/usr/include/android-22/hardware/hwcomposer.h is in android-headers-22 23-0ubuntu4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 | /*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_INCLUDE_HARDWARE_HWCOMPOSER_H
#define ANDROID_INCLUDE_HARDWARE_HWCOMPOSER_H
#include <stdint.h>
#include <sys/cdefs.h>
#include <hardware/gralloc.h>
#include <hardware/hardware.h>
#include <cutils/native_handle.h>
#include <hardware/hwcomposer_defs.h>
__BEGIN_DECLS
/*****************************************************************************/
/* for compatibility */
#define HWC_MODULE_API_VERSION HWC_MODULE_API_VERSION_0_1
#define HWC_DEVICE_API_VERSION HWC_DEVICE_API_VERSION_0_1
#define HWC_API_VERSION HWC_DEVICE_API_VERSION
/*****************************************************************************/
/**
* The id of this module
*/
#define HWC_HARDWARE_MODULE_ID "hwcomposer"
/**
* Name of the sensors device to open
*/
#define HWC_HARDWARE_COMPOSER "composer"
typedef struct hwc_rect {
int left;
int top;
int right;
int bottom;
} hwc_rect_t;
typedef struct hwc_frect {
float left;
float top;
float right;
float bottom;
} hwc_frect_t;
typedef struct hwc_region {
size_t numRects;
hwc_rect_t const* rects;
} hwc_region_t;
typedef struct hwc_color {
uint8_t r;
uint8_t g;
uint8_t b;
uint8_t a;
} hwc_color_t;
typedef struct hwc_layer_1 {
/*
* compositionType is used to specify this layer's type and is set by either
* the hardware composer implementation, or by the caller (see below).
*
* This field is always reset to HWC_BACKGROUND or HWC_FRAMEBUFFER
* before (*prepare)() is called when the HWC_GEOMETRY_CHANGED flag is
* also set, otherwise, this field is preserved between (*prepare)()
* calls.
*
* HWC_BACKGROUND
* Always set by the caller before calling (*prepare)(), this value
* indicates this is a special "background" layer. The only valid field
* is backgroundColor.
* The HWC can toggle this value to HWC_FRAMEBUFFER to indicate it CANNOT
* handle the background color.
*
*
* HWC_FRAMEBUFFER_TARGET
* Always set by the caller before calling (*prepare)(), this value
* indicates this layer is the framebuffer surface used as the target of
* OpenGL ES composition. If the HWC sets all other layers to HWC_OVERLAY
* or HWC_BACKGROUND, then no OpenGL ES composition will be done, and
* this layer should be ignored during set().
*
* This flag (and the framebuffer surface layer) will only be used if the
* HWC version is HWC_DEVICE_API_VERSION_1_1 or higher. In older versions,
* the OpenGL ES target surface is communicated by the (dpy, sur) fields
* in hwc_compositor_device_1_t.
*
* This value cannot be set by the HWC implementation.
*
*
* HWC_FRAMEBUFFER
* Set by the caller before calling (*prepare)() ONLY when the
* HWC_GEOMETRY_CHANGED flag is also set.
*
* Set by the HWC implementation during (*prepare)(), this indicates
* that the layer will be drawn into the framebuffer using OpenGL ES.
* The HWC can toggle this value to HWC_OVERLAY to indicate it will
* handle the layer.
*
*
* HWC_OVERLAY
* Set by the HWC implementation during (*prepare)(), this indicates
* that the layer will be handled by the HWC (ie: it must not be
* composited with OpenGL ES).
*
*
* HWC_SIDEBAND
* Set by the caller before calling (*prepare)(), this value indicates
* the contents of this layer come from a sideband video stream.
*
* The h/w composer is responsible for receiving new image buffers from
* the stream at the appropriate time (e.g. synchronized to a separate
* audio stream), compositing them with the current contents of other
* layers, and displaying the resulting image. This happens
* independently of the normal prepare/set cycle. The prepare/set calls
* only happen when other layers change, or when properties of the
* sideband layer such as position or size change.
