This file is indexed.

/usr/share/calc/lambertw.cal is in apcalc-common 2.12.5.0-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
/*
 * lambertw - Lambert's W-function
 *
 * Copyright (C) 2013 Christoph Zurnieden
 *
 * Calc is open software; you can redistribute it and/or modify it under
 * the terms of the version 2.1 of the GNU Lesser General Public License
 * as published by the Free Software Foundation.
 *
 * Calc is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General
 * Public License for more details.
 *
 * A copy of version 2.1 of the GNU Lesser General Public License is
 * distributed with calc under the filename COPYING-LGPL.  You should have
 * received a copy with calc; if not, write to Free Software Foundation, Inc.
 * 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 *
 * @(#) $Revision: 30.4 $
 * @(#) $Id: lambertw.cal,v 30.4 2013/08/18 20:01:53 chongo Exp $
 * @(#) $Source: /usr/local/src/bin/calc/cal/RCS/lambertw.cal,v $
 *
 * Under source code control:	2013/08/11 01:31:28
 * File existed as early as:	2013
 */


static resource_debug_level;
resource_debug_level = config("resource_debug", 0);


/*

     R. M. Corless and G. H. Gonnet and D. E. G. Hare and D. J. Jeffrey and
     D. E. Knuth, "On the Lambert W Function", Advances n Computational
     Mathematics, 329--359, (1996)
     http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.112.6117

     D. J. Jeffrey, D. E. G. Hare, R. M. Corless, "Unwinding the branches of the
     Lambert W function", The Mathematical Scientist, 21, pp 1-7, (1996)
     http://www.apmaths.uwo.ca/~djeffrey/Offprints/wbranch.pdf

     Darko Verebic, "Having Fun with Lambert W(x) Function"
     arXiv:1003.1628v1, March 2010, http://arxiv.org/abs/1003.1628

     Winitzki, S. "Uniform Approximations for Transcendental Functions",
     In Part 1 of Computational Science and its Applications - ICCSA 2003,
     Lecture Notes in Computer Science, Vol. 2667, Springer-Verlag,
     Berlin, 2003, 780-789. DOI 10.1007/3-540-44839-X_82
     A copy may be found by Google.


*/
static true = 1;
static false = 0;

/* Branch 0, Winitzki (2003) , the well known Taylor series*/
define __CZ__lambertw_0(z,eps){
  local a=2.344e0, b=0.8842e0, c=0.9294e0, d=0.5106e0, e=-1.213e0;
  local y=sqrt(2*exp(1)*z+2);
  return (2*ln(1+b*y)-ln(1+c*ln(1+d*y))+e)/(1+1/(2*ln(1+b*y)+2*a));
}
/* branch -1 */
define __CZ__lambertw_m1(z,eps){
  local wn k;
  /* Cut-off found in Maxima */
  if(z < 0.3) return __CZ__lambertw_app(z,eps);
  wn = z;
  /*  Verebic (2010) eqs. 16-18*/
  for(k=0;k<10;k++){
    wn = ln(-z)-ln(-wn);
  }
  return wn;
}

/*
  generic approximation

  series for 1+W((z-2)/(2 e))

  Corless et al (1996) (4.22)
  Verebic (2010) eqs. 35-37; more coefficients given at the end of sect. 3.1
  or online
     http://www.wolframalpha.com/input/?
       i=taylor+%28+1%2Bproductlog%28+%28z-2%29%2F%282*e%29+%29+%29
  or by using the function lambertw_series_print() after running
  lambertw_series(z,eps,branch,terms) at least once with the wanted number of
  terms and z = 1 (which might throw an error because the series will not
  converge in anybodies lifetime for something that far from the branchpoint).


*/
define __CZ__lambertw_app(z,eps){
  local  b0=-1, b1=1, b2=-1/3, b3=11/72;
  local  y=sqrt(2*exp(1)*z+2);
  return b0 + ( y * (b1 + (y * (b2 + (b3 * y)))));
}

static __CZ__Ws_a;
static __CZ__Ws_c;
static __CZ__Ws_len=0;

define lambertw_series_print(){
  local k;
  for(k=0;k<__CZ__Ws_len;k++){
    print num(__CZ__Ws_c[k]):"/":den(__CZ__Ws_c[k]):"*p^":k;
  }
}

/*
   The series is fast but only if _very_ close to the branchpoint
   The exact branch must be given explicitly, e.g.:

; lambertw(-exp(-1)+.001)-lambertw_series(-exp(-1)+.001,epsilon()*1e-10,0)
	-0.14758879113205794065490184399030194122136720202792-
                  0.00000000000000000000000000000000000000000000000000i
; lambertw(-exp(-1)+.001)-lambertw_series(-exp(-1)+.001,epsilon()*1e-10,1)
	0.00000000000000000000000000000000000000000000000000-
                  0.00000000000000000000000000000000000000000000000000i
 */
define lambertw_series(z,eps,branch,terms){
  local k l limit tmp sum A C P PP epslocal;
  if(!isnull(terms))
    limit = terms;
  else
    limit = 100;

  if(isnull(eps))
    eps = epsilon(epsilon()*1e-10);
  epslocal = epsilon(eps);

  P = sqrt(2*(exp(1)*z+1));
  if(branch != 0) P = -P;
  tmp=0;sum=0;PP=P;

    __CZ__Ws_a   = mat[limit+1];
    __CZ__Ws_c   = mat[limit+1];
    __CZ__Ws_len = limit;
   /*
      c0 = -1; c1 = 1
      a0 =  2; a1 =-1
    */
    __CZ__Ws_c[0] = -1; __CZ__Ws_c[1] =  1;
    __CZ__Ws_a[0] =  2; __CZ__Ws_a[1] = -1;
    sum += __CZ__Ws_c[0];
    sum += __CZ__Ws_c[1] * P;
    PP *= P;
    for(k=2;k<limit;k++){
      for(l=2;l<k;l++){
         __CZ__Ws_a[k] += __CZ__Ws_c[l]*__CZ__Ws_c[k+1-l];
      }

