This file is indexed.

/usr/share/calc/chi.cal is in apcalc-common 2.12.5.0-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
/*
 * chi - chi^2 probabilities with degrees of freedom for null hypothesis
 *
 * Copyright (C) 2001  Landon Curt Noll
 *
 * Calc is open software; you can redistribute it and/or modify it under
 * the terms of the version 2.1 of the GNU Lesser General Public License
 * as published by the Free Software Foundation.
 *
 * Calc is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.	 See the GNU Lesser General
 * Public License for more details.
 *
 * A copy of version 2.1 of the GNU Lesser General Public License is
 * distributed with calc under the filename COPYING-LGPL.  You should have
 * received a copy with calc; if not, write to Free Software Foundation, Inc.
 * 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 *
 * @(#) $Revision: 30.1 $
 * @(#) $Id: chi.cal,v 30.1 2007/03/16 11:09:54 chongo Exp $
 * @(#) $Source: /usr/local/src/bin/calc/cal/RCS/chi.cal,v $
 *
 * Under source code control:	2001/03/27 14:10:11
 * File existed as early as:	2001
 *
 * chongo <was here> /\oo/\	http://www.isthe.com/chongo/
 * Share and enjoy!  :-)	http://www.isthe.com/chongo/tech/comp/calc/
 */


/*
 * Z(x)
 *
 * From Handbook of Mathematical Functions
 *	10th printing, Dec 1972 with corrections
 *	National Bureau of Standards
 *
 * Section 26.2.1, p931.
 */
define Z(x, eps_term)
{
    local eps;		/* error term */

    /* obtain the error term */
    if (isnull(eps_term)) {
    	eps = epsilon();
    } else {
	eps = eps_term;
    }

    /* compute Z(x) value */
    return exp(-x*x/2, eps) / sqrt(2*pi(eps), eps);
}


/*
 * P(x[, eps]) asymtotic P(x) expansion for x>0 to an given epsilon error term
 *
 * NOTE: If eps is omitted, the stored epsilon value is used.
 *
 * From Handbook of Mathematical Functions
 *	10th printing, Dec 1972 with corrections
 *	National Bureau of Standards
 *
 * 26.2.11, p932:
 *
 *	P(x) = 1/2 + Z(x) * sum(n=0; n < infinity){x^(2*n+1)/(1*3*5*...(2*n+1)};
 *
 * We continue the fraction until it is less than epsilon error term.
 *
 * Also note 26.2.5:
 *
 *	P(x) + Q(x) = 1
 */
define P(x, eps_term)
{
    local eps;		/* error term */
    local s;		/* sum */
    local x2;		/* x^2 */
    local x_term;	/* x^(2*r+1) */
    local odd_prod;	/* 1*3*5* ... */
    local odd_term;	/* next odd value to multiply into odd_prod */
    local term;		/* the recent term added to the sum */

    /* obtain the error term */
    if (isnull(eps_term)) {
    	eps = epsilon();
    } else {
	eps = eps_term;
    }

    /* firewall */
    if (x <= 0) {
	if (x == 0) {
	    return 0;	/* hack */
	} else {
	    quit "Q(x[,eps]) 1st argument must be >= 0";
	}
    }
    if (eps <= 0) {
	quit "Q(x[,eps]) 2nd argument must be > 0";
    }

    /*
     * aproximate sum(n=0; n < infinity){x^(2*n+1)/(1*3*5*...(2*n+1)}
     */
    x2 = x*x;
    x_term = x;
    s = x_term;	/* 1st term */
    odd_term = 1;
    odd_prod = 1;
    do {

	/* compute the term */
	odd_term += 2;
	odd_prod *= odd_term;
	x_term *= x2;
	term = x_term / odd_prod;
	s += term;

    } while (term >= eps);