*
* If the h/w composer can't handle the layer as a sideband stream for
* some reason (e.g. unsupported scaling/blending/rotation, or too many
* sideband layers) it can set compositionType to HWC_FRAMEBUFFER in
* (*prepare)(). However, doing so will result in the layer being shown
* as a solid color since the platform is not currently able to composite
* sideband layers with the GPU. This may be improved in future
* versions of the platform.
*
*
* HWC_CURSOR_OVERLAY
* Set by the HWC implementation during (*prepare)(), this value
* indicates the layer's composition will now be handled by the HWC.
* Additionally, the client can now asynchronously update the on-screen
* position of this layer using the setCursorPositionAsync() api.
*/
int32_t compositionType;
/*
* hints is bit mask set by the HWC implementation during (*prepare)().
* It is preserved between (*prepare)() calls, unless the
* HWC_GEOMETRY_CHANGED flag is set, in which case it is reset to 0.
*
* see hwc_layer_t::hints
*/
uint32_t hints;
/* see hwc_layer_t::flags */
uint32_t flags;
union {
/* color of the background. hwc_color_t.a is ignored */
hwc_color_t backgroundColor;
struct {
union {
/* When compositionType is HWC_FRAMEBUFFER, HWC_OVERLAY,
* HWC_FRAMEBUFFER_TARGET, this is the handle of the buffer to
* compose. This handle is guaranteed to have been allocated
* from gralloc using the GRALLOC_USAGE_HW_COMPOSER usage flag.
* If the layer's handle is unchanged across two consecutive
* prepare calls and the HWC_GEOMETRY_CHANGED flag is not set
* for the second call then the HWComposer implementation may
* assume that the contents of the buffer have not changed. */
buffer_handle_t handle;
/* When compositionType is HWC_SIDEBAND, this is the handle
* of the sideband video stream to compose. */
const native_handle_t* sidebandStream;
};
/* transformation to apply to the buffer during composition */
uint32_t transform;
/* blending to apply during composition */
int32_t blending;
/* area of the source to consider, the origin is the top-left corner of
* the buffer. As of HWC_DEVICE_API_VERSION_1_3, sourceRect uses floats.
* If the h/w can't support a non-integer source crop rectangle, it should
* punt to OpenGL ES composition.
*/
union {
// crop rectangle in integer (pre HWC_DEVICE_API_VERSION_1_3)
hwc_rect_t sourceCropi;
hwc_rect_t sourceCrop; // just for source compatibility
// crop rectangle in floats (as of HWC_DEVICE_API_VERSION_1_3)
hwc_frect_t sourceCropf;
};
/* where to composite the sourceCrop onto the display. The sourceCrop
* is scaled using linear filtering to the displayFrame. The origin is the
* top-left corner of the screen.
*/
hwc_rect_t displayFrame;
/* visible region in screen space. The origin is the
* top-left corner of the screen.
* The visible region INCLUDES areas overlapped by a translucent layer.
*/
hwc_region_t visibleRegionScreen;
/* Sync fence object that will be signaled when the buffer's
* contents are available. May be -1 if the contents are already
* available. This field is only valid during set(), and should be
* ignored during prepare(). The set() call must not wait for the
* fence to be signaled before returning, but the HWC must wait for
* all buffers to be signaled before reading from them.
*
* HWC_FRAMEBUFFER layers will never have an acquire fence, since
* reads from them are complete before the framebuffer is ready for
* display.
*
* HWC_SIDEBAND layers will never have an acquire fence, since
* synchronization is handled through implementation-defined
* sideband mechanisms.
*
* The HWC takes ownership of the acquireFenceFd and is responsible
* for closing it when no longer needed.
*/
int acquireFenceFd;
/* During set() the HWC must set this field to a file descriptor for
* a sync fence object that will signal after the HWC has finished
* reading from the buffer. The field is ignored by prepare(). Each
* layer should have a unique file descriptor, even if more than one
* refer to the same underlying fence object; this allows each to be
* closed independently.
*
* If buffer reads can complete at significantly different times,
* then using independent fences is preferred. For example, if the
* HWC handles some layers with a blit engine and others with
* overlays, then the blit layers can be reused immediately after
* the blit completes, but the overlay layers can't be reused until
* a subsequent frame has been displayed.
