/usr/share/calc/lambertw.cal is in apcalc-common 2.12.5.0-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 | /*
* lambertw - Lambert's W-function
*
* Copyright (C) 2013 Christoph Zurnieden
*
* Calc is open software; you can redistribute it and/or modify it under
* the terms of the version 2.1 of the GNU Lesser General Public License
* as published by the Free Software Foundation.
*
* Calc is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
* Public License for more details.
*
* A copy of version 2.1 of the GNU Lesser General Public License is
* distributed with calc under the filename COPYING-LGPL. You should have
* received a copy with calc; if not, write to Free Software Foundation, Inc.
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* @(#) $Revision: 30.4 $
* @(#) $Id: lambertw.cal,v 30.4 2013/08/18 20:01:53 chongo Exp $
* @(#) $Source: /usr/local/src/bin/calc/cal/RCS/lambertw.cal,v $
*
* Under source code control: 2013/08/11 01:31:28
* File existed as early as: 2013
*/
static resource_debug_level;
resource_debug_level = config("resource_debug", 0);
/*
R. M. Corless and G. H. Gonnet and D. E. G. Hare and D. J. Jeffrey and
D. E. Knuth, "On the Lambert W Function", Advances n Computational
Mathematics, 329--359, (1996)
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.112.6117
D. J. Jeffrey, D. E. G. Hare, R. M. Corless, "Unwinding the branches of the
Lambert W function", The Mathematical Scientist, 21, pp 1-7, (1996)
http://www.apmaths.uwo.ca/~djeffrey/Offprints/wbranch.pdf
Darko Verebic, "Having Fun with Lambert W(x) Function"
arXiv:1003.1628v1, March 2010, http://arxiv.org/abs/1003.1628
Winitzki, S. "Uniform Approximations for Transcendental Functions",
In Part 1 of Computational Science and its Applications - ICCSA 2003,
Lecture Notes in Computer Science, Vol. 2667, Springer-Verlag,
Berlin, 2003, 780-789. DOI 10.1007/3-540-44839-X_82
A copy may be found by Google.
*/
static true = 1;
static false = 0;
/* Branch 0, Winitzki (2003) , the well known Taylor series*/
define __CZ__lambertw_0(z,eps){
local a=2.344e0, b=0.8842e0, c=0.9294e0, d=0.5106e0, e=-1.213e0;
local y=sqrt(2*exp(1)*z+2);
return (2*ln(1+b*y)-ln(1+c*ln(1+d*y))+e)/(1+1/(2*ln(1+b*y)+2*a));
}
/* branch -1 */
define __CZ__lambertw_m1(z,eps){
local wn k;
/* Cut-off found in Maxima */
if(z < 0.3) return __CZ__lambertw_app(z,eps);
wn = z;
/* Verebic (2010) eqs. 16-18*/
for(k=0;k<10;k++){
wn = ln(-z)-ln(-wn);
}
return wn;
}
/*
generic approximation
series for 1+W((z-2)/(2 e))
Corless et al (1996) (4.22)
Verebic (2010) eqs. 35-37; more coefficients given at the end of sect. 3.1
or online
http://www.wolframalpha.com/input/?
i=taylor+%28+1%2Bproductlog%28+%28z-2%29%2F%282*e%29+%29+%29
or by using the function lambertw_series_print() after running
lambertw_series(z,eps,branch,terms) at least once with the wanted number of
terms and z = 1 (which might throw an error because the series will not
converge in anybodies lifetime for something that far from the branchpoint).
*/
define __CZ__lambertw_app(z,eps){
local b0=-1, b1=1, b2=-1/3, b3=11/72;
local y=sqrt(2*exp(1)*z+2);
return b0 + ( y * (b1 + (y * (b2 + (b3 * y)))));
}
static __CZ__Ws_a;
static __CZ__Ws_c;
static __CZ__Ws_len=0;
define lambertw_series_print(){
local k;
for(k=0;k<__CZ__Ws_len;k++){
print num(__CZ__Ws_c[k]):"/":den(__CZ__Ws_c[k]):"*p^":k;
}
}
/*
The series is fast but only if _very_ close to the branchpoint
The exact branch must be given explicitly, e.g.:
; lambertw(-exp(-1)+.001)-lambertw_series(-exp(-1)+.001,epsilon()*1e-10,0)
-0.14758879113205794065490184399030194122136720202792-
0.00000000000000000000000000000000000000000000000000i
; lambertw(-exp(-1)+.001)-lambertw_series(-exp(-1)+.001,epsilon()*1e-10,1)
0.00000000000000000000000000000000000000000000000000-
0.00000000000000000000000000000000000000000000000000i
*/
define lambertw_series(z,eps,branch,terms){
local k l limit tmp sum A C P PP epslocal;
if(!isnull(terms))
limit = terms;
else
limit = 100;
if(isnull(eps))
eps = epsilon(epsilon()*1e-10);
epslocal = epsilon(eps);
P = sqrt(2*(exp(1)*z+1));
