/usr/share/calc/factorial2.cal is in apcalc-common 2.12.5.0-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 | /*
* factorial2 - implementation of different factorial related functions
*
* Copyright (C) 2013 Christoph Zurnieden
*
* Calc is open software; you can redistribute it and/or modify it under
* the terms of the version 2.1 of the GNU Lesser General Public License
* as published by the Free Software Foundation.
*
* Calc is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
* Public License for more details.
*
* A copy of version 2.1 of the GNU Lesser General Public License is
* distributed with calc under the filename COPYING-LGPL. You should have
* received a copy with calc; if not, write to Free Software Foundation, Inc.
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* @(#) $Revision: 30.4 $
* @(#) $Id: factorial2.cal,v 30.4 2013/08/18 20:01:53 chongo Exp $
* @(#) $Source: /usr/local/src/bin/calc/cal/RCS/factorial2.cal,v $
*
* Under source code control: 2013/08/11 01:31:28
* File existed as early as: 2013
*/
/*
* hide internal function from resource debugging
*/
static resource_debug_level;
resource_debug_level = config("resource_debug", 0);
/*
get dependencies
*/
read -once factorial toomcook specialfunctions;
/*
Factorize a factorial and put the result in a 2-column matrix with pi(n) rows
mat[ primes , exponent ]
Result can be restricted to start at a prime different from 2 with the second
argument "start". That arguments gets taken at face value if it prime and
smaller than n, otherwise the next larger prime is taken if that prime is
smaller than n.
*/
define __CZ__factor_factorial(n,start){
local prime prime_list k pix stop;
if(!isint(n)) return
newerror("__CZ__factor_factorial(n,start): n is not integer");
if(n < 0) return newerror("__CZ__factor_factorial(n,start): n < 0");
if(n == 1) return newerror("__CZ__factor_factorial(n,start): n == 1");
if(start){
if(!isint(start) && start < 0 && start > n)
return newerror("__CZ__factor_factorial(n,start): value of "
"parameter 'start' out of range");
if(start == n && isprime(n)){
prime_list = mat[1 , 2];
prime_list[0,0] = n;
prime_list[0,1] = 1;
}
else if(!isprime(start) && nextprime(start) >n)
return newerror("__CZ__factor_factorial(n,start): value of parameter "
"'start' out of range");
else{
if(!isprime(start)) prime = nextprime(start);
else prime = start;
}
}
else
prime = 2;
pix = pix(n);
if(start){
pix -= pix(prime) -1;
}
prime_list = mat[pix , 2];
k = 0;
do {
prime_list[k ,0] = prime;
prime_list[k++,1] = __CZ__prime_divisors(n,prime);
prime = nextprime(prime);
}while(prime <= n);
return prime_list;
}
/*
subtracts exponents of n_1! from exponents of n_2! with n_1<=n_2
Does not check for size or consecutiveness of the primes or a carry
*/
define __CZ__subtract_factored_factorials(matrix_2n,matrix_n){
local k ret len1,len2,tmp count p e;
len1 = size(matrix_n)/2;
len2 = size(matrix_2n)/2;
if(len2<len1){
swap(len1,len2);
tmp = matrix_n;
matrix_n = matrix_2n;
matrix_2n = tmp;
}
tmp = mat[len1,2];
k = 0;
for(;k<len1;k++){
p = matrix_2n[k,0];
e = matrix_2n[k,1] - matrix_n[k,1];
if(e!=0){
tmp[count ,0] = p;
tmp[count++,1] = e;
}
}
ret = mat[count + (len2-len1),2];
for(k=0;k<count;k++){
ret[k,0] = tmp[k,0];
ret[k,1] = tmp[k,1];
}
free(tmp);
for(k=len1;k<len2;k++){
ret[count,0] = matrix_2n[k,0];
ret[count++,1] = matrix_2n[k,1];
}
return ret;
}
/*
adds exponents of n_1! to exponents of n_2! with n_1<=n_2
Does not check for size or consecutiveness of the primes or a carry
*/
define __CZ__add_factored_factorials(matrix_2n,matrix_n){
local k ret len1,len2,tmp;