*
* Since HWC doesn't read from HWC_FRAMEBUFFER layers, it shouldn't
* produce a release fence for them. The releaseFenceFd will be -1
* for these layers when set() is called.
*
* Since HWC_SIDEBAND buffers don't pass through the HWC client,
* the HWC shouldn't produce a release fence for them. The
* releaseFenceFd will be -1 for these layers when set() is called.
*
* The HWC client taks ownership of the releaseFenceFd and is
* responsible for closing it when no longer needed.
*/
int releaseFenceFd;
/*
* Availability: HWC_DEVICE_API_VERSION_1_2
*
* Alpha value applied to the whole layer. The effective
* value of each pixel is computed as:
*
* if (blending == HWC_BLENDING_PREMULT)
* pixel.rgb = pixel.rgb * planeAlpha / 255
* pixel.a = pixel.a * planeAlpha / 255
*
* Then blending proceeds as usual according to the "blending"
* field above.
*
* NOTE: planeAlpha applies to YUV layers as well:
*
* pixel.rgb = yuv_to_rgb(pixel.yuv)
* if (blending == HWC_BLENDING_PREMULT)
* pixel.rgb = pixel.rgb * planeAlpha / 255
* pixel.a = planeAlpha
*
*
* IMPLEMENTATION NOTE:
*
* If the source image doesn't have an alpha channel, then
* the h/w can use the HWC_BLENDING_COVERAGE equations instead of
* HWC_BLENDING_PREMULT and simply set the alpha channel to
* planeAlpha.
*
* e.g.:
*
* if (blending == HWC_BLENDING_PREMULT)
* blending = HWC_BLENDING_COVERAGE;
* pixel.a = planeAlpha;
*
*/
uint8_t planeAlpha;
/* reserved for future use */
uint8_t _pad[3];
};
};
#ifdef __LP64__
/*
* For 64-bit mode, this struct is 120 bytes (and 8-byte aligned), and needs
* to be padded as such to maintain binary compatibility.
*/
uint8_t reserved[120 - 96];
#else
/*
* For 32-bit mode, this struct is 96 bytes, and needs to be padded as such
* to maintain binary compatibility.
*/
uint8_t reserved[96 - 76];
#endif
} hwc_layer_1_t;
/* This represents a display, typically an EGLDisplay object */
typedef void* hwc_display_t;
/* This represents a surface, typically an EGLSurface object */
typedef void* hwc_surface_t;
/*
* hwc_display_contents_1_t::flags values
*/
enum {
/*
* HWC_GEOMETRY_CHANGED is set by SurfaceFlinger to indicate that the list
* passed to (*prepare)() has changed by more than just the buffer handles
* and acquire fences.
*/
HWC_GEOMETRY_CHANGED = 0x00000001,
};
/*
* Description of the contents to output on a display.
*
* This is the top-level structure passed to the prepare and set calls to
* negotiate and commit the composition of a display image.
*/
typedef struct hwc_display_contents_1 {
/* File descriptor referring to a Sync HAL fence object which will signal
* when this composition is retired. For a physical display, a composition
* is retired when it has been replaced on-screen by a subsequent set. For
* a virtual display, the composition is retired when the writes to
* outputBuffer are complete and can be read. The fence object is created
* and returned by the set call; this field will be -1 on entry to prepare
* and set. SurfaceFlinger will close the returned file descriptor.
*/
int retireFenceFd;
union {
/* Fields only relevant for HWC_DEVICE_VERSION_1_0. */
struct {
/* (dpy, sur) is the target of SurfaceFlinger's OpenGL ES
* composition for HWC_DEVICE_VERSION_1_0. They aren't relevant to
* prepare. The set call should commit this surface atomically to
* the display along with any overlay layers.
*/
hwc_display_t dpy;
hwc_surface_t sur;
};
/* These fields are used for virtual displays when the h/w composer
* version is at least HWC_DEVICE_VERSION_1_3. */
struct {
/* outbuf is the buffer that receives the composed image for
* virtual displays. Writes to the outbuf must wait until
* outbufAcquireFenceFd signals. A fence that will signal when
* writes to outbuf are complete should be returned in
* retireFenceFd.