    /* apply term and factor */
    return 0.5 + Z(x,eps)*s;
}


/*
 * chi_prob(chi_sq, v[, eps]) -  Prob of >= chi^2 with v degrees of freedom
 *
 *    Computes the Probability, given the Null Hypothesis, that a given
 *    Chi squared values >= chi_sq with v degrees of freedom.
 *
 *    The chi_prob() function does not work well with odd degrees of freedom.
 *    It is reasonable with even degrees of freedom, although one must give
 *    a sifficently small error term as the degress gets large (>100).
 *
 * NOTE: This function does not work well with odd degrees of freedom.
 *	 Can somebody help / find a bug / provide a better method of
 *	 this odd degrees of freedom case?
 *
 * NOTE: This function works well with even degrees of freedom.  However
 *	 when the even degrees gets large (say, as you approach 100), you
 *	 need to increase your error term.
 *
 * From Handbook of Mathematical Functions
 *	10th printing, Dec 1972 with corrections
 *	National Bureau of Standards
 *
 * Section 26.4.4, p941:
 *
 *   For odd v:
 *
 *	Q(chi_sq, v) = 2*Q(chi) + 2*Z(chi) * (
 *		     sum(r=1, r<=(r-1)/2) {(chi_sq^r/chi) / (1*3*5*...(2*r-1)});
 *
 *	chi = sqrt(chi_sq)
 *
 *	NOTE: Q(x) = 1-P(x)
 *
 * Section 26.4.5, p941.
 *
 *   For even v:
 *
 *	Q(chi_sq, v) = sqrt(2*pi()) * Z(chi) * ( 1 +
 *		       sum(r=1, r=((v-2)/2)) { chi_sq^r / (2*4*...*(2r)) } );
 *
 *	chi = sqrt(chi_sq)
 *
 * Observe that:
 *
 *	Z(x) = exp(-x*x/2) / sqrt(2*pi());	(Section 26.2.1, p931)
 *
 * and thus:
 *
 *	sqrt(2*pi()) * Z(chi) =
 *	sqrt(2*pi()) * Z(sqrt(chi_sq)) =
 *	sqrt(2*pi()) * exp(-sqrt(chi_sq)*sqrt(chi_sq)/2) / sqrt(2*pi()) =
 *	exp(-sqrt(chi_sq)*sqrt(chi_sq)/2) =
 *	exp(-sqrt(-chi_sq/2)
 *
 * So:
 *
 *	Q(chi_sq, v) = exp(-sqrt(-chi_sq/2) * ( 1 + sum(....){...} );
 */
define chi_prob(chi_sq, v, eps_term)
{
    local eps;		/* error term */
    local r;		/* index in finite sum */
    local r_lim;	/* limit value for r */
    local s;		/* sum */
    local d;		/* demoninator (2*4*6*... or 1*3*5...) */
    local chi_term;	/* chi_sq^r */
    local ret;		/* return value */

    /* obtain the error term */
    if (isnull(eps_term)) {
	eps = epsilon();
    } else {
	eps = eps_term;
    }

    /*
     * odd degrees of freedom
     */
    if (isodd(v)) {

	local chi;		/* sqrt(chi_sq) */

	/* setup for sum */
	s = 1;
	d = 1;
	chi = sqrt(abs(chi_sq), eps);
	chi_term = chi;
	r_lim = (v-1)/2;

	/* compute sum(r=1, r=((v-1)/2)) {(chi_sq^r/chi) / (1*3*5...*(2r-1))} */
	for (r=2; r <= r_lim; ++r) {
	    chi_term *= chi_sq;
	    d *= (2*r)-1;
	    s += chi_term/d;
	}

	/* apply term and factor, Q(x) = 1-P(x) */
	ret = 2*(1-P(chi)) + 2*Z(chi)*s;

    /*
     * even degrees of freedom
     */
    } else {

	/* setup for sum */
	s =1;
	d = 1;
	chi_term = 1;
	r_lim = (v-2)/2;

	/* compute sum(r=1, r=((v-2)/2)) { chi_sq^r / (2*4*...*(2r)) } */
	for (r=1; r <= r_lim; ++r) {
	    chi_term *= chi_sq;
	    d *= r*2;
	    s += chi_term/d;
	}

	/* apply factor - see observation in the main comment above */
	ret = exp(-chi_sq/2, eps) * s;
    }

    return ret;
}