This file is indexed.

/usr/share/calc/natnumset.cal is in apcalc-common 2.12.5.0-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
/*
 * natnumset - functions for sets of natural numbers not exceeding a fixed bound
 *
 * Copyright (C) 1999  Ernest Bowen
 *
 * Calc is open software; you can redistribute it and/or modify it under
 * the terms of the version 2.1 of the GNU Lesser General Public License
 * as published by the Free Software Foundation.
 *
 * Calc is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.	 See the GNU Lesser General
 * Public License for more details.
 *
 * A copy of version 2.1 of the GNU Lesser General Public License is
 * distributed with calc under the filename COPYING-LGPL.  You should have
 * received a copy with calc; if not, write to Free Software Foundation, Inc.
 * 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 *
 * @(#) $Revision: 30.1 $
 * @(#) $Id: natnumset.cal,v 30.1 2007/03/16 11:09:54 chongo Exp $
 * @(#) $Source: /usr/local/src/bin/calc/cal/RCS/natnumset.cal,v $
 *
 * Under source code control:	1997/09/07 23:53:51
 * File existed as early as:	1997
 *
 * Share and enjoy!  :-)	http://www.isthe.com/chongo/tech/comp/calc/
 */

/*
 * Functions for sets of natural numbers not exceeding a fixed bound B.
 *
 * The default value for B is 100; B may be assigned another
 * value n by setbound(n); with no argument, setbound() returns the current
 * upper bound.
 *
 * A set S is stored as an object with one element with one component S.s;
 * This component is a string of just sufficient size to include m bits,
 * where m is the maximum integer in S.
 *
 * With zero or more integer arguments, set(a, b, ...) returns the set
 * whose elements are those of a, b, ... in [0, B].  Note that arguments
 * < 0 or > B are ignored.
 *
 * In an assignment of a set-valued lvalue to an lvalue, as in
 *
 *		A = set(1,2,3);
 *		B = A;
 *
 * the sets share the same data string, so a change to either has the effect
 * of changing both.  A set equal to A but with a different string can be
 * created by
 *
 *		B = A | set()
 *
 * The functions empty() and full() return the empty set and the set of all
 * integers in [0,B] respectively.
 *
 * isset(A) returns 1 or 0 according as A is or is not a set
 *
 * test(A) returns 0 or 1 according as A is or is not the empty set
 *
 * isin(A, n) for set A and integer n returns 1 if n is in A, 0 if
 *	0 <= n <= B and n is not in A, the null value if n < 0 or n > B.
 *
 * addmember(A, n) adds n as a member of A, provided n is in [0, B];
 *	 this is also achieved by A |= n.
 *
 * rmmember(A, n) removes n from A if it is a member; this is also achieved
 *	by A \= n.
 *
 * The following unary and binary operations are defined for sets A, B.
 *	For binary operations with one argument a set and the other an
 *	integer n, the integer taken to represent set(n).
 *
 *	A | B = union of A and B, integers in at least one of A and B
 *	A & B = intersection of A and B, integers in both A and B
 *	A ~ B = symmetric difference (boolean sum) of A and Bi, integers
 *			in exactly one of A and B
 *	A \ B = set difference, integers in A but not in B
 *
 *	~A	= complement of A, integers not in A
 *	#A	= number ofintegers in A
 *	!A	= 1 or 0 according as A is empty or not empty
 *	+A	= sum of the members of A
 *
 *	min(A)	= least member of A, -1 for empty set
 *	max(A)	= greatest member of A, -1 for empty set
 *	sum(A)	= sum of the members of A
 *
 * In the following a and b denote arbitrary members of A and B:
 *
 *	A + B = set of sums a + b
 *	A - B = set of differences a - b
 *	A * B = set of products a * b
 *	A ^ n = set of powers a ^ n
 *	A % m = set of integers congruent to a mod m
 *
 *	A == B returns 1 or not according as A and B are equal or not
 *	A != B = !(A == B)
 *	A <= B returns 1 if A is a subset of B, i.e. every member of A is
 *		a member of B
 *	A < B = ((A <= B) && (A != B))
 *	A >= B = (B <= A)
 *	A > B = (B < A)
 *
 * Expresssions may be formed from the above "arithmetic" operations in
 * the usual way, with parentheses for variations from the usual precedence
 * rules.  For example
 *
 *	A + 3 * A ^ 2 + (A - B) ^ 3
 *
 * returns the set of integers expressible as
 *
 *	a_1 + 3 * a_2 ^ 2 + (a_3 - b) ^3
 *
 * where a_1, a_2, a_3 are in A, and b is in B.
 *
 * primes(a, b) returns the set of primes between a and b inclusive.
 *
 * interval(a, b) returns the integers between a and b inclusive
 *
 * isinterval(A) returns 1 if A is a non-empty interval, 0 otherwise.
 *
 * randset(n, a, b) returns a random set of n integers between a and b
 *	inclusive; a defaults to 0, b to N-1.  An error occurs if
 *	n is too large.
 *
 * polyvals(L, A) for L = list(c_0, c_1, c_2, ...) returns the set of
 * values of
 *
 *	c_0 + c_1 * a + c_2 * a^2 + ...
 *
 * for a in the set A.
 *
 * polyvals2(L, A, B) returns the set of values of poly(L, i, j) for i in
 *	A and j in B.  Here L is a list whose members are integers or
 *	lists of integers, the latter representing polynomials in the
 *	second variable.  For example, with L = list(0, list(0, 1), 1),
 *	polyvals2(L, A, B) will return the values of i^2 + i * j for
 *	i in A, j in B.
 *
 */