      __CZ__Ws_c[k] = (k-1) * (  __CZ__Ws_c[k-2]/2
                            +__CZ__Ws_a[k-2]/4)/
                      (k+1)-__CZ__Ws_a[k]/2-__CZ__Ws_c[k-1]/(k+1);
      tmp = __CZ__Ws_c[k] * PP;
      sum += tmp;
      if(abs(tmp) <= eps){
        epsilon(epslocal);
        return sum;
      }
      PP *= P;
    }
    epsilon(epslocal);
    return
      newerror(strcat("lambertw_series: does not converge in ",
                        str(limit)," terms" ));
}

/* */
define lambertw(z,branch){
  local eps epslarge ret branchpoint bparea w we ew w1e wn k places m1e;
  local closeness;

  eps = epsilon();
  if(branch == 0){
    if(!im(z)){
      if(abs(z) <= eps) return 0;
      if(abs(z-exp(1)) <= eps) return 1;
      if(abs(z - (-ln(2)/2)) <= eps ) return -ln(2);
      if(abs(z - (-pi()/2)) <= eps ) return 1i*pi()/2;
    }
  }

  branchpoint = -exp(-1);
  bparea = .2;
  if(branch == 0){
    if(!im(z) && abs(z-branchpoint) == 0) return -1;
    ret = __CZ__lambertw_0(z,eps);
   /* Yeah, C&P, I know, sorry */
   ##ret = ln(z) + 2*pi()*1i*branch - ln(ln(z)+2*pi()*1i*branch);
  }
  else if(branch == 1){
    if(im(z)<0 && abs(z-branchpoint) <= bparea)
      ret = __CZ__lambertw_app(z,eps);
   /* Does calc have a goto? Oh, it does!  */
    ret =ln(z) + 2*pi()*1i*branch - ln(ln(z)+2*pi()*1i*branch);
  }
  else if(branch == -1){##print "-1";
    if(!im(z) && abs(z-branchpoint) == 0) return -1;
    if(!im(z) && z>branchpoint && z < 0){##print "0";
      ret = __CZ__lambertw_m1(z,eps);}
    if(im(z)>=0 && abs(z-branchpoint) <= bparea){##print "1";
      ret = __CZ__lambertw_app(z,eps);}
    ret =ln(z) + 2*pi()*1i*branch - ln(ln(z)+2*pi()*1i*branch);
  }
  else
    ret = ln(z) + 2*pi()*1i*branch - ln(ln(z)+2*pi()*1i*branch);

  /*
     Such a high precision is only needed _very_ close to the branchpoint
     and might even be insufficient if z has not been computed with
     sufficient precision itself (M below was calculated by Mathematica and also
     with the series above with epsilon(1e-200)):
    ; epsilon(1e-50)
	0.00000000000000000001
    ; display(50)
	20
    ; M=-0.9999999999999999999999997668356018402875796636464119050387
    ; lambertw(-exp(-1)+1e-50,0)-M
	-0.00000000000000000000000002678416515423276355643684
    ; epsilon(1e-60)
	0.0000000000000000000000000000000000000000000000000
    ; A=-exp(-1)+1e-50
    ; epsilon(1e-50)
	0.00000000000000000000000000000000000000000000000000
    ; lambertw(A,0)-M
	-0.00000000000000000000000000000000000231185460220585
    ; lambertw_series(A,epsilon(),0)-M
	-0.00000000000000000000000000000000000132145133161626
    ; epsilon(1e-100)
	0.00000000000000000000000000000000000000000000000001
    ; A=-exp(-1)+1e-50
    ; epsilon(1e-65)
	0.00000000000000000000000000000000000000000000000000
    ; lambertw_series(A,epsilon(),0)-M
	0.00000000000000000000000000000000000000000000000000
    ; lambertw_series(-exp(-1)+1e-50,epsilon(),0)-M
	-0.00000000000000000000000000000000000000002959444084
    ; epsilon(1e-74)
	0.00000000000000000000000000000000000000000000000000
    ; lambertw_series(-exp(-1)+1e-50,epsilon(),0)-M
	-0.00000000000000000000000000000000000000000000000006
   */
  closeness = abs(z-branchpoint);
  if( closeness< 1){
    if(closeness != 0)
      eps = epsilon(epsilon()*( closeness));
    else
      eps = epsilon(epsilon()^2);
  }
  else
    eps = epsilon(epsilon()*1e-2);


  epslarge =epsilon();

  places = highbit(1 + int(1/epslarge)) + 1;
  w = ret;
  for(k=0;k<100;k++){
    ew = exp(w);
    we = w*ew;
    if(abs(we-z)<= 4*epslarge*abs(z))break;
    w1e = (1+w)*ew;
    wn = bround(w- ((we - z) / ( w1e - ( (w+2)*(we-z) )/(2*w+2)  ) ),places++) ;
    if( abs(wn - w) <= epslarge*abs(wn)) break;
    else  w = wn;
  }

  if(k==100){
    epsilon(eps);
    return newerror("lambertw: Halley iteration does not converge");
  }
  /* The Maxima coders added a check if the iteration converged to the correct
     branch. This coder deems it superfluous. */

  epsilon(eps);
  return wn;
}


config("resource_debug", resource_debug_level),;
if (config("resource_debug") & 3) {
    print "lambertw(z,branch)";
    print "lambertw_series(z,eps,branch,terms)";
    print "lambertw_series_print()";
}