This file is indexed.

/usr/share/calc/brentsolve.cal is in apcalc-common 2.12.5.0-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
/*
 * brentsolve - Root finding with the Brent-Dekker trick
 *
 * Copyright (C) 2013 Christoph Zurnieden
 *
 * Calc is open software; you can redistribute it and/or modify it under
 * the terms of the version 2.1 of the GNU Lesser General Public License
 * as published by the Free Software Foundation.
 *
 * Calc is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General
 * Public License for more details.
 *
 * A copy of version 2.1 of the GNU Lesser General Public License is
 * distributed with calc under the filename COPYING-LGPL.  You should have
 * received a copy with calc; if not, write to Free Software Foundation, Inc.
 * 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 *
 * @(#) $Revision: 30.4 $
 * @(#) $Id: brentsolve.cal,v 30.4 2013/08/18 20:01:53 chongo Exp $
 * @(#) $Source: /usr/local/src/bin/calc/cal/RCS/brentsolve.cal,v $
 *
 * Under source code control:	2013/08/11 01:31:28
 * File existed as early as:	2013
 */


static resource_debug_level;
resource_debug_level = config("resource_debug", 0);


/*
  A short explanation is at http://en.wikipedia.org/wiki/Brent%27s_method
  I tried to follow the description at wikipedia as much as possible to make
  the slight changes I did more visible.
  You may give http://people.sc.fsu.edu/~jburkardt/cpp_src/brent/brent.html a
  short glimpse (Brent's originl Fortran77 versions and some translations of
  it).
*/

static true = 1;
static false = 0;
define brentsolve(low, high,eps){
  local a b c d fa fb fc fa2 fb2 fc2 s fs  tmp tmp2  mflag i places;
  a = low;
  b = high;
  c = 0;

  if(isnull(eps))
    eps = epsilon(epsilon()*1e-3);
  places = highbit(1 + int( 1/epsilon() ) ) + 1;

  d = 1/eps;

  fa = f(a);
  fb = f(b);

  fc = 0;
  s = 0;
  fs = 0;

  if(fa * fb >= 0){
    if(fa < fb){
      epsilon(eps);
      return a;
    }
    else{
      epsilon(eps);
      return b;
    }
  }

  if(abs(fa) < abs(fb)){
    tmp = a; a = b; b = tmp;
    tmp = fa; fa = fb; fb = tmp;
  }

  c = a;
  fc = fa;
  mflag = 1;
  i = 0;

  while(!(fb==0) && (abs(a-b) > eps)){
    if((fa != fc) && (fb != fc)){
      /* Inverse quadratic interpolation*/
      fc2 = fc^2;
      fa2 = fa^2;
      s = bround(((fb^2*((fc*a)-(c*fa)))+(fb*((c*fa2)-(fc2*a)))+(b*((fc2*fa)
                    -(fc*fa2))))/((fc - fb)*(fa - fb)*(fc - fa)),places++);
    }
    else{
      /* Secant Rule*/
      s =bround( b - fb * (b - a) / (fb - fa),places++);
    }
    tmp2 = (3 * a + b) / 4;
    if( (!( ((s > tmp2) && (s < b))||((s < tmp2) && (s > b))))
        || (mflag && (abs(s - b) >= (abs(b - c) / 2)))
        || (!mflag && (abs(s - b) >= (abs(c - d) / 2)))) {
      s = (a + b) / 2;
      mflag = true;
    }
    else{
      if( (mflag && (abs(b - c) < eps))
          || (!mflag && (abs(c - d) < eps))) {
        s = (a + b) / 2;
        mflag = true;
      }
      else
        mflag = false;
    }
    fs = f(s);
    c = b;
    fc = fb;
    if (fa * fs < 0){
      b = s;
      fb = fs;
    }
    else {
      a = s;
      fa = fs;
    }

    if (abs(fa) < abs(fb)){
      tmp = a; a = b; b = tmp;
      tmp = fa; fa = fb; fb = tmp;
    }
    i++;
    if (i > 1000){
      epsilon(eps);
      return newerror("brentsolve: does not converge");
    }
  }
  epsilon(eps);
  return b;
}

/*
  A variation of the solver to accept functions named differently from "f". The
  code should explain it.
*/
define brentsolve2(low, high,which,eps){
  local a b c d fa fb fc fa2 fb2 fc2 s fs  tmp tmp2  mflag i places;
  a = low;
  b = high;
  c = 0;

  switch(param(0)){
    case 0:
    case 1: return newerror("brentsolve2: not enough argments");
    case 2: eps = epsilon(epsilon()*1e-2);
            which = 0;break;
    case 3: eps = epsilon(epsilon()*1e-2);break;
    default: break;
  };
  places = highbit(1 + int(1/epsilon())) + 1;

  d = 1/eps;

  switch(which){
    case 1:  fa = __CZ__invbeta(a);
             fb = __CZ__invbeta(b); break;
    case 2:  fa = __CZ__invincgamma(a);
             fb = __CZ__invincgamma(b); break;

    default: fa = f(a);fb = f(b);   break;
  };

  fc = 0;
  s = 0;
  fs = 0;

  if(fa * fb >= 0){
    if(fa < fb)
      return a;
    else
      return b;
  }

  if(abs(fa) < abs(fb)){
    tmp = a; a = b; b = tmp;
    tmp = fa; fa = fb; fb = tmp;
  }

  c = a;
  fc = fa;
  mflag = 1;
  i = 0;

  while(!(fb==0) && (abs(a-b) > eps)){

    if((fa != fc) && (fb != fc)){
      /* Inverse quadratic interpolation*/
      fc2 = fc^2;
      fa2 = fa^2;
      s = bround(((fb^2*((fc*a)-(c*fa)))+(fb*((c*fa2)-(fc2*a)))+(b*((fc2*fa)
                    -(fc*fa2))))/((fc - fb)*(fa - fb)*(fc - fa)),places);
      places++;
    }
    else{
      /* Secant Rule*/
      s =bround( b - fb * (b - a) / (fb - fa),places);
      places++;
    }
    tmp2 = (3 * a + b) / 4;
    if( (!( ((s > tmp2) && (s < b))||((s < tmp2) && (s > b))))
        || (mflag && (abs(s - b) >= (abs(b - c) / 2)))
        || (!mflag && (abs(s - b) >= (abs(c - d) / 2)))) {
      s = (a + b) / 2;
      mflag = true;
    }
    else{
      if( (mflag && (abs(b - c) < eps))
          || (!mflag && (abs(c - d) < eps))) {
        s = (a + b) / 2;
        mflag = true;
      }
      else
        mflag = false;
    }
    switch(which){
      case 1:  fs = __CZ__invbeta(s); break;
      case 2:  fs = __CZ__invincgamma(s); break;

      default: fs = f(s);             break;
    };
    c = b;
    fc = fb;
    if (fa * fs < 0){
      b = s;
      fb = fs;
    }
    else {
      a = s;
      fa = fs;
    }

    if (abs(fa) < abs(fb)){
      tmp = a; a = b; b = tmp;
      tmp = fa; fa = fb; fb = tmp;
    }
    i++;
    if (i > 1000){
      return newerror("brentsolve2: does not converge");
    }
  }
  return b;
}


/*
 * restore internal function from resource debugging
 */
config("resource_debug", resource_debug_level),;
if (config("resource_debug") & 3) {
    print "brentsolve(low, high,eps)";
    print "brentsolve2(low, high,which,eps)";
}