/usr/share/calc/help/resource is in apcalc-common 2.12.5.0-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 | Calc standard resource files
----------------------------
To load a resource file, try:
read filename
You do not need to add the .cal extension to the filename. Calc
will search along the $CALCPATH (see ``help environment'').
Normally a resource file will simply define some functions. By default,
most resource files will print out a short message when they are read.
For example:
; read lucas
lucas(h,n) defined
gen_u0(h,n,v1) defined
gen_v1(h,n) defined
ldebug(funct,str) defined
will cause calc to load and execute the 'lucas.cal' resource file.
Executing the resource file will cause several functions to be defined.
Executing the lucas function:
; lucas(149,60)
1
; lucas(146,61)
0
shows that 149*2^60-1 is prime whereas 146*2^61-1 is not.
=-=
Calc resource file files are provided because they serve as examples of
how use the calc language, and/or because the authors thought them to
be useful!
If you write something that you think is useful, please join the
low volume calc mailing list calc-tester. Then send your contribution
to the calc-tester mailing list.
To subscribe to the calc-tester mailing list, visit the following URL:
https://www.listbox.com/subscribe/?list_id=239342
To help determine you are a human and not just a spam bot,
you will be required to provide the following additional info:
Your Name
Calc Version
Operating System
The date 7 days ago
This is a low volume moderated mailing list.
This mailing list replaces calc-tester at asthe dot com list.
If you need a human to help you with your mailing list subscription,
please send EMail to our special:
calc-tester-maillist-help at asthe dot com
NOTE: Remove spaces and replace 'at' with @, 'dot' with .
address. To be sure we see your EMail asking for help with your
mailing list subscription, please use the following phase in your
EMail Subject line:
calc tester mailing list help
That phrase in your subject line will help ensure your
request will get past our anti-spam filters. You may have
additional words in your subject line.
=-=
By convention, a resource file only defines and/or initializes functions,
objects and variables. (The regress.cal and testxxx.cal regression test
suite is an exception.) Also by convention, an additional usage message
regarding important object and functions is printed.
If a resource file needs to load another resource file, it should use
the -once version of read:
/* pull in needed resource files */
read -once "surd"
read -once "lucas"
This will cause the needed resource files to be read once. If these
files have already been read, the read -once will act as a noop.
The "resource_debug" parameter is intended for controlling the possible
display of special information relating to functions, objects, and
other structures created by instructions in calc resource files.
Zero value of config("resource_debug") means that no such information
is displayed. For other values, the non-zero bits which currently
have meanings are as follows:
n Meaning of bit n of config("resource_debug")
0 When a function is defined, redefined or undefined at
interactive level, a message saying what has been done
is displayed.
1 When a function is defined, redefined or undefined during
the reading of a file, a message saying what has been done
is displayed.
2 Show func will display more information about a functions
arguments as well as more argument summary information.
3 During execution, allow calc standard resource files
to output additional debugging information.
The value for config("resource_debug") in both oldstd and newstd is 3,
but if calc is invoked with the -d flag, its initial value is zero.
Thus, if calc is started without the -d flag, until config("resource_debug")
is changed, a message will be output when a function is defined
either interactively or during the reading of a file.
Sometimes the information printed is not enough. In addition to the
standard information, one might want to print:
* useful obj definitions
* functions with optional args
* functions with optional args where the param() interface is used
For these cases we suggest that you place at the bottom of your code
something that prints extra information if config("resource_debug") has
either of the bottom 2 bits set:
if (config("resource_debug") & 3) {
print "obj xyz defined";
print "funcA([val1 [, val2]]) defined";
print "funcB(size, mass, ...) defined";
}
If your the resource file needs to output special debugging information,
we recommend that you check for bit 3 of the config("resource_debug")
before printing the debug statement:
if (config("resource_debug") & 8) {
print "DEBUG: This a sample debug statement";
}
=-=
The following is a brief description of some of the calc resource files
that are shipped with calc. See above for example of how to read in
and execute these files.
alg_config.cal
global test_time
mul_loop(repeat,x) defined
mul_ratio(len) defined
best_mul2() defined
sq_loop(repeat,x) defined
sq_ratio(len) defined
best_sq2() defined
pow_loop(repeat,x,ex) defined
pow_ratio(len) defined
best_pow2() defined
These functions search for an optimal value of config("mul2"),
config("sq2"), and config("pow2"). The calc default values of these
configuration values were set by running this resource file on a
1.8GHz AMD 32-bit CPU of ~3406 BogoMIPS.
The best_mul2() function returns the optimal value of config("mul2").
The best_sq2() function returns the optimal value of config("sq2").
The best_pow2() function returns the optimal value of config("pow2").
The other functions are just support functions.
By design, best_mul2(), best_sq2(), and best_pow2() take a few
minutes to run. These functions increase the number of times a
given computational loop is executed until a minimum amount of CPU
time is consumed. To watch these functions progress, one can set
the config("user_debug") value.
Here is a suggested way to use this resource file:
; read alg_config
; config("user_debug",2),;
; best_mul2(); best_sq2(); best_pow2();
; best_mul2(); best_sq2(); best_pow2();
; best_mul2(); best_sq2(); best_pow2();
NOTE: It is perfectly normal for the optimal value returned to differ
slightly from run to run. Slight variations due to inaccuracy in
CPU timings will cause the best value returned to differ slightly
from run to run.
One can use a calc startup file to change the initial values of
config("mul2"), config("sq2"), and config("pow2"). For example one
can place into ~/.calcrc these lines:
config("mul2", 1780),;
config("sq2", 3388),;
config("pow2", 176),;
to automatically and silently change these config values.
