/usr/share/doc/argyll-doc/printcal.html is in argyll-doc 2.0.0+repack-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 | <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>printcal</title>
<meta http-equiv="content-type" content="text/html;
charset=ISO-8859-1">
<meta name="author" content="Graeme W. Gill">
</head>
<body>
<h2> profile/printcal</h2>
<h3>Summary</h3>
Create a printer linearization calibration file from <a
href="File_Formats.html#.ti3">.ti3</a> test chart patch values.<br>
<h3>Usage Summary</h3>
<span style="font-family: monospace;">printcal</span><small
style="font-family: monospace;"> [-<i>options</i>] [prevcal]
inoutfile<br>
<a href="#v">-v verbosity</a>
Set verbosity level<br>
</small><small style="font-family: monospace;"> <a href="#p">-p</a>
Plot graphs.<br>
<a href="#i">-i</a>
Initial calibration, set targets,
create .cal<br>
</small><small style="font-family: monospace;"> <a href="#r">-r</a>
Re-calibrate against previous .cal and create new
.cal</small><br style="font-family: monospace;">
<span style="font-family: monospace;"></span><small
style="font-family: monospace;"> <a href="#e">-e</a>
Verify against previous .cal<br>
</small><small style="font-family: monospace;"> <a href="#I">-I</a>
Create imitation target from .ti3 and null
calibration</small><br>
<small style="font-family: monospace;"> <a href="#d">-d</a>
Go through the motions but don't write any files</small><br
style="font-family: monospace;">
<small><span style="font-family: monospace;"> </span><a
style="font-family: monospace;" href="#A">-A "manufacturer"</a><span
style="font-family: monospace;"> Set the manufacturer
description string</span><br style="font-family: monospace;">
<span style="font-family: monospace;"> </span><a
style="font-family: monospace;" href="#M">-M "model"</a><span
style="font-family: monospace;">
Set the model
description string</span><br style="font-family: monospace;">
<span style="font-family: monospace;"> </span><a
style="font-family: monospace;" href="#D">-D "description"</a><span
style="font-family: monospace;"> Set the profile
Description string </span><br style="font-family: monospace;">
<tt> </tt><tt><a href="#C">-C "copyright"</a></tt><tt>
Set the copyright string</tt><tt><br>
</tt><tt> </tt><tt> </tt><tt><a href="#x">-x# percent</a></tt><tt>
Set
initial
maximum device % target (override auto)</tt><tt><br>
</tt></small><small><span style="font-family: monospace;"><small> <a
href="#m">-m# percent</a>
Set initial dev target to % of auto maximum<br>
</small> <a href="#n">-n# deltaE</a>
Set initial white
minimum deltaE target<br>
<a href="#t">-t# percent</a>
Set
initial
50% transfer curve percentage target<br style="font-family:
monospace;">
<span style="font-family: monospace;"> # = c, r,
0 First channel</span><br
style="font-family: monospace;">
<span style="font-family: monospace;">
m,
g,
1
Second channel</span><br style="font-family: monospace;">
<span style="font-family: monospace;">
y,
b,
2
Third channel</span><br style="font-family: monospace;">
<span style="font-family: monospace;">
k,
3
Fourth
channel, etc.<br>
<a href="#a">-a</a>
Create
an
Adobe Photoshop .AMP file as well as a .cal<br
style="font-family: monospace;">
</span><span style="font-family: monospace;"> </span><a
style="font-family: monospace;" href="#p1">prevcal</a><span
style="font-family: monospace;">
Base
name
of previous .cal file for recal or verify.</span><br
style="font-family: monospace;">
<span style="font-family: monospace;"> </span><a
style="font-family: monospace;" href="#p2">inoutname</a><span
style="font-family: monospace;">
Base
name
of input .ti3 file, output .cal file</span><br>
</span><span style="font-family: monospace;"></span></small><small><span
style="font-family: monospace;"></span><span style="font-family:
monospace;"></span><span style="font-family: monospace;"></span></small><br>
<h3>Options<br>
</h3>
<b><a name="v"></a>-v</b> Turn on verbose mode. Gives progress
information as the calibration is created. An argument greater than
1 increases the verbosity. Will also report the ideal power value to
apply to the test chart in targen.<br>
<br>
<a name="p"></a><span style="font-weight: bold;">-p</span> Turns on
plot mode. This causes various graphs to be plotted as the
calibration is created. The channels will be plotted in the graph
colors: Blue, Red, Yellow, Black, Green, Purple, Brown, Orange,
Grey, White.<br>
<br>
<a name="i"></a><span style="font-weight: bold;">-i</span> Select
initial calibration mode. Initial calibration mode allows setting
the targets for the calibration, such as maximum device percentage,
minimum white level, and the transfer curve shape. The second last
parameter <span style="font-weight: bold;"><span
style="font-weight: bold;"></span>prevcal</span> is not used in
this mode.<br>
<br>
<a name="r"></a><span style="font-weight: bold;">-r</span> Turns on
re-calibration mode. This is used for calibrations after the initial
one, where the aim is to return the devices response to the same
state as it was after the initial caibration. Parameters that affect
the calibration targets are ignored. The second last parameter <span
style="font-weight: bold;"><span style="font-weight: bold;"></span>prevcal</span>
is used to establish what the targets for the calibration are.<br>
<br>
<a name="e"></a><span style="font-weight: bold;">-e</span> Turns on
verify mode. In this mode the test chart input is verified agains
the expected response in the <span style="font-weight: bold;"><span