static N;		/* Number of integers in [0,B], = B + 1 */
static M;		/* Maximum string size required, = N // 8 */

obj set {s};

define isset(a) = istype(a, obj set);

define setbound(n)
{
	local v;

	v = N - 1;
	if (isnull(n))
		return v;
	if (!isint(n) || n < 0)
		quit "Bad argument for setbound";
	N = n + 1;
	M = quo(N, 8, 1);	/* M // 8 rounded up */
	if (v >= 0)
		return v;
}

setbound(100);

define empty() = obj set = {""};

define full()
{
	local v;

	obj set v;
	v.s = M * char(-1);
	if (!ismult(N, 8)) v.s[M-1] = 255 >> (8 - N & 7);
	return v;
}

define isin(a, b)
{
	if (!isset(a) || !isint(b))
		quit "Bad argument for isin";
	return bit(a.s, b);
}

define addmember(a, n)
{
	if (!isset(a) || !isint(n))
		quit "Bad argument for addmember";
	if (n < N && n >= 0)
		setbit(a.s, n);
}

define rmmember(a, n)
{
	if (n < N && n >= 0)
		setbit(a.s, n, 0);
}

define set()
{
	local i, v, s;

	s = M * char(0);
	for (i = 1; i <= param(0); i++) {
		v = param(i);
		if (!isint(v))
			quit "Non-integral argument for set";
		if (v >= 0 && v < N)
			setbit(s, v);
	}
	return mkset(s);
}


define mkset(s)
{
	local h, m;

	if (!isstr(s))
		quit "Non-string argument for mkset";
	h = highbit(s);
	if (h >= N)
		quit "Too-long string for mkset";
	m = quo(h + 1, 8, 1);
	return obj set = {head(s, m)};
}


define primes(a,b)
{
	local i, s, m;

	if (isnull(b)) {
		if (isnull(a)) {
			a = 0;
			b = N - 1;
		}
		else b = 0;
	}

	if (!isint(a) || !isint(b))
		quit "Non-integer argument for primes";
	if (a > b)
		swap(a,b);
	if (b < 0 || a >= N)
		return empty();
	a = max(a, 0);
	b = min(b, N-1);
	s = M * char(0);
	for (i = a; i <= b; i++)
		if (isprime(i))
			setbit(s, i);
	return mkset(s);
}

define set_max(a) = highbit(a.s);

define set_min(a) = lowbit(a.s);

define set_not(a) = !a.s;