See help/config and CALCRC in help/environment for more information.
beer.cal
This calc resource is calc's contribution to the 99 Bottles of Beer
web page:
http://www.ionet.net/~timtroyr/funhouse/beer.html#calc
NOTE: This resource produces a lot of output. :-)
bernoulli.cal
B(n)
Calculate the nth Bernoulli number.
NOTE: There is now a bernoulli() builtin function. This file is
left here for backward compatibility and now simply returns
the builtin function.
bernpoly.cal
bernpoly(n,z)
Computes the nth Bernoulli polynomial at z for arbitrary n,z. See:
http://en.wikipedia.org/wiki/Bernoulli_polynomials
http://mathworld.wolfram.com/BernoulliPolynomial.html
for further information
bigprime.cal
bigprime(a, m, p)
A prime test, base a, on p*2^x+1 for even x>m.
brentsolve.cal
brentsolve(low, high,eps)
A root-finder implementwed with the Brent-Dekker trick.
brentsolve2(low, high,which,eps)
The second function, brentsolve2(low, high,which,eps) has some lines
added to make it easier to hardcode the name of the helper function
different from the obligatory "f".
See:
http://en.wikipedia.org/wiki/Brent%27s_method
http://mathworld.wolfram.com/BrentsMethod.html
to find out more about the Brent-Dekker method.
constants.cal
e()
G()
An implementation of different constants to arbitrary precision.
chi.cal
Z(x[, eps])
P(x[, eps])
chi_prob(chi_sq, v[, eps])
Computes the Probability, given the Null Hypothesis, that a given
Chi squared values >= chi_sq with v degrees of freedom.
The chi_prob() function does not work well with odd degrees of freedom.
It is reasonable with even degrees of freedom, although one must give
a sufficiently small error term as the degrees gets large (>100).
The Z(x) and P(x) are internal statistical functions.
eps is an optional epsilon() like error term.
chrem.cal
chrem(r1,m1 [,r2,m2, ...])
chrem(rlist, mlist)
Chinese remainder theorem/problem solver.
deg.cal
deg(deg, min, sec)
deg_add(a, b)
deg_neg(a)
deg_sub(a, b)
deg_mul(a, b)
deg_print(a)
Calculate in degrees, minutes, and seconds. For a more functional
version see dms.cal.
dms.cal
dms(deg, min, sec)
dms_add(a, b)
dms_neg(a)
dms_sub(a, b)
dms_mul(a, b)
dms_print(a)
dms_abs(a)
dms_norm(a)
dms_test(a)
dms_int(a)
dms_frac(a)
dms_rel(a,b)
dms_cmp(a,b)
dms_inc(a)
dms_dec(a)
Calculate in degrees, minutes, and seconds. Unlike deg.cal, increments
are on the arc second level. See also hms.cal.
dotest.cal
dotest(dotest_file [,dotest_code [,dotest_maxcond]])
dotest_file
Search along CALCPATH for dotest_file, which contains lines that
should evaluate to 1. Comment lines and empty lines are ignored.
Comment lines should use ## instead of the multi like /* ... */
because lines are evaluated one line at a time.
dotest_code
Assign the code number that is to be printed at the start of
each non-error line and after **** in each error line.
The default code number is 999.
dotest_maxcond
The maximum number of error conditions that may be detected.
An error condition is not a sign of a problem, in some cases
a line deliberately forces an error condition. A value of -1,
the default, implies a maximum of 2147483647.
Global variables and functions must be declared ahead of time because
the dotest scope of evaluation is a line at a time. For example:
read dotest.cal
read set8700.cal
dotest("set8700.line");
factorial.cal
factorial(n)
Calculates the product of the positive integers up to and including n.
See:
http://en.wikipedia.org/wiki/Factorial
for information on the factorial. This function depends on the script
toomcook.cal.
primorial(a,b)
Calculates the product of the primes between a and b. If a is not prime
the next higher prime is taken as the starting point. If b is not prime
the next lower prime is taking as the end point b. The end point b must
not exceed 4294967291. See:
http://en.wikipedia.org/wiki/Primorial
for information on the primorial.
factorial2.cal
This file contents a small variety of integer functions that can, with
more or less pressure, be related to the factorial.
doublefactorial(n)
Calculates the double factorial n!! with different algorithms for
- n odd
- n even and positive
- n (real|complex) sans the negative half integers
See:
http://en.wikipedia.org/wiki/Double_factorial
http://mathworld.wolfram.com/DoubleFactorial.html
for information on the double factorial. This function depends on
the script toomcook.cal, factorial.cal and specialfunctions.cal.
binomial(n,k)
Calculates the binomial coefficients for n large and k = k \pm
n/2. Defaults to the built-in function for smaller and/or different
values. Meant as a complete replacement for comb(n,k) with only a
very small overhead. See:
http://en.wikipedia.org/wiki/Binomial_coefficient
for information on the binomial. This function depends on the script
toomcook.cal factorial.cal and specialfunctions.cal.
bigcatalan(n)
Calculates the n-th Catalan number for n large. It is usefull
above n~50,000 but defaults to the builtin function for smaller
values.Meant as a complete replacement for catalan(n) with only a
very small overhead. See:
http://en.wikipedia.org/wiki/Catalan_number
http://mathworld.wolfram.com/CatalanNumber.html
for information on Catalan numbers. This function depends on the scripts
toomcook.cal, factorial.cal and specialfunctions.cal.
stirling1(n,m)
Calculates the Stirling number of the first kind. It does so with
building a list of all of the smaller results. It might be a good
idea, though, to run it once for the highest n,m first if many
Stirling numbers are needed at once, for example in a series. See:
http://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind
http://mathworld.wolfram.com/StirlingNumberoftheFirstKind.html
Algorithm 3.17, Donald Kreher and Douglas Simpson, "Combinatorial
Algorithms", CRC Press, 1998, page 89.
for information on Stirling numbers of the first kind.
stirling2(n,m)
stirling2caching(n,m)
Calculate the Stirling number of the second kind.