len1 = size(matrix_n)/2;
len2 = size(matrix_2n)/2;
if(len2<len1){
swap(len1,len2);
tmp = matrix_n;
matrix_n = matrix_2n;
matrix_2n = tmp;
}
ret = mat[len2,2];
k = 0;
for(;k<len1;k++){
ret[k,0] = matrix_2n[k,0];
ret[k,1] = matrix_2n[k,1] + matrix_n[k,1];
}
for(;k<len2;k++){
ret[k,0] = matrix_2n[k,0];
ret[k,1] = matrix_2n[k,1];
}
return ret;
}
/*
Does not check if all exponents are positive
timings
this comb comb-this rel. k/n
; benchmark_binomial(10,13)
n=2^13 k=2^10 0.064004 0.016001 + 0.76923076923076923077
n=2^13 k=2^11 0.064004 0.048003 + 0.84615384615384615385
n=2^13 k=2^12 0.068004 0.124008 - 0.92307692307692307692
; benchmark_binomial(10,15)
n=2^15 k=2^10 0.216014 0.024001 + 0.66666666666666666667
n=2^15 k=2^11 0.220014 0.064004 + 0.73333333333333333333
n=2^15 k=2^12 0.228014 0.212014 + 0.8
n=2^15 k=2^13 0.216013 0.664042 - 0.86666666666666666667
n=2^15 k=2^14 0.240015 1.868117 - 0.93333333333333333333
; benchmark_binomial(11,15)
n=2^15 k=2^11 0.216014 0.068004 + 0.73333333333333333333
n=2^15 k=2^12 0.236015 0.212013 + 0.8
n=2^15 k=2^13 0.216013 0.656041 - 0.86666666666666666667
n=2^15 k=2^14 0.244016 1.872117 - 0.93333333333333333333
; benchmark_binomial(11,18)
n=2^18 k=2^11 1.652103 0.100006 + 0.61111111111111111111
n=2^18 k=2^12 1.608101 0.336021 + 0.66666666666666666667
n=2^18 k=2^13 1.700106 1.140071 + 0.72222222222222222222
n=2^18 k=2^14 1.756109 3.924245 - 0.77777777777777777778
n=2^18 k=2^15 2.036127 13.156822 - 0.83333333333333333333
n=2^18 k=2^16 2.172135 41.974624 - 0.88888888888888888889
n=2^18 k=2^17 2.528158 121.523594 - 0.94444444444444444444
; benchmark_binomial(15,25)
n=2^25 k=2^15 303.790985 38.266392 + 0.6
; benchmark_binomial(17,25)
n=2^25 k=2^17 319.127944 529.025062 - 0.68
*/
define benchmark_binomial(s,limit){
local ret k A B T1 T2 start end N K;
N = 2^(limit);
for(k=s;k<limit;k++){
K = 2^k;
start=usertime();A=binomial(N,K);end=usertime();
T1 = end-start;
start=usertime();B=comb(N,K);end=usertime();
T2 = end-start;
print "n=2^"limit,"k=2^"k," ",T1," ",T2,T1<T2?"-":"+"," "k/limit;
if(A!=B){
print "false";
break;
}
}
}
define __CZ__multiply_factored_factorial(matrix,stop){
local prime result shift prime_list k k1 k2 expo_list pix count start;
local hb flag;
result = 1;
shift = 0;
if(!ismat(matrix))
return newerror("__CZ__multiply_factored_factorial(matrix): "
"argument matrix not a matrix ");
if(!matrix[0,0])
return
newerror("__CZ__multiply_factored_factorial(matrix): "
"matrix[0,0] is null/0");
if(!isnull(stop))
pix = stop;
else
pix = size(matrix)/2-1;
if(matrix[0,0] == 2 && matrix[0,1] > 0){
shift = matrix[0,1];
if(pix-1 == 0)
return 2^matrix[0,1];
}
/*
This is a more general way to do the multiplication, so any optimization
must have been done by the caller.
*/
k = 0;
/*
The size of the largest exponent in bits is calculated dynamically.
Can be done more elegantly and saves one run over the whole array if done
inside the main loop.
*/
hb =0;
for(k=0;k<pix;k++){
k1=highbit(matrix[k,1]);
if(hb < k1)hb=k1;
}
k2 = pix;
start = 0;
if(shift) start++;
for(k1=hb;k1>=0;k1--){
/*
the cut-off for T-C-4 ist still too low, using T-C-3 here
TODO: check cutoffs
*/
result = toomcook3square(result);
for(k=start; k<=k2; k++) {
if((matrix[k,1] & (1 << k1)) != 0) {
result *= matrix[k,0];
}
}
}
result <<= shift;
return result;
}
/*
Compute binomial coeficients n!/(k!(n-k)!)
One of the rare cases where a formula once meant to ease manual computation
is actually the (aymptotically) fastest way to do it (in July 2013) for
the extreme case binomial(2N,N) but for a high price, the memory
needed is pi(N)--theoretically.
