEVICE_API_VERSION_3_2:
*
* The input/output buffers provided by the framework in each request
* may be brand new (having never before seen by the HAL).
*
* ------------------------------------------------------------------------
* Performance considerations:
*
* Handling a new buffer should be extremely lightweight and there should be
* no frame rate degradation or frame jitter introduced.
*
* This call must return fast enough to ensure that the requested frame
* rate can be sustained, especially for streaming cases (post-processing
* quality settings set to FAST). The HAL should return this call in 1
* frame interval, and must return from this call in 4 frame intervals.
*
* Return values:
*
* 0: On a successful start to processing the capture request
*
* -EINVAL: If the input is malformed (the settings are NULL when not
* allowed, there are 0 output buffers, etc) and capture processing
* cannot start. Failures during request processing should be
* handled by calling camera3_callback_ops_t.notify(). In case of
* this error, the framework will retain responsibility for the
* stream buffers' fences and the buffer handles; the HAL should
* not close the fences or return these buffers with
* process_capture_result.
*
* -ENODEV: If the camera device has encountered a serious error. After this
* error is returned, only the close() method can be successfully
* called by the framework.
*
*/
int (*process_capture_request)(const struct camera3_device *,
camera3_capture_request_t *request);
/**********************************************************************
* Miscellaneous methods
*/
/**
* get_metadata_vendor_tag_ops:
*
* Get methods to query for vendor extension metadata tag information. The
* HAL should fill in all the vendor tag operation methods, or leave ops
* unchanged if no vendor tags are defined.
*
* The definition of vendor_tag_query_ops_t can be found in
* system/media/camera/include/system/camera_metadata.h.
*
* >= CAMERA_DEVICE_API_VERSION_3_2:
* DEPRECATED. This function has been deprecated and should be set to
* NULL by the HAL. Please implement get_vendor_tag_ops in camera_common.h
* instead.
*/
void (*get_metadata_vendor_tag_ops)(const struct camera3_device*,
vendor_tag_query_ops_t* ops);
/**
* dump:
*
* Print out debugging state for the camera device. This will be called by
* the framework when the camera service is asked for a debug dump, which
* happens when using the dumpsys tool, or when capturing a bugreport.
*
* The passed-in file descriptor can be used to write debugging text using
* dprintf() or write(). The text should be in ASCII encoding only.
*
* Performance requirements:
*
* This must be a non-blocking call. The HAL should return from this call
* in 1ms, must return from this call in 10ms. This call must avoid
* deadlocks, as it may be called at any point during camera operation.
* Any synchronization primitives used (such as mutex locks or semaphores)
* should be acquired with a timeout.
*/
void (*dump)(const struct camera3_device *, int fd);
/**
* flush:
*
* Flush all currently in-process captures and all buffers in the pipeline
* on the given device. The framework will use this to dump all state as
* quickly as possible in order to prepare for a configure_streams() call.
*
* No buffers are required to be successfully returned, so every buffer
* held at the time of flush() (whether successfully filled or not) may be
* returned with CAMERA3_BUFFER_STATUS_ERROR. Note the HAL is still allowed
* to return valid (CAMERA3_BUFFER_STATUS_OK) buffers during this call,
* provided they are successfully filled.
*
* All requests currently in the HAL are expected to be returned as soon as
* possible. Not-in-process requests should return errors immediately. Any
* interruptible hardware blocks should be stopped, and any uninterruptible
* blocks should be waited on.
*
* More specifically, the HAL must follow below requirements for various cases:
*
* 1. For captures that are too late for the HAL to cancel/stop, and will be
* completed normally by the HAL; i.e. the HAL can send shutter/notify and
* process_capture_result and buffers as normal.
*
* 2. For pending requests that have not done any processing, the HAL must call notify
* CAMERA3_MSG_ERROR_REQUEST, and return all the output buffers with
* process_capture_result in the error state (CAMERA3_BUFFER_STATUS_ERROR).
* The HAL must not place the release fence into an error state, instead,
* the release fences must be set to the acquire fences passed by the framework,
* or -1 if they have been waited on by the HAL already. This is also the path
* to follow for any captures for which the HAL already called notify() with
* CAMERA3_MSG_SHUTTER but won't be producing any metadata/valid buffers for.
* After CAMERA3_MSG_ERROR_REQUEST, for a given frame, only process_capture_results with
* buffers in CAMERA3_BUFFER_STATUS_ERROR are allowed. No further notifys or
* process_capture_result with non-null metadata is allowed.
*
* 3. For partially completed pending requests that will not have all the output
* buffers or perhaps missing metadata, the HAL should follow below:
*
* 3.1. Call notify with CAMERA3_MSG_ERROR_RESULT if some of the expected result
* metadata (i.e. one or more partial metadata) won't be available for the capture.
*
* 3.2. Call notify with CAMERA3_MSG_ERROR_BUFFER for every buffer that won't
* be produced for the capture.
*
* 3.3 Call notify with CAMERA3_MSG_SHUTTER with the capture timestamp before
* any buffers/metadata are returned with process_capture_result.
*
* 3.4 For captures that will produce some results, the HAL must not call
* CAMERA3_MSG_ERROR_REQUEST, since that indicates complete failure.
*
* 3.5. Valid buffers/metadata should be passed to the framework as normal.
*
* 3.6. Failed buffers should be returned to the framework as described for case 2.
* But failed buffers do not have to follow the strict ordering valid buffers do,
* and may be out-of-order with respect to valid buffers. For example, if buffers
* A, B, C, D, E are sent, D and E are failed, then A, E, B, D, C is an acceptable
* return order.
*
* 3.7. For fully-missing metadata, calling CAMERA3_MSG_ERROR_RESULT is sufficient, no
* need to call process_capture_result with NULL metadata or equivalent.
*
* flush() should only return when there are no more outstanding buffers or
* requests left in the HAL. The framework may call configure_streams (as
* the HAL state is now quiesced) or may issue new requests.
*
* Note that it's sufficient to only support fully-succeeded and fully-failed result cases.
* However, it is highly desirable to support the partial failure cases as well, as it
* could help improve the flush call overall performance.
*
* Performance requirements:
*
* The HAL should return from this call in 100ms, and must return from this
* call in 1000ms. And this call must not be blocked longer than pipeline
* latency (see S7 for definition).
*
* Version information:
*
* only available if device version >= CAMERA_DEVICE_API_VERSION_3_1.
*
* Return values:
*
* 0: On a successful flush of the camera HAL.
*
* -EINVAL: If the input is malformed (the device is not valid).
*
* -ENODEV: If the camera device has encountered a serious error. After this
* error is returned, only the close() method can be successfully
* called by the framework.
*/
int (*flush)(const struct camera3_device *);
/* reserved for future use */
void *reserved[8];
} camera3_device_ops_t;
/**********************************************************************
*
* Camera device definition
*
*/
typedef struct camera3_device {
/**
* common.version must equal CAMERA_DEVICE_API_VERSION_3_0 to identify this
* device as implementing version 3.0 of the camera device HAL.
*
* Performance requirements:
*
* Camera open (common.module->common.methods->open) should return in 200ms, and must return
* in 500ms.
* Camera close (common.close) should return in 200ms, and must return in 500ms.
*
*/
hw_device_t common;
camera3_device_ops_t *ops;
void *priv;
} camera3_device_t;
__END_DECLS
#endif /* #ifdef ANDROID_INCLUDE_CAMERA3_H */
|