*
* This field is set before prepare(), so properties of the buffer
* can be used to decide which layers can be handled by h/w
* composer.
*
* If prepare() sets all layers to FRAMEBUFFER, then GLES
* composition will happen directly to the output buffer. In this
* case, both outbuf and the FRAMEBUFFER_TARGET layer's buffer will
* be the same, and set() has no work to do besides managing fences.
*
* If the TARGET_FORCE_HWC_FOR_VIRTUAL_DISPLAYS board config
* variable is defined (not the default), then this behavior is
* changed: if all layers are marked for FRAMEBUFFER, GLES
* composition will take place to a scratch framebuffer, and
* h/w composer must copy it to the output buffer. This allows the
* h/w composer to do format conversion if there are cases where
* that is more desirable than doing it in the GLES driver or at the
* virtual display consumer.
*
* If some or all layers are marked OVERLAY, then the framebuffer
* and output buffer will be different. As with physical displays,
* the framebuffer handle will not change between frames if all
* layers are marked for OVERLAY.
*/
buffer_handle_t outbuf;
/* File descriptor for a fence that will signal when outbuf is
* ready to be written. The h/w composer is responsible for closing
* this when no longer needed.
*
* Will be -1 whenever outbuf is NULL, or when the outbuf can be
* written immediately.
*/
int outbufAcquireFenceFd;
};
};
/* List of layers that will be composed on the display. The buffer handles
* in the list will be unique. If numHwLayers is 0, all composition will be
* performed by SurfaceFlinger.
*/
uint32_t flags;
size_t numHwLayers;
hwc_layer_1_t hwLayers[0];
} hwc_display_contents_1_t;
/* see hwc_composer_device::registerProcs()
* All of the callbacks are required and non-NULL unless otherwise noted.
*/
typedef struct hwc_procs {
/*
* (*invalidate)() triggers a screen refresh, in particular prepare and set
* will be called shortly after this call is made. Note that there is
* NO GUARANTEE that the screen refresh will happen after invalidate()
* returns (in particular, it could happen before).
* invalidate() is GUARANTEED TO NOT CALL BACK into the h/w composer HAL and
* it is safe to call invalidate() from any of hwc_composer_device
* hooks, unless noted otherwise.
*/
void (*invalidate)(const struct hwc_procs* procs);
/*
* (*vsync)() is called by the h/w composer HAL when a vsync event is
* received and HWC_EVENT_VSYNC is enabled on a display
* (see: hwc_event_control).
*
* the "disp" parameter indicates which display the vsync event is for.
* the "timestamp" parameter is the system monotonic clock timestamp in
* nanosecond of when the vsync event happened.
*
* vsync() is GUARANTEED TO NOT CALL BACK into the h/w composer HAL.
*
* It is expected that vsync() is called from a thread of at least
* HAL_PRIORITY_URGENT_DISPLAY with as little latency as possible,
* typically less than 0.5 ms.
*
* It is a (silent) error to have HWC_EVENT_VSYNC enabled when calling
* hwc_composer_device.set(..., 0, 0, 0) (screen off). The implementation
* can either stop or continue to process VSYNC events, but must not
* crash or cause other problems.
*/
void (*vsync)(const struct hwc_procs* procs, int disp, int64_t timestamp);
/*
* (*hotplug)() is called by the h/w composer HAL when a display is
* connected or disconnected. The PRIMARY display is always connected and
* the hotplug callback should not be called for it.
*
* The disp parameter indicates which display type this event is for.
* The connected parameter indicates whether the display has just been
* connected (1) or disconnected (0).
*
* The hotplug() callback may call back into the h/w composer on the same
* thread to query refresh rate and dpi for the display. Additionally,
* other threads may be calling into the h/w composer while the callback
* is in progress.
*
* The h/w composer must serialize calls to the hotplug callback; only
* one thread may call it at a time.
*
* This callback will be NULL if the h/w composer is using
* HWC_DEVICE_API_VERSION_1_0.