*/
define binomial(n,k){
local ret factored_n factored_k factored_nk denom num quot K prime_list prime;
local pix diff;
if(!isint(n) || !isint(k))
return newerror("binomial(n,k): input is not integer");
if(n<0 || k<0)
return newerror("binomial(n,k): input is not >= 0"); ;
if(n<k ) return 0;
if(n==k) return 1;
if(k==0) return 1;
if(k==1) return n;
if(n-k==1) return n;
/*
cut-off depends on real size of n,k and size of n/k
The current cut-off is to small for large n, e.g.:
for 2n=2^23, k=n-n/2 the quotient is q=2n/k=0.25. Empirical tests showed
that 2n=2^23 and k=2^16 with q=0.0078125 are still faster than the
builtin function.
The symmetry (n,k) = (n,n-k) is of not much advantage here. One way
might be to get closer to k=n/2 if k<n-k but only if the difference
is small and n very large.
*/
if(n<2e4 && !isdefined("test8900")) return comb(n,k);
if(n<2e4 && k< n-n/2 && !isdefined("test8900")) return comb(n,k);
/*
This should be done in parallel to save some memory, e.g. no temporary
arrays are needed, all can be done inline.
The theoretical memory needed is pi(k).
Which is still a lot.
*/
prime = 2;
pix = pix(n);
prime_list = mat[pix , 2];
K = 0;
do {
prime_list[K ,0] = prime;
diff = __CZ__prime_divisors(n,prime)-
( __CZ__prime_divisors(n-k,prime)+__CZ__prime_divisors(k,prime));
if(diff != 0)
prime_list[K++,1] = diff;
prime = nextprime(prime);
}while(prime <= k);
do {
prime_list[K ,0] = prime;
diff = __CZ__prime_divisors(n,prime)-__CZ__prime_divisors(n-k,prime);
if(diff != 0)
prime_list[K++,1] = diff;
prime = nextprime(prime);
}while(prime <= n-k);
do {
prime_list[K ,0] = prime;
prime_list[K++,1] = __CZ__prime_divisors(n,prime);
prime = nextprime(prime);
}while(prime <= n);
##print K,pix(k),pix(n-k),pix(n);
##factored_k = __CZ__factor_factorial(k,1);
##factored_nk = __CZ__factor_factorial(n-k,1);
##denom = __CZ__add_factored_factorials(factored_k,factored_nk);
##free(factored_k,factored_nk);
##num = __CZ__factor_factorial(n,1);
##quot = __CZ__subtract_factored_factorials( num , denom );
##free(num,denom);
ret = __CZ__multiply_factored_factorial(`prime_list,K-1);
return ret;
}
/*
Compute large catalan numbers C(n) = binomial(2n,n)/(n+1) with
cut-off: (n>5e4)
Needs a lot of memory.
*/
define bigcatalan(n){
if(!isint(n) )return newerror("bigcatalan(n): n is not integer");
if( n<0) return newerror("bigcatalan(n): n < 0");
if( n<5e4 && !isdefined("test8900") ) return catalan(n);
return binomial(2*n,n)/(n+1);
}
/*
df(-111) = -1/3472059605858239446587523014902616804783337112829102414124928
7753332469144201839599609375
df(-3+1i) = 0.12532538977287649201-0.0502372106177184607i
df(2n + 1) = (2*n)!/(n!*2^n)
*/
define __CZ__double_factorial(n){
local n1 n2 diff prime pix K prime_list k;
prime = 3;
pix = pix(2*n)+1;
prime_list = mat[pix , 2];
K = 0;
do {
prime_list[K ,0] = prime;
diff = __CZ__prime_divisors(2*n,prime)-( __CZ__prime_divisors(n,prime));
if(diff != 0)
prime_list[K++,1] = diff;
prime = nextprime(prime);
}while(prime <= n);
do {
prime_list[K ,0] = prime;
prime_list[K++,1] = __CZ__prime_divisors(2*n,prime);
prime = nextprime(prime);
}while(prime <= 2*n);