The first function stirling2(n,m) does it with the sum
m
====
1 \ n m - k
-- > k (- 1) binomial(m, k)
m! /
====
k = 0
The other function stirling2caching(n,m) does it by way of the
reccurence relation and keeps all earlier results. This function
is much slower for computing a single value than stirling2(n,m) but
is very usefull if many Stirling numbers are needed, for example in
a series. See:
http://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind
http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html
Algorithm 3.17, Donald Kreher and Douglas Simpson, "Combinatorial
Algorithms", CRC Press, 1998, page 89.
for information on Stirling numbers of the second kind.
bell(n)
Calculate the n-th Bell number. This may take some time for large n.
See:
http://oeis.org/A000110
http://en.wikipedia.org/wiki/Bell_number
http://mathworld.wolfram.com/BellNumber.html
for information on Bell numbers.
subfactorial(n)
Calculate the n-th subfactorial or derangement. This may take some
time for large n. See:
http://mathworld.wolfram.com/Derangement.html
http://en.wikipedia.org/wiki/Derangement
for information on subfactorials.
risingfactorial(x,n)
Calculates the rising factorial or Pochammer symbol of almost arbitrary
x,n. See:
http://en.wikipedia.org/wiki/Pochhammer_symbol
http://mathworld.wolfram.com/PochhammerSymbol.html
for information on rising factorials.
fallingfactorial(x,n)
Calculates the rising factorial of almost arbitrary x,n. See:
http://en.wikipedia.org/wiki/Pochhammer_symbol
http://mathworld.wolfram.com/PochhammerSymbol.html
for information on falling factorials.
ellip.cal
efactor(iN, ia, B, force)
Attempt to factor using the elliptic functions: y^2 = x^3 + a*x + b.
gvec.cal
gvec(function, vector)
Vectorize any single-input function or trailing operator.
hello.cal
Calc's contribution to the Hello World! page:
http://www.latech.edu/~acm/HelloWorld.shtml
http://www.latech.edu/~acm/helloworld/calc.html
NOTE: This resource produces a lot of output. :-)
hms.cal
hms(hour, min, sec)
hms_add(a, b)
hms_neg(a)
hms_sub(a, b)
hms_mul(a, b)
hms_print(a)
hms_abs(a)
hms_norm(a)
hms_test(a)
hms_int(a)
hms_frac(a)
hms_rel(a,b)
hms_cmp(a,b)
hms_inc(a)
hms_dec(a)
Calculate in hours, minutes, and seconds. See also dmscal.
infinities.cal
isinfinite(x)
iscinf(x)
ispinf(x)
isninf(x)
cinf()
ninf()
pinf()
The symbolic handling of infinities. Needed for intnum.cal but might be
usefull elsewhere, too.
intfile.cal
file2be(filename)
Read filename and return an integer that is built from the
octets in that file in Big Endian order. The first octets
of the file become the most significant bits of the integer.
file2le(filename)
Read filename and return an integer that is built from the
octets in that file in Little Endian order. The first octets
of the file become the most significant bits of the integer.
be2file(v, filename)
Write the absolute value of v into filename in Big Endian order.
The v argument must be on integer. The most significant bits
of the integer become the first octets of the file.
le2file(v, filename)
Write the absolute value of v into filename in Little Endian order.
The v argument must be on integer. The least significant bits
of the integer become the last octets of the file.
intnum.cal
quadtsdeletenodes()
quadtscomputenodes(order, expo, eps)
quadtscore(a, b, n)
quadts(a, b, points)
quadglcomputenodes(N)
quadgldeletenodes()
quadglcore(a, b, n)
quadgl(a, b, points)
quad(a, b, points = -1, method = "tanhsinh")
makerange(start, end, steps)
makecircle(radius, center, points)
makeellipse(angle, a, b, center, points)
makepoints()
This file offers some methods for numerical integration. Implemented are
the Gauss-Legendre and the tanh-sinh quadrature.
All functions are usefull to some extend but the main function for
quadrature is quad(), which is not much more than an abstraction layer.
The main workers are quadgl() for Gauss-legendre and quadts() for the
tanh-sinh quadrature. The limits of the integral can be anything in the
complex plane and the extended real line. The latter means that infinite
limits are supported by way of the smbolic infinities implemented in the
file infinities.cal (automatically linked in by intnum.cal).
Integration in parts and contour is supported by the "points" argument
which takes either a number or a list. the functions starting with "make"
allow for a less error prone use.
The function to evaluate must have the name "f".
Examples (shamelessly stolen from mpmath):
; define f(x){return sin(x);}
f(x) defined
; quadts(0,pi()) - 2
0.00000000000000000000
; quadgl(0,pi()) - 2
0.00000000000000000000
Sometimes rounding errors accumulate, it might be a good idea to crank up
the working precision a notch or two.