*/
void (*hotplug)(const struct hwc_procs* procs, int disp, int connected);
} hwc_procs_t;
/*****************************************************************************/
typedef struct hwc_module {
/**
* Common methods of the hardware composer module. This *must* be the first member of
* hwc_module as users of this structure will cast a hw_module_t to
* hwc_module pointer in contexts where it's known the hw_module_t references a
* hwc_module.
*/
struct hw_module_t common;
} hwc_module_t;
typedef struct hwc_composer_device_1 {
/**
* Common methods of the hardware composer device. This *must* be the first member of
* hwc_composer_device_1 as users of this structure will cast a hw_device_t to
* hwc_composer_device_1 pointer in contexts where it's known the hw_device_t references a
* hwc_composer_device_1.
*/
struct hw_device_t common;
/*
* (*prepare)() is called for each frame before composition and is used by
* SurfaceFlinger to determine what composition steps the HWC can handle.
*
* (*prepare)() can be called more than once, the last call prevails.
*
* The HWC responds by setting the compositionType field in each layer to
* either HWC_FRAMEBUFFER, HWC_OVERLAY, or HWC_CURSOR_OVERLAY. For the
* HWC_FRAMEBUFFER type, composition for the layer is handled by
* SurfaceFlinger with OpenGL ES. For the latter two overlay types,
* the HWC will have to handle the layer's composition. compositionType
* and hints are preserved between (*prepare)() calles unless the
* HWC_GEOMETRY_CHANGED flag is set.
*
* (*prepare)() is called with HWC_GEOMETRY_CHANGED to indicate that the
* list's geometry has changed, that is, when more than just the buffer's
* handles have been updated. Typically this happens (but is not limited to)
* when a window is added, removed, resized or moved. In this case
* compositionType and hints are reset to their default value.
*
* For HWC 1.0, numDisplays will always be one, and displays[0] will be
* non-NULL.
*
* For HWC 1.1, numDisplays will always be HWC_NUM_PHYSICAL_DISPLAY_TYPES.
* Entries for unsupported or disabled/disconnected display types will be
* NULL.
*
* In HWC 1.3, numDisplays may be up to HWC_NUM_DISPLAY_TYPES. The extra
* entries correspond to enabled virtual displays, and will be non-NULL.
*
* returns: 0 on success. An negative error code on error. If an error is
* returned, SurfaceFlinger will assume that none of the layer will be
* handled by the HWC.
*/
int (*prepare)(struct hwc_composer_device_1 *dev,
size_t numDisplays, hwc_display_contents_1_t** displays);
/*
* (*set)() is used in place of eglSwapBuffers(), and assumes the same
* functionality, except it also commits the work list atomically with
* the actual eglSwapBuffers().
*
* The layer lists are guaranteed to be the same as the ones returned from
* the last call to (*prepare)().
*
* When this call returns the caller assumes that the displays will be
* updated in the near future with the content of their work lists, without
* artifacts during the transition from the previous frame.
*
* A display with zero layers indicates that the entire composition has
* been handled by SurfaceFlinger with OpenGL ES. In this case, (*set)()
* behaves just like eglSwapBuffers().
*
* For HWC 1.0, numDisplays will always be one, and displays[0] will be
* non-NULL.
*
* For HWC 1.1, numDisplays will always be HWC_NUM_PHYSICAL_DISPLAY_TYPES.
* Entries for unsupported or disabled/disconnected display types will be
* NULL.
*
* In HWC 1.3, numDisplays may be up to HWC_NUM_DISPLAY_TYPES. The extra
* entries correspond to enabled virtual displays, and will be non-NULL.
*
* IMPORTANT NOTE: There is an implicit layer containing opaque black
* pixels behind all the layers in the list. It is the responsibility of
* the hwcomposer module to make sure black pixels are output (or blended
* from).
*
* IMPORTANT NOTE: In the event of an error this call *MUST* still cause
* any fences returned in the previous call to set to eventually become
* signaled. The caller may have already issued wait commands on these
* fences, and having set return without causing those fences to signal
* will likely result in a deadlock.
*
* returns: 0 on success. A negative error code on error:
* HWC_EGL_ERROR: eglGetError() will provide the proper error code (only
* allowed prior to HWComposer 1.1)
* Another code for non EGL errors.