define set_cmp(a,b)
{
	if (isset(a) && isset(b))
		return a.s != b.s;
	return 1;
}

define set_rel(a,b)
{
	local c;

	if (a == b)
		return 0;
	if (isset(a)) {
		if (isset(b)) {
			c = a & b;
			if (c == a)
				return -1;
			if (c == b)
				return 1;
			return;
		}
		if (!isint(b))
			return set_rel(a, set(b));
	}
	if (isint(a))
		return set_rel(set(a), b);
}


define set_or(a, b)
{
	if (isset(a)) {
		if (isset(b))
			return obj set = {a.s | b.s};
		if (isint(b))
			return a | set(b);
	}
	if (isint(a))
		return set(a) | b;
	return newerror("Bad argument for set_or");
}

define set_and(a, b)
{
	if (isint(a))
		return set(a) & b;
	if (isint(b))
		return a & set(b);
	if (!isset(a) || !isset(b))
		return newerror("Bad argument for set_and");
	return mkset(a.s & b.s);
}


define set_comp(a) = full() \ a;

define set_setminus(a,b)
{
	if (isint(a))
		return set(a) \ b;
	if (isint(b))
		return a \ set(b);
	if (!isset(a) || !isset(b))
		return newerror("Bad argument for set_setminus");
	return mkset(a.s \ b.s);
}


define set_xor(a,b)
{
	if (isint(a))
		return set(a) ~ b;
	if (isint(b))
		return a ~ set(b);
	if (!isset(a) || !isset(b))
		return newerror("Bad argument for set_xor");
	return mkset(a.s ~ b.s);
}

define set_content(a) = #a.s;

define set_add(a, b)
{
	local s, i, j, m, n;

	if (isint(a))
		return set(a) + b;
	if (isint(b))
		return a + set(b);
	if (!isset(a) || !isset(b))
		return newerror("Bad argument for set_add");
	if (!a || !b)
		return empty();
	m = highbit(a.s);
	n = highbit(b.s);
	s = M * char(0);
	for (i = 0; i <= m; i++)
		if (isin(a, i))
			for (j = 0; j <= n && i + j < N; j++)
				if (isin(b, j))
					setbit(s, i + j);
	return mkset(s);
}

define set_sub(a,b)
{
	local s, i, j, m, n;

	if (isint(b))
		return a - set(b);
	if (isint(a))
		return set(a) - b;
	if (isset(a) && isset(b)) {
		if (!a || !b)
			return empty();
		m = highbit(a.s);
		n = highbit(b.s);
		s = M * char(0);
		for (i = 0; i <= m; i++)
			if (isin(a, i))
				for (j = 0; j <= n && j <= i; j++)
					if (isin(b, j))
						setbit(s, i - j);
		return mkset(s);
	}
	return newerror("Bad argument for set_sub");
}

define set_mul(a, b)
{
	local s, i, j, m, n;

	if (isset(a)) {
		s = M * char(0);
		m = highbit(a.s);
		if (isset(b)) {
			if (!a || !b)
				return empty();
			n = highbit(b.s);
			for (i = 0; i <= m; ++i)
				if (isin(a, i))
					for (j = 1; j <= n && i * j < N; ++j)
						if (isin(b, j))
							setbit(s, i * j);
			return mkset(s);
		}
		if (isint(b)) {
			if (b == 0) {
				if (a)
					return set(0);
				return empty();
			}
			s = M * char(0);
			for (i = 0; i <= m && b * i < N; ++i)
				if (isin(a, i))
					setbit(s, b * i);
			return mkset(s);
		}
	}
	if (isint(a))
		return b * a;
	return newerror("Bad argument for set_mul");
}

define set_square(a)
{
	local s, i, m;

	s = M * char(0);
	m = highbit(a.s);
	for (i = 0; i <= m && i^2 < N; ++i)
		if (bit(a.s, i))
			setbit(s, i^2);
	return mkset(s);
}

define set_pow(a, n)
{
	local s, i, m;