; define f(x){ return exp(-x^2);}
f(x) redefined
; quadts(0,pinf()) - pi()
0.00000000000000000000
; quadgl(0,pinf()) - pi()
0.00000000000000000001
; define f(x){ return exp(-x^2);}
f(x) redefined
; quadgl(ninf(),pinf()) - sqrt(pi())
0.00000000000000000000
; quadts(ninf(),pinf()) - sqrt(pi())
-0.00000000000000000000
Using the "points" parameter is a bit tricky
; define f(x){ return 1/x; }
f(x) redefined
; quadts(1,1,mat[3]={1i,-1,-1i}) - 2i*pi()
0.00000000000000000001i
; quadgl(1,1,mat[3]={1i,-1,-1i}) - 2i*pi()
0.00000000000000000001i
The make* functions make it a bit simpler
; quadts(1,1,makepoints(1i,-1,-1i)) - 2i*pi()
0.00000000000000000001i
; quadgl(1,1,makepoints(1i,-1,-1i)) - 2i*pi()
0.00000000000000000001i
; define f(x){ return abs(sin(x));}
f(x) redefined
; quadts(0,2*pi(),makepoints(pi())) - 4
0.00000000000000000000
; quadgl(0,2*pi(),makepoints(pi())) - 4
0.00000000000000000000
The quad*core functions do not offer anything fancy but the third parameter
controls the so called "order" which is just the number of nodes computed.
This can be quite usefull in some circumstances.
; quadgldeletenodes()
; define f(x){ return exp(x);}
f(x) redefined
; s=usertime();quadglcore(-3,3)- (exp(3)-exp(-3));e=usertime();e-s
0.00000000000000000001
2.632164
; s=usertime();quadglcore(-3,3)- (exp(3)-exp(-3));e=usertime();e-s
0.00000000000000000001
0.016001
; quadgldeletenodes()
; s=usertime();quadglcore(-3,3,14)- (exp(3)-exp(-3));e=usertime();e-s
-0.00000000000000000000
0.024001
; s=usertime();quadglcore(-3,3,14)- (exp(3)-exp(-3));e=usertime();e-s
-0.00000000000000000000
0
It is not much but can sum up. The tanh-sinh algorithm is not optimizable
as much as the Gauss-Legendre algorithm but is per se much faster.
; s=usertime();quadtscore(-3,3)- (exp(3)-exp(-3));e=usertime();e-s
-0.00000000000000000001
0.128008
; s=usertime();quadtscore(-3,3)- (exp(3)-exp(-3));e=usertime();e-s
-0.00000000000000000001
0.036002
; s=usertime();quadtscore(-3,3,49)- (exp(3)-exp(-3));e=usertime();e-s
-0.00000000000000000000
0.036002
; s=usertime();quadtscore(-3,3,49)- (exp(3)-exp(-3));e=usertime();e-s
-0.00000000000000000000
0.01200
lambertw.cal
lambertw(z,branch)
Computes Lambert's W-function at "z" at branch "branch". See
http://en.wikipedia.org/wiki/Lambert_W_function
http://mathworld.wolfram.com/LambertW-Function.html
https://cs.uwaterloo.ca/research/tr/1993/03/W.pdf
http://arxiv.org/abs/1003.1628
to get more information.
This file includes also an implementation for the series described in
Corless et al. (1996) eq. 4.22 (W-pdf) and Verebic (2010) (arxive link)
eqs.35-37.
The series has been implemented to get a different algorithm
for checking the results. This was necessary because the results
of the implementation in Maxima, the only program with a general
lambert-w implementation at hand at that time, differed slightly. The
Maxima versions tested were: Maxima 5.21.1 and 5.29.1. The current
version of this code concurs with the results of Mathematica`s(tm)
ProductLog[branch,z] with the tested values.
The series is only valid for the branches 0,-1, real z, converges
for values of z _very_ near the branchpoint -exp(-1) only, and must
be given the branches explicitly. See the code in lambertw.cal
for further information.
linear.cal
linear(x0, y0, x1, y1, x)
Returns the value y such that (x,y) in on the line (x0,y0), (x1,y1).
Requires x0 != y0.
lnseries.cal
lnseries(limit)
lnfromseries(n)
deletelnseries()
Calculates a series of n natural logarithms at 1,2,3,4...n. It
does so by computing the prime factorization of all of the number
sequence 1,2,3...n, calculates the natural logarithms of the primes
in 1,2,3...n and uses the above factorization to build the natural
logarithms of the rest of the sequence by sadding the logarithms of
the primes in the factorization. This is faster for high precision
of the logarithms and/or long sequences.
The sequence need to be initiated by running either lnseries(n) or
lnfromseries(n) once with n the upper limit of the sequence.
lucas.cal
lucas(h, n)
Perform a primality test of h*2^n-1, with 1<=h<2*n.
lucas_chk.cal
lucas_chk(high_n)
Test all primes of the form h*2^n-1, with 1<=h<200 and n <= high_n.
Requires lucas.cal to be loaded. The highest useful high_n is 1000.
Used by regress.cal during the 2100 test set.
lucas_tbl.cal
Lucasian criteria for primality tables.
mersenne.cal
mersenne(p)
Perform a primality test of 2^p-1, for prime p>1.
mfactor.cal
mfactor(n [, start_k=1 [, rept_loop=10000 [, p_elim=17]]])
Return the lowest factor of 2^n-1, for n > 0. Starts looking for factors
at 2*start_k*n+1. Skips values that are multiples of primes <= p_elim.
By default, start_k == 1, rept_loop = 10000 and p_elim = 17.
The p_elim == 17 overhead takes ~3 minutes on an 200 Mhz r4k CPU and
requires about ~13 Megs of memory. The p_elim == 13 overhead
takes about 3 seconds and requires ~1.5 Megs of memory.
