/usr/share/calc/natnumset.cal is in apcalc-common 2.12.5.0-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 | /*
* natnumset - functions for sets of natural numbers not exceeding a fixed bound
*
* Copyright (C) 1999 Ernest Bowen
*
* Calc is open software; you can redistribute it and/or modify it under
* the terms of the version 2.1 of the GNU Lesser General Public License
* as published by the Free Software Foundation.
*
* Calc is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
* Public License for more details.
*
* A copy of version 2.1 of the GNU Lesser General Public License is
* distributed with calc under the filename COPYING-LGPL. You should have
* received a copy with calc; if not, write to Free Software Foundation, Inc.
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* @(#) $Revision: 30.1 $
* @(#) $Id: natnumset.cal,v 30.1 2007/03/16 11:09:54 chongo Exp $
* @(#) $Source: /usr/local/src/bin/calc/cal/RCS/natnumset.cal,v $
*
* Under source code control: 1997/09/07 23:53:51
* File existed as early as: 1997
*
* Share and enjoy! :-) http://www.isthe.com/chongo/tech/comp/calc/
*/
/*
* Functions for sets of natural numbers not exceeding a fixed bound B.
*
* The default value for B is 100; B may be assigned another
* value n by setbound(n); with no argument, setbound() returns the current
* upper bound.
*
* A set S is stored as an object with one element with one component S.s;
* This component is a string of just sufficient size to include m bits,
* where m is the maximum integer in S.
*
* With zero or more integer arguments, set(a, b, ...) returns the set
* whose elements are those of a, b, ... in [0, B]. Note that arguments
* < 0 or > B are ignored.
*
* In an assignment of a set-valued lvalue to an lvalue, as in
*
* A = set(1,2,3);
* B = A;
*
* the sets share the same data string, so a change to either has the effect
* of changing both. A set equal to A but with a different string can be
* created by
*
* B = A | set()
*
* The functions empty() and full() return the empty set and the set of all
* integers in [0,B] respectively.
*
* isset(A) returns 1 or 0 according as A is or is not a set
*
* test(A) returns 0 or 1 according as A is or is not the empty set
*
* isin(A, n) for set A and integer n returns 1 if n is in A, 0 if
* 0 <= n <= B and n is not in A, the null value if n < 0 or n > B.
*
* addmember(A, n) adds n as a member of A, provided n is in [0, B];
* this is also achieved by A |= n.
*
* rmmember(A, n) removes n from A if it is a member; this is also achieved
* by A \= n.
*
* The following unary and binary operations are defined for sets A, B.
* For binary operations with one argument a set and the other an
* integer n, the integer taken to represent set(n).
*
* A | B = union of A and B, integers in at least one of A and B
* A & B = intersection of A and B, integers in both A and B
* A ~ B = symmetric difference (boolean sum) of A and Bi, integers
* in exactly one of A and B
* A \ B = set difference, integers in A but not in B
*
* ~A = complement of A, integers not in A
* #A = number ofintegers in A
* !A = 1 or 0 according as A is empty or not empty
* +A = sum of the members of A
*
* min(A) = least member of A, -1 for empty set
* max(A) = greatest member of A, -1 for empty set
* sum(A) = sum of the members of A
*
* In the following a and b denote arbitrary members of A and B:
*
* A + B = set of sums a + b
* A - B = set of differences a - b
* A * B = set of products a * b
* A ^ n = set of powers a ^ n
* A % m = set of integers congruent to a mod m
*
* A == B returns 1 or not according as A and B are equal or not
* A != B = !(A == B)
* A <= B returns 1 if A is a subset of B, i.e. every member of A is
* a member of B
* A < B = ((A <= B) && (A != B))
* A >= B = (B <= A)
* A > B = (B < A)
*
* Expresssions may be formed from the above "arithmetic" operations in
* the usual way, with parentheses for variations from the usual precedence
* rules. For example
*
* A + 3 * A ^ 2 + (A - B) ^ 3
*
* returns the set of integers expressible as
*
* a_1 + 3 * a_2 ^ 2 + (a_3 - b) ^3
*
* where a_1, a_2, a_3 are in A, and b is in B.
*
* primes(a, b) returns the set of primes between a and b inclusive.
*
* interval(a, b) returns the integers between a and b inclusive
*
* isinterval(A) returns 1 if A is a non-empty interval, 0 otherwise.
*
* randset(n, a, b) returns a random set of n integers between a and b
* inclusive; a defaults to 0, b to N-1. An error occurs if
* n is too large.
*
* polyvals(L, A) for L = list(c_0, c_1, c_2, ...) returns the set of
* values of
*
* c_0 + c_1 * a + c_2 * a^2 + ...
*
* for a in the set A.
*
* polyvals2(L, A, B) returns the set of values of poly(L, i, j) for i in
* A and j in B. Here L is a list whose members are integers or
* lists of integers, the latter representing polynomials in the
* second variable. For example, with L = list(0, list(0, 1), 1),
* polyvals2(L, A, B) will return the values of i^2 + i * j for
* i in A, j in B.