	if (!isint(n) || n < 0)
		quit "Bad exponent for set_power";
	s = M * char(0);
	m = highbit(a.s);
	for (i = 0; i <= m && i^n < N; ++i)
		if (bit(a.s, i))
			setbit(s, i^n);
	return mkset(s);
}

define set_sum(a)
{
	local v, m, i;

	v = 0;
	m = highbit(a.s);
	for (i = 0; i <= m; ++i)
		if (bit(a.s, i))
			v += i;
	return v;
}

define set_plus(a) = set_sum(a);

define interval(a, b)
{
	local i, j, s;
	static tail = "\0\1\3\7\17\37\77\177\377";

	if (!isint(a) || !isint(b))
		quit "Non-integer argument for interval";
	if (a > b)
		swap(a, b);
	if (b < 0 || a >= N)
		return empty();
	a = max(a, 0);
	b = min(b, N-1);
	i = quo(a, 8, 0);
	j = quo(b, 8, 0);
	s = M * char(0);
	if (i == j) {
		s[i] = tail[b + 1 - 8 * i] \ tail[a - 8 * i];
		return mkset(s);
	}
	s[i] = ~tail[a - 8 * i];
	while (++i < j)
		s[i] = -1;
	s[j] = tail[b + 1 - 8 * j];
	return mkset(s);
}

define isinterval(a)
{
	local i, max, s;

	if (!isset(a))
		quit "Non-set argument for isinterval";

	s = a.s;
	if (!s)
		return 0;
	for (i = lowbit(s) + 1, max = highbit(s); i < max; i++)
		if (!bit(s, i))
			return 0;
	return 1;
}

define set_mod(a, b)
{
	local s, m, i, j;

	if (isset(a) && isint(b)) {
		s = M * char(0);
		m = highbit(a.s);
		for (i = 0; i <= m; i++)
			if (bit(a.s, i))
				for (j = 0; j < N; j++)
					if (meq(i, j, b))
						setbit(s, j);
		return mkset(s);
	}
	return newerror("Bad argument for set_mod");
}

define randset(n, a, b)
{
	local m, s, i;

	if (isnull(a))
		a = 0;
	if (isnull(b))
		b = N - 1;
	if (!isint(n) || !isint(a) || !isint(b) || n < 0 || a < 0 || b < 0)
		quit "Bad argument for randset";
	if (a > b)
		swap(a, b);
	m = b - a + 1;
	if (n > m)
		return newerror("Too many numbers specified for randset");
	if (2 * n > m)
		return interval(a,b) \ randset(m - n, a, b);
	++b;
	s = M * char(0);
	while (n-- > 0) {
		do
			i = rand(a, b);
		while
			(bit(s, i));
		setbit(s, i);
	}
	return mkset(s);
}

define polyvals(L, A)
{
	local s, m, v, i;

	if (!islist(L))
		quit "Non-list first argument for polyvals";
	if (!isset(A))
		quit "Non-set second argument for polyvals";
	m = highbit(A.s);
	s = M * char(0);
	for (i = 0; i <= m; i++)
		if (bit(A.s, i)) {
			v = poly(L,i);
			if (v >> 0 && v < N)
				setbit(s, v);
		}
	return mkset(s);
}

define polyvals2(L, A, B)
{
	local s1, s2, s, m, n, i, j, v;

	s1 = A.s;
	s2 = B.s;
	m = highbit(s1);
	n = highbit(s2);
	s = M * char(0);
	for (i = 0; i <= m; i++)
		if (bit(s1, i))
			for (j = 0; j <= n; j++)
				if (bit(s2, j)) {
					v = poly(L, i, j);
					if (v >= 0 && v < N)
						setbit(s, v);
				}
	return mkset(s);
}

define set_print(a)
{
	local i, s, m;

	s = a.s;
	i = lowbit(s);
	print "set(":;
	if (i >= 0) {
		print i:;
		m = highbit(s);
		while (++i <= m)
			if (bit(s, i))
				print ",":i:;
	}
	print ")",;
}

local N, M;	/* End scope of static variables N, M */