if(branch != 0) P = -P;
tmp=0;sum=0;PP=P;
__CZ__Ws_a = mat[limit+1];
__CZ__Ws_c = mat[limit+1];
__CZ__Ws_len = limit;
/*
c0 = -1; c1 = 1
a0 = 2; a1 =-1
*/
__CZ__Ws_c[0] = -1; __CZ__Ws_c[1] = 1;
__CZ__Ws_a[0] = 2; __CZ__Ws_a[1] = -1;
sum += __CZ__Ws_c[0];
sum += __CZ__Ws_c[1] * P;
PP *= P;
for(k=2;k<limit;k++){
for(l=2;l<k;l++){
__CZ__Ws_a[k] += __CZ__Ws_c[l]*__CZ__Ws_c[k+1-l];
}
__CZ__Ws_c[k] = (k-1) * ( __CZ__Ws_c[k-2]/2
+__CZ__Ws_a[k-2]/4)/
(k+1)-__CZ__Ws_a[k]/2-__CZ__Ws_c[k-1]/(k+1);
tmp = __CZ__Ws_c[k] * PP;
sum += tmp;
if(abs(tmp) <= eps){
epsilon(epslocal);
return sum;
}
PP *= P;
}
epsilon(epslocal);
return
newerror(strcat("lambertw_series: does not converge in ",
str(limit)," terms" ));
}
/* */
define lambertw(z,branch){
local eps epslarge ret branchpoint bparea w we ew w1e wn k places m1e;
local closeness;
eps = epsilon();
if(branch == 0){
if(!im(z)){
if(abs(z) <= eps) return 0;
if(abs(z-exp(1)) <= eps) return 1;
if(abs(z - (-ln(2)/2)) <= eps ) return -ln(2);
if(abs(z - (-pi()/2)) <= eps ) return 1i*pi()/2;
}
}
branchpoint = -exp(-1);
bparea = .2;
if(branch == 0){
if(!im(z) && abs(z-branchpoint) == 0) return -1;
ret = __CZ__lambertw_0(z,eps);
/* Yeah, C&P, I know, sorry */
##ret = ln(z) + 2*pi()*1i*branch - ln(ln(z)+2*pi()*1i*branch);
}
else if(branch == 1){
if(im(z)<0 && abs(z-branchpoint) <= bparea)
ret = __CZ__lambertw_app(z,eps);
/* Does calc have a goto? Oh, it does! */
ret =ln(z) + 2*pi()*1i*branch - ln(ln(z)+2*pi()*1i*branch);
}
else if(branch == -1){##print "-1";
if(!im(z) && abs(z-branchpoint) == 0) return -1;
if(!im(z) && z>branchpoint && z < 0){##print "0";
ret = __CZ__lambertw_m1(z,eps);}
if(im(z)>=0 && abs(z-branchpoint) <= bparea){##print "1";
ret = __CZ__lambertw_app(z,eps);}
ret =ln(z) + 2*pi()*1i*branch - ln(ln(z)+2*pi()*1i*branch);
}
else
ret = ln(z) + 2*pi()*1i*branch - ln(ln(z)+2*pi()*1i*branch);
/*
Such a high precision is only needed _very_ close to the branchpoint
and might even be insufficient if z has not been computed with
sufficient precision itself (M below was calculated by Mathematica and also
with the series above with epsilon(1e-200)):
; epsilon(1e-50)
0.00000000000000000001
; display(50)
20
; M=-0.9999999999999999999999997668356018402875796636464119050387
; lambertw(-exp(-1)+1e-50,0)-M
-0.00000000000000000000000002678416515423276355643684
; epsilon(1e-60)
0.0000000000000000000000000000000000000000000000000
; A=-exp(-1)+1e-50
; epsilon(1e-50)
0.00000000000000000000000000000000000000000000000000
; lambertw(A,0)-M
-0.00000000000000000000000000000000000231185460220585
; lambertw_series(A,epsilon(),0)-M
-0.00000000000000000000000000000000000132145133161626
; epsilon(1e-100)
0.00000000000000000000000000000000000000000000000001
; A=-exp(-1)+1e-50
; epsilon(1e-65)
0.00000000000000000000000000000000000000000000000000
; lambertw_series(A,epsilon(),0)-M
0.00000000000000000000000000000000000000000000000000
; lambertw_series(-exp(-1)+1e-50,epsilon(),0)-M
-0.00000000000000000000000000000000000000002959444084
; epsilon(1e-74)
0.00000000000000000000000000000000000000000000000000
; lambertw_series(-exp(-1)+1e-50,epsilon(),0)-M
-0.00000000000000000000000000000000000000000000000006
*/
closeness = abs(z-branchpoint);
if( closeness< 1){
if(closeness != 0)
eps = epsilon(epsilon()*( closeness));
else
eps = epsilon(epsilon()^2);
}
else
eps = epsilon(epsilon()*1e-2);
epslarge =epsilon();
places = highbit(1 + int(1/epslarge)) + 1;
w = ret;
for(k=0;k<100;k++){
ew = exp(w);
we = w*ew;
if(abs(we-z)<= 4*epslarge*abs(z))break;
w1e = (1+w)*ew;
wn = bround(w- ((we - z) / ( w1e - ( (w+2)*(we-z) )/(2*w+2) ) ),places++) ;
if( abs(wn - w) <= epslarge*abs(wn)) break;
else w = wn;
}
if(k==100){
epsilon(eps);
return newerror("lambertw: Halley iteration does not converge");
}
/* The Maxima coders added a check if the iteration converged to the correct
branch. This coder deems it superfluous. */
epsilon(eps);
return wn;
}
config("resource_debug", resource_debug_level),;
if (config("resource_debug") & 3) {
print "lambertw(z,branch)";
print "lambertw_series(z,eps,branch,terms)";
print "lambertw_series_print()";
}
|