*
*/
static N; /* Number of integers in [0,B], = B + 1 */
static M; /* Maximum string size required, = N // 8 */
obj set {s};
define isset(a) = istype(a, obj set);
define setbound(n)
{
local v;
v = N - 1;
if (isnull(n))
return v;
if (!isint(n) || n < 0)
quit "Bad argument for setbound";
N = n + 1;
M = quo(N, 8, 1); /* M // 8 rounded up */
if (v >= 0)
return v;
}
setbound(100);
define empty() = obj set = {""};
define full()
{
local v;
obj set v;
v.s = M * char(-1);
if (!ismult(N, 8)) v.s[M-1] = 255 >> (8 - N & 7);
return v;
}
define isin(a, b)
{
if (!isset(a) || !isint(b))
quit "Bad argument for isin";
return bit(a.s, b);
}
define addmember(a, n)
{
if (!isset(a) || !isint(n))
quit "Bad argument for addmember";
if (n < N && n >= 0)
setbit(a.s, n);
}
define rmmember(a, n)
{
if (n < N && n >= 0)
setbit(a.s, n, 0);
}
define set()
{
local i, v, s;
s = M * char(0);
for (i = 1; i <= param(0); i++) {
v = param(i);
if (!isint(v))
quit "Non-integral argument for set";
if (v >= 0 && v < N)
setbit(s, v);
}
return mkset(s);
}
define mkset(s)
{
local h, m;
if (!isstr(s))
quit "Non-string argument for mkset";
h = highbit(s);
if (h >= N)
quit "Too-long string for mkset";
m = quo(h + 1, 8, 1);
return obj set = {head(s, m)};
}
define primes(a,b)
{
local i, s, m;
if (isnull(b)) {
if (isnull(a)) {
a = 0;
b = N - 1;
}
else b = 0;
}
if (!isint(a) || !isint(b))
quit "Non-integer argument for primes";
if (a > b)
swap(a,b);
if (b < 0 || a >= N)
return empty();
a = max(a, 0);
b = min(b, N-1);
s = M * char(0);
for (i = a; i <= b; i++)
if (isprime(i))
setbit(s, i);
return mkset(s);
}
define set_max(a) = highbit(a.s);
define set_min(a) = lowbit(a.s);
define set_not(a) = !a.s;
define set_cmp(a,b)
{
if (isset(a) && isset(b))
return a.s != b.s;
return 1;
}
define set_rel(a,b)
{
local c;
if (a == b)
return 0;
if (isset(a)) {
if (isset(b)) {
c = a & b;
if (c == a)
return -1;
if (c == b)
return 1;
return;
}
if (!isint(b))
return set_rel(a, set(b));
}
if (isint(a))
return set_rel(set(a), b);
}
define set_or(a, b)
{
if (isset(a)) {
if (isset(b))
return obj set = {a.s | b.s};
if (isint(b))
return a | set(b);
}
if (isint(a))
return set(a) | b;
return newerror("Bad argument for set_or");
}
define set_and(a, b)
{
if (isint(a))
return set(a) & b;
if (isint(b))
return a & set(b);
if (!isset(a) || !isset(b))
return newerror("Bad argument for set_and");
return mkset(a.s & b.s);
}
define set_comp(a) = full() \ a;
define set_setminus(a,b)
{
if (isint(a))
return set(a) \ b;
if (isint(b))
return a \ set(b);
if (!isset(a) || !isset(b))
return newerror("Bad argument for set_setminus");
return mkset(a.s \ b.s);
}
define set_xor(a,b)
{
if (isint(a))
return set(a) ~ b;
if (isint(b))
return a ~ set(b);
if (!isset(a) || !isset(b))
return newerror("Bad argument for set_xor");
return mkset(a.s ~ b.s);
}
define set_content(a) = #a.s;
define set_add(a, b)
{
local s, i, j, m, n;
if (isint(a))
return set(a) + b;
if (isint(b))
return a + set(b);
if (!isset(a) || !isset(b))
return newerror("Bad argument for set_add");
if (!a || !b)
return empty();
m = highbit(a.s);
n = highbit(b.s);
s = M * char(0);
for (i = 0; i <= m; i++)
if (isin(a, i))
for (j = 0; j <= n && i + j < N; j++)
if (isin(b, j))
setbit(s, i + j);
return mkset(s);
}
define set_sub(a,b)
{
local s, i, j, m, n;
if (isint(b))
return a - set(b);
if (isint(a))
return set(a) - b;
if (isset(a) && isset(b)) {
if (!a || !b)
return empty();
m = highbit(a.s);
n = highbit(b.s);
s = M * char(0);
for (i = 0; i <= m; i++)
if (isin(a, i))