return __CZ__multiply_factored_factorial(prime_list,K);
/*
n1=__CZ__factor_factorial(2*n,1);
n1[0,1] = n1[0,1]-n;
n2=__CZ__factor_factorial(n,1);
diff=__CZ__subtract_factored_factorials( n1 , n2 );
return __CZ__multiply_factored_factorial(diff);
*/
}
##1, 1, 3, 15, 105, 945, 10395, 135135, 2027025, 34459425, 654729075,
##13749310575, 316234143225, 7905853580625, 213458046676875,
##6190283353629375, 191898783962510625, 6332659870762850625,
##221643095476699771875, 8200794532637891559375
## 1, 2, 8, 48, 384, 3840, 46080, 645120, 10321920, 185794560,
##3715891200, 81749606400, 1961990553600, 51011754393600,
##1428329123020800, 42849873690624000, 1371195958099968000,
##46620662575398912000, 1678343852714360832000, 63777066403145711616000
define doublefactorial(n){
local n1 n2 diff eps ret;
if(!isint(n) ){
/*
Probably one of the not-so-good ideas. See result of
http://www.wolframalpha.com/input/?i=doublefactorial%28a%2Bbi%29
*/
eps=epsilon(epsilon()*1e-2);
ret = 2^(n/2-1/4 * cos(pi()* n)+1/4) * pi()^(1/4 *
cos(pi()* n)-1/4)* gamma(n/2+1);
epsilon(eps);
return ret;
}
if(n==2) return 2;
if(n==3) return 3;
switch(n){
case -1:
case 0 : return 1;break;
case 2 : return 2;break;
case 3 : return 3;break;
case 4 : return 8;break;
default: break;
}
if(isodd(n)){
/*
TODO: find reasonable cutoff
df(2n + 1) = (2*n)!/(n!*2^n)
*/
if(n>0){
n = (n+1)//2;
return __CZ__double_factorial(n);
}
else{
if(n == -3 ) return -1;
n = ((-n)-1)/2;
return ((-1)^-n)/__CZ__double_factorial(n);
}
}
else{
/*
I'm undecided here. The formula for complex n is valid for the negative
integers, too.
*/
n = n>>1;
if(n>0){
if(!isdefined("test8900"))
return factorial(n)<<n;
else
return n!<<n;
}
else
return newerror("doublefactorial(n): even(n) < 0");
}
}
/*
Algorithm 3.17,
Donald Kreher and Douglas Simpson,
Combinatorial Algorithms,
CRC Press, 1998, page 89.
*/
static __CZ__stirling1;
static __CZ__stirling1_n = -1;
static __CZ__stirling1_m = -1;
define stirling1(n,m){
local i j k;
if(n<0)return newerror("stirling1(n,m): n <= 0");
if(m<0)return newerror("stirling1(n,m): m < 0");
if(n<m) return 0;
if(n==m) return 1;
if(m==0 || n==0) return 0;
/* We always use the list */
/*
if(m=1){
if(iseven(n)) return -factorial(n-1);
else return factorial(n-1);
}
if(m == n-1){
if(iseven(n)) return -binomial(n,2);
else return -binomial(n,2);
}
*/
if(__CZ__stirling1_n >= n && __CZ__stirling1_m >= m){
return __CZ__stirling1[n,m];
}
else{
__CZ__stirling1 = mat[n+1,m+1];
__CZ__stirling1[0,0] = 1;
for(i=1;i<=n;i++)
__CZ__stirling1[i,0] = 0;
for(i=1;i<=n;i++){
for(j=1;j<=m;j++){
if(j<=i){
__CZ__stirling1[i, j] = __CZ__stirling1[i - 1, j - 1] - (i - 1)\
* __CZ__stirling1[i - 1, j];
}
else{
__CZ__stirling1[i, j] = 0;
}
}
}
__CZ__stirling1_n = n;
__CZ__stirling1_m = m;
return __CZ__stirling1[n,m];
}
}
define stirling2(n,m){
local k sum;
if(n<0)return newerror("stirling2(n,m): n < 0");
if(m<0)return newerror("stirling2(n,m): m < 0");
if(n<m) return 0;
if(n==0 && n!=m) return 0;
if(n==m) return 1;
if(m==0 )return 0;
if(m==1) return 1;
if(m==2) return 2^(n-1)-1;
/*
There are different methods to speed up alternating sums.
This one doesn't.