The value p_elim == 17 is best for long factorizations. It is the
fastest even thought the initial startup overhead is larger than
for p_elim == 13.
mod.cal
lmod(a)
mod_print(a)
mod_one()
mod_cmp(a, b)
mod_rel(a, b)
mod_add(a, b)
mod_sub(a, b)
mod_neg(a)
mod_mul(a, b)
mod_square(a)
mod_inc(a)
mod_dec(a)
mod_inv(a)
mod_div(a, b)
mod_pow(a, b)
Routines to handle numbers modulo a specified number.
natnumset.cal
isset(a)
setbound(n)
empty()
full()
isin(a, b)
addmember(a, n)
rmmember(a, n)
set()
mkset(s)
primes(a, b)
set_max(a)
set_min(a)
set_not(a)
set_cmp(a, b)
set_rel(a, b)
set_or(a, b)
set_and(a, b)
set_comp(a)
set_setminus(a, b)
set_diff(a,b)
set_content(a)
set_add(a, b)
set_sub(a, b)
set_mul(a, b)
set_square(a)
set_pow(a, n)
set_sum(a)
set_plus(a)
interval(a, b)
isinterval(a)
set_mod(a, b)
randset(n, a, b)
polyvals(L, A)
polyvals2(L, A, B)
set_print(a)
Demonstration of how the string operators and functions may be used
for defining and working with sets of natural numbers not exceeding a
user-specified bound.
pell.cal
pellx(D)
pell(D)
Solve Pell's equation; Returns the solution X to: X^2 - D * Y^2 = 1.
Type the solution to Pell's equation for a particular D.
pi.cal
qpi(epsilon)
piforever()
The qpi() calculate pi within the specified epsilon using the quartic
convergence iteration.
The piforever() prints digits of pi, nicely formatted, for as long
as your free memory space and system up time allows.
The piforever() function (written by Klaus Alexander Seistrup
<klaus@seistrup.dk>) was inspired by an algorithm conceived by
Lambert Meertens. See also the ABC Programmer's Handbook, by Geurts,
Meertens & Pemberton, published by Prentice-Hall (UK) Ltd., 1990.
pix.cal
pi_of_x(x)
Calculate the number of primes < x using A(n+1)=A(n-1)+A(n-2). This
is a SLOW painful method ... the builtin pix(x) is much faster.
Still, this method is interesting.
pollard.cal
pfactor(N, N, ai, af)
Factor using Pollard's p-1 method.
poly.cal
Calculate with polynomials of one variable. There are many functions.
Read the documentation in the resource file.
prompt.cal
adder()
showvalues(str)
Demonstration of some uses of prompt() and eval().
psqrt.cal
psqrt(u, p)
Calculate square roots modulo a prime
qtime.cal
qtime(utc_hr_offset)
Print the time as English sentence given the hours offset from UTC.
quat.cal
quat(a, b, c, d)
quat_print(a)
quat_norm(a)
quat_abs(a, e)
quat_conj(a)
quat_add(a, b)
quat_sub(a, b)
quat_inc(a)
quat_dec(a)
quat_neg(a)
quat_mul(a, b)
quat_div(a, b)
quat_inv(a)
quat_scale(a, b)
quat_shift(a, b)
Calculate using quaternions of the form: a + bi + cj + dk. In these
functions, quaternions are manipulated in the form: s + v, where
s is a scalar and v is a vector of size 3.
randbitrun.cal
randbitrun([run_cnt])
Using randbit(1) to generate a sequence of random bits, determine if
the number and length of identical bits runs match what is expected.
By default, run_cnt is to test the next 65536 random values.
This tests the a55 generator.
randmprime.cal
randmprime(bits, seed [,dbg])
Find a prime of the form h*2^n-1 >= 2^bits for some given x. The
initial search points for 'h' and 'n' are selected by a cryptographic
pseudo-random number generator. The optional argument, dbg, if set
to 1, 2 or 3 turn on various debugging print statements.
randombitrun.cal
randombitrun([run_cnt])
Using randombit(1) to generate a sequence of random bits, determine if
the number and length of identical bits runs match what is expected.
By default, run_cnt is to test the next 65536 random values.
This tests the Blum-Blum-Shub generator.
randomrun.cal
randomrun([run_cnt])
Perform the "G. Run test" (pp. 65-68) as found in Knuth's "Art of
Computer Programming - 2nd edition", Volume 2, Section 3.3.2 on
the builtin rand() function. This function will generate run_cnt
64 bit values. By default, run_cnt is to test the next 65536
random values.
This tests the Blum-Blum-Shub generator.
randrun.cal
randrun([run_cnt])
Perform the "G. Run test" (pp. 65-68) as found in Knuth's "Art of
Computer Programming - 2nd edition", Volume 2, Section 3.3.2 on
the builtin rand() function. This function will generate run_cnt
64 bit values. By default, run_cnt is to test the next 65536
random values.
This tests the a55 generator.
repeat.cal
repeat(digit_set, repeat_count)
Return the value of the digit_set repeated repeat_count times.
Both digit_set and repeat_count must be integers > 0.