*/
int (*set)(struct hwc_composer_device_1 *dev,
size_t numDisplays, hwc_display_contents_1_t** displays);
/*
* eventControl(..., event, enabled)
* Enables or disables h/w composer events for a display.
*
* eventControl can be called from any thread and takes effect
* immediately.
*
* Supported events are:
* HWC_EVENT_VSYNC
*
* returns -EINVAL if the "event" parameter is not one of the value above
* or if the "enabled" parameter is not 0 or 1.
*/
int (*eventControl)(struct hwc_composer_device_1* dev, int disp,
int event, int enabled);
union {
/*
* For HWC 1.3 and earlier, the blank() interface is used.
*
* blank(..., blank)
* Blanks or unblanks a display's screen.
*
* Turns the screen off when blank is nonzero, on when blank is zero.
* Multiple sequential calls with the same blank value must be
* supported.
* The screen state transition must be be complete when the function
* returns.
*
* returns 0 on success, negative on error.
*/
int (*blank)(struct hwc_composer_device_1* dev, int disp, int blank);
/*
* For HWC 1.4 and above, setPowerMode() will be used in place of
* blank().
*
* setPowerMode(..., mode)
* Sets the display screen's power state.
*
* Refer to the documentation of the HWC_POWER_MODE_* constants
* for information about each power mode.
*
* The functionality is similar to the blank() command in previous
* versions of HWC, but with support for more power states.
*
* The display driver is expected to retain and restore the low power
* state of the display while entering and exiting from suspend.
*
* Multiple sequential calls with the same mode value must be supported.
*
* The screen state transition must be be complete when the function
* returns.
*
* returns 0 on success, negative on error.
*/
int (*setPowerMode)(struct hwc_composer_device_1* dev, int disp,
int mode);
};
/*
* Used to retrieve information about the h/w composer
*
* Returns 0 on success or -errno on error.
*/
int (*query)(struct hwc_composer_device_1* dev, int what, int* value);
/*
* (*registerProcs)() registers callbacks that the h/w composer HAL can
* later use. It will be called immediately after the composer device is
* opened with non-NULL procs. It is FORBIDDEN to call any of the callbacks
* from within registerProcs(). registerProcs() must save the hwc_procs_t
* pointer which is needed when calling a registered callback.
*/
void (*registerProcs)(struct hwc_composer_device_1* dev,
hwc_procs_t const* procs);
/*
* This field is OPTIONAL and can be NULL.
*
* If non NULL it will be called by SurfaceFlinger on dumpsys
*/
void (*dump)(struct hwc_composer_device_1* dev, char *buff, int buff_len);
/*
* (*getDisplayConfigs)() returns handles for the configurations available
* on the connected display. These handles must remain valid as long as the
* display is connected.
*
* Configuration handles are written to configs. The number of entries
* allocated by the caller is passed in *numConfigs; getDisplayConfigs must
* not try to write more than this number of config handles. On return, the
* total number of configurations available for the display is returned in
* *numConfigs. If *numConfigs is zero on entry, then configs may be NULL.
*
* Hardware composers implementing HWC_DEVICE_API_VERSION_1_3 or prior
* shall choose one configuration to activate and report it as the first
* entry in the returned list. Reporting the inactive configurations is not
* required.
*
* HWC_DEVICE_API_VERSION_1_4 and later provide configuration management
* through SurfaceFlinger, and hardware composers implementing these APIs
* must also provide getActiveConfig and setActiveConfig. Hardware composers
* implementing these API versions may choose not to activate any
* configuration, leaving configuration selection to higher levels of the
* framework.
*
* Returns 0 on success or a negative error code on error. If disp is a
* hotpluggable display type and no display is connected, an error shall be
* returned.
*
* This field is REQUIRED for HWC_DEVICE_API_VERSION_1_1 and later.
* It shall be NULL for previous versions.
*/
int (*getDisplayConfigs)(struct hwc_composer_device_1* dev, int disp,
uint32_t* configs, size_t* numConfigs);
/*
* (*getDisplayAttributes)() returns attributes for a specific config of a
* connected display. The config parameter is one of the config handles
* returned by getDisplayConfigs.
