This file is indexed.

/usr/share/calc/factorial.cal is in apcalc-common 2.12.5.0-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
/*
 * factorial - implementation of different algorithms for the factorial
 *
 * Copyright (C) 2013 Christoph Zurnieden
 *
 * Calc is open software; you can redistribute it and/or modify it under
 * the terms of the version 2.1 of the GNU Lesser General Public License
 * as published by the Free Software Foundation.
 *
 * Calc is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General
 * Public License for more details.
 *
 * A copy of version 2.1 of the GNU Lesser General Public License is
 * distributed with calc under the filename COPYING-LGPL.  You should have
 * received a copy with calc; if not, write to Free Software Foundation, Inc.
 * 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 *
 * @(#) $Revision: 30.4 $
 * @(#) $Id: factorial.cal,v 30.4 2013/08/18 20:01:53 chongo Exp $
 * @(#) $Source: /usr/local/src/bin/calc/cal/RCS/factorial.cal,v $
 *
 * Under source code control:	2013/08/11 01:31:28
 * File existed as early as:	2013
 */


/*
 * hide internal function from resource debugging
 */
static resource_debug_level;
resource_debug_level = config("resource_debug", 0);


/*
  get dependencies
*/
read -once toomcook;


/* A simple list to keep things...uhm...simple?*/
static __CZ__primelist = list();

/* Helper for primorial: fill list with primes in range a,b */
define __CZ__fill_prime_list(a,b)
{
  local k;
  k=a;
  if(isprime(k))k--;
  while(1){
    k = nextprime(k);
    if(k > b) break;
    append(__CZ__primelist,k );
  }
}

/* Helper for factorial: how often prime p divides the factorial of n */
define __CZ__prime_divisors(n,p)
{
    local q,m;
    q = n;
    m = 0;
    if (p > n) return 0;
    if (p > n/2) return 1;
    while (q >= p) {
        q  = q//p;
        m += q;
    }
    return m;
}

/*
  Wrapper. Please set cut-offs to own taste and hardware.
*/
define factorial(n){
  local prime result shift prime_list k k1 k2 expo_list pix cut primorial;

  result = 1;
  prime  = 2;

  if(!isint(n))  {
    return newerror("factorial(n): n is not an integer"); ## or gamma(n)?
  }
  if(n < 0)      return newerror("factorial(n): n < 0");
  if(n < 9000 && !isdefined("test8900"))   {
    ## builtin is implemented with splitting but only with
    ## Toom-Cook 2 (by Karatsuba (the father))
    return n!;
  }

  shift = __CZ__prime_divisors(n,prime);
  prime = 3;
  cut = n//2;
  pix   = pix(cut);
  prime_list = mat[pix];
  expo_list  = mat[pix];

  k = 0;
/*
  Peter Borwein's algorithm

  @Article{journals/jal/Borwein85,
  author = {Borwein, Peter B.},
  title  = {On the Complexity of Calculating Factorials.},
  journal = {J. Algorithms},
  year   = {1985},
  number = {3},
  url    = {http://dblp.uni-trier.de/db/journals/jal/jal6.html#Borwein85}
*/

  do {
    prime_list[k]  = prime;
    expo_list[k++] = __CZ__prime_divisors(n,prime);
    prime          = nextprime(prime);
  }while(prime <= cut);

  /* size of the largest exponent in bits  */
  k1 = highbit(expo_list[0]);
  k2 = size(prime_list)-1;

  for(;k1>=0;k1--){
    /*
       the cut-off for T-C-4 ist still to low, using T-C-3 here
       TODO: check cutoffs
     */
    result = toomcook3square(result);
    /*
      almost all time is spend in this loop, so cutting of the
      upper half of the primes makes sense
    */
    for(k=0; k<=k2; k++) {
      if((expo_list[k] & (1 << k1)) != 0) {
        result *= prime_list[k];
      }
    }

  }
  primorial = primorial( cut, n);
  result *= primorial;
  result <<= shift;
  return result;
}

/*
  Helper for primorial: do the product with binary splitting
  TODO: do it without the intermediate list
*/
define __CZ__primorial__lowlevel( a, b ,p)
{
  local  c;
  if( b == a) return p ;
  if( b-a > 1){
    c= (b + a) >> 1;
    return  __CZ__primorial__lowlevel( a   , c , __CZ__primelist[a] )
         *  __CZ__primorial__lowlevel( c+1 , b , __CZ__primelist[b] ) ;
  }
  return  __CZ__primelist[a] * __CZ__primelist[b];
}

/*
   Primorial, Product of consecutive primes in range a,b

  Originally meant to do primorials with a start different from 2, but
  found out that this is faster at about a=1,b>=10^5 than the builtin
  function pfact().  With the moderately small list a=1,b=10^6 (78498
  primes) it is 3 times faster.  A quick look-up showed what was already
  guessed: pfact() does it linearly.  (BTW: what is the time complexity
  of the primorial with the naive algorithm?)
*/
define primorial(a,b)
{
  local C1 C2;
  if(!isint(a)) return newerror("primorial(a,b): a is not an integer");
  else if(!isint(b)) return newerror("primorial(a,b): b is not an integer");
  else if(a < 0) return newerror("primorial(a,b): a < 0");
  else if( b < 2 ) return newerror("primorial(a,b): b < 2");
  else if( b < a) return newerror("primorial(a,b): b < a");
  else{
    /* last prime < 2^32 is also  max. prime for nextprime()*/
    if(b >= 4294967291) return newerror("primorial(a,b): max. prime exceeded");
    if(b ==  2) return 2;
    /*
      Can be extended by way of pfact(b)/pfact(floor(a-1/2)) for small a
     */
    if(a<=2 && b < 10^5) return pfact(b);
    /* TODO: use pix() and a simple array (mat[])instead*/
     __CZ__primelist = list();
     __CZ__fill_prime_list(a,b);
    C1 = size(__CZ__primelist)-1;
    return __CZ__primorial__lowlevel( 0, C1,1)
  }
}


/*
 * restore internal function from resource debugging
 * report important interface functions
 */
config("resource_debug", resource_debug_level),;
if (config("resource_debug") & 3) {
    print "factorial(n)";
    print "primorial(a, b)";
}