For example repeat(423,5) returns the value 423423423423423,
which is the digit_set 423 repeated 5 times.
regress.cal
Test the correct execution of the calculator by reading this resource
file. Errors are reported with '****' messages, or worse. :-)
screen.cal
up
CUU /* same as up */
down = CUD
CUD /* same as down */
forward
CUF /* same as forward */
back = CUB
CUB /* same as back */
save
SCP /* same as save */
restore
RCP /* same as restore */
cls
home
eraseline
off
bold
faint
italic
blink
rapidblink
reverse
concealed
/* Lowercase indicates foreground, uppercase background */
black
red
green
yellow
blue
magenta
cyan
white
Black
Red
Green
Yellow
Blue
Magenta
Cyan
White
Define ANSI control sequences providing (i.e., cursor movement,
changing foreground or background color, etc.) for VT100 terminals
and terminal window emulators (i.e., xterm, Apple OS/X Terminal,
etc.) that support them.
For example:
read screen
print green:"This is green. ":red:"This is red.":black
seedrandom.cal
seedrandom(seed1, seed2, bitsize [,trials])
Given:
seed1 - a large random value (at least 10^20 and perhaps < 10^93)
seed2 - a large random value (at least 10^20 and perhaps < 10^93)
size - min Blum modulus as a power of 2 (at least 100, perhaps > 1024)
trials - number of ptest() trials (default 25) (optional arg)
Returns:
the previous random state
Seed the cryptographically strong Blum generator. This functions allows
one to use the raw srandom() without the burden of finding appropriate
Blum primes for the modulus.
set8700.cal
set8700_getA1() defined
set8700_getA2() defined
set8700_getvar() defined
set8700_f(set8700_x) defined
set8700_g(set8700_x) defined
Declare globals and define functions needed by dotest() (see
dotest.cal) to evaluate set8700.line a line at a time.
set8700.line
A line-by-line evaluation file for dotest() (see dotest.cal).
The set8700.cal file (and dotest.cal) should be read first.
smallfactors.cal
smallfactors(x0)
printsmallfactors(flist)
Lists the prime factors of numbers smaller than 2^32. Try for example:
printsmallfactors(smallfactors(10!)).
solve.cal
solve(low, high, epsilon)
Solve the equation f(x) = 0 to within the desired error value for x.
The function 'f' must be defined outside of this routine, and the
low and high values are guesses which must produce values with
opposite signs.
specialfunctions.cal
beta(a,b)
Calculates the value of the beta function. See:
https://en.wikipedia.org/wiki/Beta_function
http://mathworld.wolfram.com/BetaFunction.html
http://dlmf.nist.gov/5.12
for information on the beta function.
betainc(a,b,z)
Calculates the value of the regularized incomplete beta function. See:
https://en.wikipedia.org/wiki/Beta_function
http://mathworld.wolfram.com/RegularizedBetaFunction.html
http://dlmf.nist.gov/8.17
for information on the regularized incomplete beta function.
expoint(z)
Calculates the value of the exponential integral Ei(z) function at z.
See:
http://en.wikipedia.org/wiki/Exponential_integral
http://www.cs.utah.edu/~vpegorar/research/2011_JGT/
for information on the exponential integral Ei(z) function.
erf(z)
Calculates the value of the error function at z. See:
http://en.wikipedia.org/wiki/Error_function
for information on the error function function.
erfc(z)
Calculates the value of the complementary error function at z. See:
http://en.wikipedia.org/wiki/Error_function
for information on the complementary error function function.
erfi(z)
Calculates the value of the imaginary error function at z. See:
http://en.wikipedia.org/wiki/Error_function
for information on the imaginary error function function.
erfinv(x)
Calculates the inverse of the error function at x. See:
http://en.wikipedia.org/wiki/Error_function
for information on the inverse of the error function function.
faddeeva(z)
Calculates the value of the complex error function at z. See:
http://en.wikipedia.org/wiki/Faddeeva_function
for information on the complex error function function.
gamma(z)
Calculates the value of the Euler gamma function at z. See:
http://en.wikipedia.org/wiki/Gamma_function
http://dlmf.nist.gov/5
for information on the Euler gamma function.
gammainc(a,z)
Calculates the value of the lower incomplete gamma function for
arbitrary a, z. See:
http://en.wikipedia.org/wiki/Incomplete_gamma_function
for information on the lower incomplete gamma function.
gammap(a,z)
Calculates the value of the regularized lower incomplete gamma
function for a, z with a not in -N. See:
http://en.wikipedia.org/wiki/Incomplete_gamma_function
for information on the regularized lower incomplete gamma function.
gammaq(a,z)
Calculates the value of the regularized upper incomplete gamma
function for a, z with a not in -N. See:
http://en.wikipedia.org/wiki/Incomplete_gamma_function
for information on the regularized upper incomplete gamma function.
heavisidestep(x)
Computes the Heaviside stepp function (1+sign(x))/2
harmonic(limit)
Calculates partial values of the harmonic series up to limit. See:
http://en.wikipedia.org/wiki/Harmonic_series_(mathematics)
http://mathworld.wolfram.com/HarmonicSeries.html
for information on the harmonic series.
lnbeta(a,b)
Calculates the natural logarithm of the beta function. See:
https://en.wikipedia.org/wiki/Beta_function
http://mathworld.wolfram.com/BetaFunction.html
http://dlmf.nist.gov/5.12
for information on the beta function.
lngamma(z)
Calculates the value of the logarithm of the Euler gamma function
at z. See:
http://en.wikipedia.org/wiki/Gamma_function
http://dlmf.nist.gov/5.15
for information on the derivatives of the the Euler gamma function.
polygamma(m,z)
Calculates the value of the m-th derivative of the Euler gamma
function at z. See:
http://en.wikipedia.org/wiki/Polygamma
http://dlmf.nist.gov/5
for information on the n-th derivative ofthe Euler gamma function. This
function depends on the script zeta2.cal.