*
* The list of attributes to return is provided in the attributes
* parameter, terminated by HWC_DISPLAY_NO_ATTRIBUTE. The value for each
* requested attribute is written in order to the values array. The
* HWC_DISPLAY_NO_ATTRIBUTE attribute does not have a value, so the values
* array will have one less value than the attributes array.
*
* This field is REQUIRED for HWC_DEVICE_API_VERSION_1_1 and later.
* It shall be NULL for previous versions.
*
* If disp is a hotpluggable display type and no display is connected,
* or if config is not a valid configuration for the display, a negative
* error code shall be returned.
*/
int (*getDisplayAttributes)(struct hwc_composer_device_1* dev, int disp,
uint32_t config, const uint32_t* attributes, int32_t* values);
/*
* (*getActiveConfig)() returns the index of the configuration that is
* currently active on the connected display. The index is relative to
* the list of configuration handles returned by getDisplayConfigs. If there
* is no active configuration, -1 shall be returned.
*
* Returns the configuration index on success or -1 on error.
*
* This field is REQUIRED for HWC_DEVICE_API_VERSION_1_4 and later.
* It shall be NULL for previous versions.
*/
int (*getActiveConfig)(struct hwc_composer_device_1* dev, int disp);
/*
* (*setActiveConfig)() instructs the hardware composer to switch to the
* display configuration at the given index in the list of configuration
* handles returned by getDisplayConfigs.
*
* If this function returns without error, any subsequent calls to
* getActiveConfig shall return the index set by this function until one
* of the following occurs:
* 1) Another successful call of this function
* 2) The display is disconnected
*
* Returns 0 on success or a negative error code on error. If disp is a
* hotpluggable display type and no display is connected, or if index is
* outside of the range of hardware configurations returned by
* getDisplayConfigs, an error shall be returned.
*
* This field is REQUIRED for HWC_DEVICE_API_VERSION_1_4 and later.
* It shall be NULL for previous versions.
*/
int (*setActiveConfig)(struct hwc_composer_device_1* dev, int disp,
int index);
/*
* Asynchronously update the location of the cursor layer.
*
* Within the standard prepare()/set() composition loop, the client
* (surfaceflinger) can request that a given layer uses dedicated cursor
* composition hardware by specifiying the HWC_IS_CURSOR_LAYER flag. Only
* one layer per display can have this flag set. If the layer is suitable
* for the platform's cursor hardware, hwcomposer will return from prepare()
* a composition type of HWC_CURSOR_OVERLAY for that layer. This indicates
* not only that the client is not responsible for compositing that layer,
* but also that the client can continue to update the position of that layer
* after a call to set(). This can reduce the visible latency of mouse
* movement to visible, on-screen cursor updates. Calls to
* setCursorPositionAsync() may be made from a different thread doing the
* prepare()/set() composition loop, but care must be taken to not interleave
* calls of setCursorPositionAsync() between calls of set()/prepare().
*
* Notes:
* - Only one layer per display can be specified as a cursor layer with
* HWC_IS_CURSOR_LAYER.
* - hwcomposer will only return one layer per display as HWC_CURSOR_OVERLAY
* - This returns 0 on success or -errno on error.
* - This field is optional for HWC_DEVICE_API_VERSION_1_4 and later. It
* should be null for previous versions.
*/
int (*setCursorPositionAsync)(struct hwc_composer_device_1 *dev, int disp, int x_pos, int y_pos);
/*
* Reserved for future use. Must be NULL.
*/
void* reserved_proc[1];
} hwc_composer_device_1_t;
/** convenience API for opening and closing a device */
static inline int hwc_open_1(const struct hw_module_t* module,
hwc_composer_device_1_t** device) {
return module->methods->open(module,
HWC_HARDWARE_COMPOSER, (struct hw_device_t**)device);
}
static inline int hwc_close_1(hwc_composer_device_1_t* device) {
return device->common.close(&device->common);
}
/*****************************************************************************/
__END_DECLS
#endif /* ANDROID_INCLUDE_HARDWARE_HWCOMPOSER_H */
|