for (j = 0; j <= n && j <= i; j++)
if (isin(b, j))
setbit(s, i - j);
return mkset(s);
}
return newerror("Bad argument for set_sub");
}
define set_mul(a, b)
{
local s, i, j, m, n;
if (isset(a)) {
s = M * char(0);
m = highbit(a.s);
if (isset(b)) {
if (!a || !b)
return empty();
n = highbit(b.s);
for (i = 0; i <= m; ++i)
if (isin(a, i))
for (j = 1; j <= n && i * j < N; ++j)
if (isin(b, j))
setbit(s, i * j);
return mkset(s);
}
if (isint(b)) {
if (b == 0) {
if (a)
return set(0);
return empty();
}
s = M * char(0);
for (i = 0; i <= m && b * i < N; ++i)
if (isin(a, i))
setbit(s, b * i);
return mkset(s);
}
}
if (isint(a))
return b * a;
return newerror("Bad argument for set_mul");
}
define set_square(a)
{
local s, i, m;
s = M * char(0);
m = highbit(a.s);
for (i = 0; i <= m && i^2 < N; ++i)
if (bit(a.s, i))
setbit(s, i^2);
return mkset(s);
}
define set_pow(a, n)
{
local s, i, m;
if (!isint(n) || n < 0)
quit "Bad exponent for set_power";
s = M * char(0);
m = highbit(a.s);
for (i = 0; i <= m && i^n < N; ++i)
if (bit(a.s, i))
setbit(s, i^n);
return mkset(s);
}
define set_sum(a)
{
local v, m, i;
v = 0;
m = highbit(a.s);
for (i = 0; i <= m; ++i)
if (bit(a.s, i))
v += i;
return v;
}
define set_plus(a) = set_sum(a);
define interval(a, b)
{
local i, j, s;
static tail = "\0\1\3\7\17\37\77\177\377";
if (!isint(a) || !isint(b))
quit "Non-integer argument for interval";
if (a > b)
swap(a, b);
if (b < 0 || a >= N)
return empty();
a = max(a, 0);
b = min(b, N-1);
i = quo(a, 8, 0);
j = quo(b, 8, 0);
s = M * char(0);
if (i == j) {
s[i] = tail[b + 1 - 8 * i] \ tail[a - 8 * i];
return mkset(s);
}
s[i] = ~tail[a - 8 * i];
while (++i < j)
s[i] = -1;
s[j] = tail[b + 1 - 8 * j];
return mkset(s);
}
define isinterval(a)
{
local i, max, s;
if (!isset(a))
quit "Non-set argument for isinterval";
s = a.s;
if (!s)
return 0;
for (i = lowbit(s) + 1, max = highbit(s); i < max; i++)
if (!bit(s, i))
return 0;
return 1;
}
define set_mod(a, b)
{
local s, m, i, j;
if (isset(a) && isint(b)) {
s = M * char(0);
m = highbit(a.s);
for (i = 0; i <= m; i++)
if (bit(a.s, i))
for (j = 0; j < N; j++)
if (meq(i, j, b))
setbit(s, j);
return mkset(s);
}
return newerror("Bad argument for set_mod");
}
define randset(n, a, b)
{
local m, s, i;
if (isnull(a))
a = 0;
if (isnull(b))
b = N - 1;
if (!isint(n) || !isint(a) || !isint(b) || n < 0 || a < 0 || b < 0)
quit "Bad argument for randset";
if (a > b)
swap(a, b);
m = b - a + 1;
if (n > m)
return newerror("Too many numbers specified for randset");
if (2 * n > m)
return interval(a,b) \ randset(m - n, a, b);
++b;
s = M * char(0);
while (n-- > 0) {
do
i = rand(a, b);
while
(bit(s, i));
setbit(s, i);
}
return mkset(s);
}
define polyvals(L, A)
{
local s, m, v, i;
if (!islist(L))
quit "Non-list first argument for polyvals";
if (!isset(A))
quit "Non-set second argument for polyvals";
m = highbit(A.s);
s = M * char(0);
for (i = 0; i <= m; i++)
if (bit(A.s, i)) {
v = poly(L,i);
if (v >> 0 && v < N)
setbit(s, v);
}
return mkset(s);
}
define polyvals2(L, A, B)
{
local s1, s2, s, m, n, i, j, v;
s1 = A.s;
s2 = B.s;
m = highbit(s1);
n = highbit(s2);
s = M * char(0);
for (i = 0; i <= m; i++)
if (bit(s1, i))
for (j = 0; j <= n; j++)
if (bit(s2, j)) {
v = poly(L, i, j);
if (v >= 0 && v < N)
setbit(s, v);
}
return mkset(s);
}
define set_print(a)
{
local i, s, m;
s = a.s;
i = lowbit(s);
print "set(":;
if (i >= 0) {
print i:;
m = highbit(s);
while (++i <= m)
if (bit(s, i))
print ",":i:;
}
print ")",;
}
local N, M; /* End scope of static variables N, M */
|