psi(z)
Calculates the value of the first derivative of the Euler gamma
function at z. See:
http://en.wikipedia.org/wiki/Digamma_function
http://dlmf.nist.gov/5
for information on the first derivative of the Euler gamma function.
zeta(s)
Calculates the value of the Rieman Zeta function at s. See:
http://en.wikipedia.org/wiki/Riemann_zeta_function
http://dlmf.nist.gov/25.2
for information on the Riemann zeta function. This function depends
on the script zeta2.cal.
statistics.cal
gammaincoctave(z,a)
Computes the regularized incomplete gamma function in a way to
correspond with the function in Octave.
invbetainc(x,a,b)
Computes the inverse of the regularized beta function. Does so the
brute-force way wich makes it a bit slower.
betapdf(x,a,b)
betacdf(x,a,b)
betacdfinv(x,a,b)
betamedian(a,b)
betamode(a,b)
betavariance(a,b)
betalnvariance(a,b)
betaskewness(a,b)
betakurtosis(a,b)
betaentropy(a,b)
normalpdf(x,mu,sigma)
normalcdf(x,mu,sigma)
probit(p)
normalcdfinv(p,mu,sigma)
normalmean(mu,sigma)
normalmedian(mu,sigma)
normalmode(mu,sigma)
normalvariance(mu,sigma)
normalskewness(mu,sigma)
normalkurtosis(mu,sigma)
normalentropy(mu,sigma)
normalmgf(mu,sigma,t)
normalcf(mu,sigma,t)
chisquaredpdf(x,k)
chisquaredpcdf(x,k)
chisquaredmean(x,k)
chisquaredmedian(x,k)
chisquaredmode(x,k)
chisquaredvariance(x,k)
chisquaredskewness(x,k)
chisquaredkurtosis(x,k)
chisquaredentropy(x,k)
chisquaredmfg(k,t)
chisquaredcf(k,t)
Calculates a bunch of (hopefully) aptly named statistical functions.
strings.cal
isascii(c)
isblank(c)
Implements some of the functions of libc's ctype.h and strings.h.
NOTE: A number of the ctype.h and strings.h functions are now builtin
functions in calc.
WARNING: If the remaining functions in this calc resource file become
calc builtin functions, then strings.cal may be removed in
a future release.
sumsq.cal
ss(p)
Determine the unique two positive integers whose squares sum to the
specified prime. This is always possible for all primes of the form
4N+1, and always impossible for primes of the form 4N-1.
sumtimes.cal
timematsum(N)
timelistsum(N)
timematsort(N)
timelistsort(N)
timematreverse(N)
timelistreverse(N)
timematssq(N)
timelistssq(N)
timehmean(N,M)
doalltimes(N)
Give the user CPU time for various ways of evaluating sums, sums of
squares, etc, for large lists and matrices. N is the size of
the list or matrix to use. The doalltimes() function will run
all fo the sumtimes tests. For example:
doalltimes(1e6);
surd.cal
surd(a, b)
surd_print(a)
surd_conj(a)
surd_norm(a)
surd_value(a, xepsilon)
surd_add(a, b)
surd_sub(a, b)
surd_inc(a)
surd_dec(a)
surd_neg(a)
surd_mul(a, b)
surd_square(a)
surd_scale(a, b)
surd_shift(a, b)
surd_div(a, b)
surd_inv(a)
surd_sgn(a)
surd_cmp(a, b)
surd_rel(a, b)
Calculate using quadratic surds of the form: a + b * sqrt(D).
test1700.cal
value
This resource files is used by regress.cal to test the read and
use keywords.
test2600.cal
global defaultverbose
global err
testismult(str, n, verbose)
testsqrt(str, n, eps, verbose)
testexp(str, n, eps, verbose)
testln(str, n, eps, verbose)
testpower(str, n, b, eps, verbose)
testgcd(str, n, verbose)
cpow(x, n, eps)
cexp(x, eps)
cln(x, eps)
mkreal()
mkcomplex()
mkbigreal()
mksmallreal()
testappr(str, n, verbose)
checkappr(x, y, z, verbose)
checkresult(x, y, z, a)
test2600(verbose, tnum)
This resource files is used by regress.cal to test some of builtin
functions in terms of accuracy and roundoff.
test2700.cal
global defaultverbose
mknonnegreal()
mkposreal()
mkreal_2700()
mknonzeroreal()
mkposfrac()
mkfrac()
mksquarereal()
mknonsquarereal()
mkcomplex_2700()
testcsqrt(str, n, verbose)
checksqrt(x, y, z, v)
checkavrem(A, B, X, eps)
checkrounding(s, n, t, u, z)
iscomsq(x)
test2700(verbose, tnum)
This resource files is used by regress.cal to test sqrt() for real and
complex values.
test3100.cal
obj res
global md
res_test(a)
res_sub(a, b)
res_mul(a, b)
res_neg(a)
res_inv(a)
res(x)
This resource file is used by regress.cal to test determinants of
a matrix.
test3300.cal
global defaultverbose
global err
testi(str, n, N, verbose)
testr(str, n, N, verbose)
test3300(verbose, tnum)
This resource file is used by regress.cal to provide for more
determinant tests.
test3400.cal
global defaultverbose
global err
test1(str, n, eps, verbose)
test2(str, n, eps, verbose)
test3(str, n, eps, verbose)
test4(str, n, eps, verbose)
test5(str, n, eps, verbose)
test6(str, n, eps, verbose)
test3400(verbose, tnum)
This resource file is used by regress.cal to test trig functions.
containing objects.