*/
if(isdefined("test8900")){
for(k=0;k<=m;k++){
sum += (-1)^(m-k)*comb(m,k)*k^n;
}
return sum/(m!);
}
else{
for(k=0;k<=m;k++){
sum += (-1)^(m-k)*binomial(m,k)*k^n;
}
return sum/factorial(m);
}
}
static __CZ__stirling2;
static __CZ__stirling2_n = -1;
static __CZ__stirling2_m = -1;
define stirling2caching(n,m){
local nm i j ;
if(n<0)return newerror("stirling2iter(n,m): n < 0");
if(m<0)return newerror("stirling2iter(n,m): m < 0");
/* no shortcuts here */
if(n<m) return 0;
if(n==0 && n!=m) return 0;
if(n==m) return 1;
if(m==0 )return 0;
if(m==1) return 1;
if(m==2) return 2^(n-1)-1;
nm = n-m;
if(__CZ__stirling2_n >= n && __CZ__stirling2_m >= m){
return __CZ__stirling2[n,m];
}
else{
__CZ__stirling2 = mat[n+1,m+1];
__CZ__stirling2[0,0] = 1;
for(i=1;i<=n;i++){
__CZ__stirling2[i,0] = 0;
for(j=1;j<=m;j++){
if(j<=i){
__CZ__stirling2[i, j] = __CZ__stirling2[i -1, j -1] + (j )\
* __CZ__stirling2[i - 1, j];
}
else{
__CZ__stirling2[i, j] = 0;
}
}
}
}
__CZ__stirling2_n = (n);
__CZ__stirling2_m = (m);
return __CZ__stirling2[n,m];
}
define bell(n){
local sum s2list k A;
if(!isint(n)) return newerror("bell(n): n is not integer");
if(n < 0) return newerror("bell(n): n is not positive");
/* place some more shortcuts here?*/
if(n<=15){
mat A[16] = {
1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570,
4213597, 27644437, 190899322, 1382958545
};
return A[n];
}
/* Start by generating the list of stirling numbers of the second kind */
s2list = stirling2caching(n,n//2);
if(iserror(s2list))
return newerror("bell(n): could not build stirling num. list");
sum = 0;
for(k=1;k<=n;k++){
sum += stirling2caching(n,k);
}
return sum;
}
define subfactorialrecursive(n){
if(n==0) return 1;
if(n==1) return 0;
if(n==2) return 1;
return n * subfactorialrecursive(n-1) + (-1)^n;
}
/* This is, quite amusingely, faster than the very same algorithm in
PARI/GP + GMP*/
define subfactorialiterative(n){
local k temp1 temp2 ret;
if(n==0) return 1;
if(n==1) return 0;
if(n==2) return 1;
temp1 = 0;
ret = 1;
for(k=3;k<=n;k++){
temp2 = temp1;
temp1 = ret;
ret = (k-1) *(temp1 + temp2);
}
return ret;
}
define subfactorial(n){
local epsilon eps ret lnfact;
if(!isint(n))return newerror("subfactorial(n): n is not integer.");
if(n < 0)return newerror("subfactorial(n): n < 0");
return subfactorialiterative(n);
}
define risingfactorial(x,n){
local num denom quot ret;
if(n == 1) return x;
if(x==0) return newerror("risingfactorial(x,n): x == 0");
if(!isint(x) || !isint(n)){
return gamma(x+n)/gamma(x);
}
if(x<1)return newerror("risingfactorial(x,n): integer x and x < 1");
if(x+n < 1)return newerror("risingfactorial(x,n): integer x+n and x+n < 1");
if(x<9000&&n<9000){
return (x+n-1)!/(x-1)!;
}
else{
num = __CZ__factor_factorial(x+n-1,1);
denom = __CZ__factor_factorial(x-1,1);
quot = __CZ__subtract_factored_factorials( num , denom );
free(num,denom);
ret = __CZ__multiply_factored_factorial(quot);
return ret;
}
}
define fallingfactorial(x,n){
local num denom quot ret;
if(n == 0) return 1;
if(!isint(x) || !isint(n)){
if(x == n) return gamma(x+1);
return gamma(x+1)/gamma(x-n+1);
}
else{
if(x<0 || x-n < 0)
return newerror("fallingfactorial(x,n): integer x<0 or x-n < 0");
if(x == n) return factorial(x);
if(x<9000&&n<9000){
return (x)!/(x-n)!;
}
else{
num = __CZ__factor_factorial(x,1);
denom = __CZ__factor_factorial(x-n,1);
quot = __CZ__subtract_factored_factorials( num , denom );
free(num,denom);
ret = __CZ__multiply_factored_factorial(quot);
return ret;
}
}
}
/*
* restore internal function from resource debugging
* report important interface functions
*/
config("resource_debug", resource_debug_level),;
if (config("resource_debug") & 3) {
print "binomial(n,k)";
print "bigcatalan(n)";
print "doublefactorial(n)";
print "subfactorial(n)";
print "stirling1(n,m)";
print "stirling2(n,m)";
print "stirling2caching(n,m)";
print "bell(n)";
print "subfactorial(n)";
print "risingfactorial(x,n)";
print "fallingfactorial(x,n)";
}
|