test3500.cal
global defaultverbose
global err
testfrem(x, y, verbose)
testgcdrem(x, y, verbose)
testf(str, n, verbose)
testg(str, n, verbose)
testh(str, n, N, verbose)
test3500(verbose, n, N)
This resource file is used by regress.cal to test the functions frem,
fcnt, gcdrem.
test4000.cal
global defaultverbose
global err
global BASEB
global BASE
global COUNT
global SKIP
global RESIDUE
global MODULUS
global K1
global H1
global K2
global H2
global K3
global H3
plen(N) defined
rlen(N) defined
clen(N) defined
ptimes(str, N, n, count, skip, verbose) defined
ctimes(str, N, n, count, skip, verbose) defined
crtimes(str, a, b, n, count, skip, verbose) defined
ntimes(str, N, n, count, skip, residue, mod, verbose) defined
testnextcand(str, N, n, cnt, skip, res, mod, verbose) defined
testnext1(x, y, count, skip, residue, modulus) defined
testprevcand(str, N, n, cnt, skip, res, mod, verbose) defined
testprev1(x, y, count, skip, residue, modulus) defined
test4000(verbose, tnum) defined
This resource file is used by regress.cal to test ptest, nextcand and
prevcand builtins.
test4100.cal
global defaultverbose
global err
global K1
global K2
global BASEB
global BASE
rlen_4100(N) defined
olen(N) defined
test1(x, y, m, k, z1, z2) defined
testall(str, n, N, M, verbose) defined
times(str, N, n, verbose) defined
powtimes(str, N1, N2, n, verbose) defined
inittimes(str, N, n, verbose) defined
test4100(verbose, tnum) defined
This resource file is used by regress.cal to test REDC operations.
test4600.cal
stest(str [, verbose]) defined
ttest([m, [n [,verbose]]]) defined
sprint(x) defined
findline(f,s) defined
findlineold(f,s) defined
test4600(verbose, tnum) defined
This resource file is used by regress.cal to test searching in files.
test5100.cal
global a5100
global b5100
test5100(x) defined
This resource file is used by regress.cal to test the new code generator
declaration scope and order.
test5200.cal
global a5200
static a5200
f5200(x) defined
g5200(x) defined
h5200(x) defined
This resource file is used by regress.cal to test the fix of a
global/static bug.
test8400.cal
test8400() defined
This resource file is used by regress.cal to check for quit-based
memory leaks.
test8500.cal
global err_8500
global L_8500
global ver_8500
global old_seed_8500
global cfg_8500
onetest_8500(a,b,rnd) defined
divmod_8500(N, M1, M2, testnum) defined
This resource file is used by regress.cal to the // and % operators.
test8600.cal
global min_8600
global max_8600
global hash_8600
global hmean_8600
This resource file is used by regress.cal to test a change of
allowing up to 1024 args to be passed to a builtin function.
test8900.cal
This function tests a number of calc resource functions contributed
by Christoph Zurnieden. These include:
bernpoly.cal
brentsolve.cal
constants.cal
factorial2.cal
factorial.cal
lambertw.cal
lnseries.cal
specialfunctions.cal
statistics.cal
toomcook.cal
zeta2.cal
unitfrac.cal
unitfrac(x)
Represent a fraction as sum of distinct unit fractions.
toomcook.cal
toomcook3(a,b)
toomcook4(a,b)
Toom-Cook multiplication algorithm. Multiply two integers a,b by
way of the Toom-Cook algorithm. See:
http://en.wikipedia.org/wiki/Toom%E2%80%93Cook_multiplication
toomcook3square(a)
toomcook4square(a)
Square the integer a by way of the Toom-Cook algorithm. See:
http://en.wikipedia.org/wiki/Toom%E2%80%93Cook_multiplication
The function toomCook4(a,b) calls the function toomCook3(a,b) which
calls built-in multiplication at a specific cut-off point. The
squaring functions act in the same way.
varargs.cal
sc(a, b, ...)
Example program to use 'varargs'. Program to sum the cubes of all
the specified numbers.
xx_print.cal
is_octet(a) defined
list_print(a) defined
mat_print (a) defined
octet_print(a) defined
blk_print(a) defined
nblk_print (a) defined
strchar(a) defined
file_print(a) defined
error_print(a) defined
Demo for the xx_print object routines.
zeta2.cal
hurwitzzeta(s,a)
Calculate the value of the Hurwitz Zeta function. See:
http://en.wikipedia.org/wiki/Hurwitz_zeta_function
http://dlmf.nist.gov/25.11
for information on this special zeta function.
## Copyright (C) 2000,2014 David I. Bell and Landon Curt Noll
##
## Primary author: Landon Curt Noll
##
## Calc is open software; you can redistribute it and/or modify it under
## the terms of the version 2.1 of the GNU Lesser General Public License
## as published by the Free Software Foundation.
##
## Calc is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
## or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
## Public License for more details.
##
## A copy of version 2.1 of the GNU Lesser General Public License is
## distributed with calc under the filename COPYING-LGPL. You should have
## received a copy with calc; if not, write to Free Software Foundation, Inc.
## 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
##
## @(#) $Revision: 30.9 $
## @(#) $Id: README,v 30.9 2014/10/06 08:44:18 chongo Exp $
## @(#) $Source: /usr/local/src/bin/calc/cal/RCS/README,v $
##
## Under source code control: 1990/02/15 01:50:32
## File existed as early as: before 1990
##
## chongo <was here> /\oo/\ http://www.isthe.com/chongo/
## Share and enjoy! :-) http://www.isthe.com/chongo/tech/comp/calc/
|