style="font-weight: bold;"></span>prevcal</span> file.<br>
<br>
<a name="I"></a><span style="font-weight: bold;">-I</span> Similar
to <span style="font-weight: bold;">-i</span>, except that rather
than creating a linear target curve and corresponding calibration,
it takes the given behaviour as an absolute target and create a
corresponding null set of calibration curves. This .cal can then be
used to recalibrate a similar device (or the same device at some
other time) to imitate the behaviour of the initial device. The
second last parameter <span style="font-weight: bold;"><span
style="font-weight: bold;"></span>prevcal</span> is not used in
this mode. Parameters that affect the calibration targets are
ignored.<br>
<br>
<a name="d"></a><span style="font-weight: bold;">-d</span> Disables
the writing of any files, causing printcal to go through the motions
without changing anything.<br>
<br>
<a name="A"></a>The <b>-A</b> parameter allows setting of the
device manufacturer description string in the calibration file. The
parameter should be a string that identifies the manufacturer of the
device being profiled. With most command line shells, it will be
necessary to enclose the parameter with double quotes, so that
spaces and other special characters are included in the parameter,
and not mistaken for the start of another flag or as a final command
line parameters. By default no device manufacturer description
string will be put in the calibration file.<br>
<br>
<a name="M"></a>The <b>-M</b> parameter allows setting of the
device mode description string in the calibration file. The
parameter should be a string that identifies the particular model of
device being profiled. With most command line shells, it will be
necessary to enclose the parameter with double quotes, so that
spaces and other special characters are included in the parameter,
and not mistaken for the start of another flag or as a final command
line parameters. By default no model description string will be put
in the calibration file.<br>
<br>
<a name="D"></a>The <b>-D</b> parameter allows setting of the
profile description string in the calibration file. The parameter
should be a string that describes the device and profile. On many
systems, it will be this string that will be used to identify the
profile from a list of possible profiles. With most command line
shells, it will be necessary to enclose the parameter with double
quotes, so that spaces and other special characters are included in
the parameter, and not mistaken for the start of another flag or as
a final command line parameter. By default no profile description
string will be put in the calibration file.<br>
<br>
<a name="C"></a>The <b>-C</b> parameter allows setting of the
profile copyright string in the calibration file. The parameter
should be a string that describes the copyright (if any) claimed on
the profile being generated. With most command line shells, it will
be necessary to enclose the parameter with double quotes, so that
spaces and other special characters are included in the parameter,
and not mistaken for the start of another flag or as a final command
line parameters. By default no copyright string will be put in the
calibration file.<br>
<br>
<a name="x"></a> The <b>-x</b> parameter allows overriding the
default auto maximum device target value computed from the raw
device response for the initial calibration. The default uses a
heuristic to decide when the response of the device to each channels
colorant value reaches the point of diminishing returns, while the <span
style="font-weight: bold;">-x</span> parameter allows this default
to be overridden. The <span style="font-weight: bold;">-x</span>
paramater can be used multiple times, once for each channel that is
being set. The <span style="font-weight: bold;">-x</span> should be
followed by the channel number between 0 and 15, or the aliases <span
style="font-weight: bold;">r</span>, <span style="font-weight:
bold;">g</span> or <span style="font-weight: bold;">g</span>, or
<span style="font-weight: bold;">c</span>, <span
style="font-weight: bold;">m</span>, <span style="font-weight:
bold;">y</span> or <span style="font-weight: bold;">k,</span> and
the channel number should then be followed by the device value as a
percentage. <span style="font-weight: bold;">NOTE</span> that you
will probably get sub-optimal results if you force a device maximum
that is beyond the point of maximum response of a device channel,
since this will have the effect of <span style="text-decoration:
underline;">reducing</span> the device response. If you want to
set a conservative target to allow for recalibration later, see the
<b>-m</b> flag below.<br>
<br>
<a name="m"></a> The <b>-m</b> parameter allows modifying the
default auto maximum device target value for the initial
calibration. The auto maximum is computed as described above, and is
then scaled by the <b>-m</b> parameter value. Typically this will
be a scale down (ie. <b>90%</b>) to allow some margin to increase
the channel value if the channel density drops in a future
recalibration. Scaling the maximum down will reduce gamut, but
allows scope for stable behaviour using calibration. The <span
style="font-weight: bold;">-m</span> paramater can be used
multiple times, once for each channel that is being set. The <span
style="font-weight: bold;">-m</span> should be followed by the
channel number between 0 and 15, or the aliases <span
style="font-weight: bold;">r</span>, <span style="font-weight:
bold;">g</span> or <span style="font-weight: bold;">g</span>, or
<span style="font-weight: bold;">c</span>, <span
style="font-weight: bold;">m</span>, <span style="font-weight:
bold;">y</span> or <span style="font-weight: bold;">k,</span> and
the channel number should then be followed by the deltaE value.<span
style="font-family: monospace;"></span><br>
<br>
<a name="n"></a> The <b>-n</b> parameter allows overriding the
default minimum deltaE of a colorant to white of 0. This can be used
to set a minimum colorant level in order to emulate media darker or
of a different tint. The <span style="font-weight: bold;">-n</span>
paramater can be used multiple times, once for each channel that is
being set. The <span style="font-weight: bold;">-n</span> should be
followed by the channel number between 0 and 15, or the aliases <span
style="font-weight: bold;">r</span>, <span style="font-weight:
bold;">g</span> or <span style="font-weight: bold;">g</span>, or
<span style="font-weight: bold;">c</span>, <span
style="font-weight: bold;">m</span>, <span style="font-weight:
bold;">y</span> or <span style="font-weight: bold;">k,</span> and
the channel number should then be followed by the deltaE value.<span
style="font-family: monospace;"></span><br>
<br>
<a name="t"></a> The <b>-t</b> parameter allows setting a target
linearization curve that is other than purely visual linear. The
default is to create a calibration curve that results in a perfectly
even change in output for each change in the calibrated device
value, as measured by steps in delta E94. The <span
style="font-weight: bold;">-x</span> parameter allows setting a
target curve above or below the perfectly visual linear, by setting
the aim value at 50% input. An aim higher than 50% will cause that
channel to become more intense by the 50% mark, while a value lower
than 50% will cause the channel to become less intense by the 50%
mark than perfectly linear.The <span style="font-weight: bold;">-x</span>
should be followed by the channel number between 0 and 15, or the
aliases <span style="font-weight: bold;">r</span>, <span
style="font-weight: bold;">g</span> or <span style="font-weight:
bold;">g</span>, or <span style="font-weight: bold;">c</span>, <span
style="font-weight: bold;">m</span>, <span style="font-weight:
bold;">y</span> or <span style="font-weight: bold;">k,</span> and
the channel number should then be followed by the device value as a
percentage.<br>
<br>
<a name="a"></a><span style="font-weight: bold;">-a</span> Creates
an Adobe Photoshop <span style="font-weight: bold;">.AMP</span>
format curves file as well as a .cal.<br>
<span style="font-weight: bold;"></span><br>
<a name="p1"></a> The optional second last parameter is the file
base name for a previous <a href="File_Formats.html#CAL">.cal</a>
calibration file, used as the target reference for recalibrate and
verify modes. <br>
<br>
<a name="p2"></a> The final parameter is the file base name for the
<a href="File_Formats.html#.ti3">.ti3</a> input test point data, and
the resulting <a href="File_Formats.html#CAL">.cal</a> calibration
file output. <br>
<h3><a name="DISCUSSION"></a>Discussion</h3>
<span style="font-weight: bold;">Printcal</span> is a tool for
creating per device channel linearization curves for printing
devices.<br>
<br>
As input it takes a .ti3 file containing the results of printing a
test chart on the <span style="text-decoration: underline;">non-color
managed</span>, <span style="text-decoration: underline;">non-calibrated</span>
device, and measuring it. The test chart consists of step wedges for
each of the device primary colors, from the media white to full
individual colorant intensity.<br>
<br>
For the initial calibration (<span style="font-weight: bold;">-i</span>),
the
range
of device values to be used and the shape of the target
linearization curve are established, as well as creating the first
set of calibration curves. For subsequent re-calibrations (<span
style="font-weight: bold;">-r</span>), the calibration curves aim
to reproduce the same response as the original calibration. If a
test chart is printed with calibration enabled and then is measured,
it can be used to verify the calibration against the expected
response (<span style="font-weight: bold;">-e</span>).<br>
<br>
As each colorant steps through the test wedge patches from media
white, they trace out a measured locus in CIE L*a*b* colorspace.
Each channel response is evaluated by computing the CIE DeltaE to
media white of the response to a change in each individual channel
of each locus. This measure is used to determine when the devices
response to a colorant level is reaching diminishing returns,
setting a maximum colorant value. This measure can also be used to
set a minimum colorant value for the purposes of emulating a
different media color. The default maximum and minimum values for
each colorant can be overridden using the <span style="font-weight:
bold;">-x</span> and <span style="font-weight: bold;">-n</span>
parameters. The automatically determined maximum may be modified
(scaled) using the <b>-m</b> parameter, which can be useful in
allowing some margin for future calibrations to compensate for a
drop in density.<br>
<br>
The actual linearization uses a subtly different measure, which is
the CIE DelataE 94 along each colorant response locus, ensuring that
after linearization each step in colorant value is subjectively
even. The linearization aim can be altered from a purely linear
curve by using the <span style="font-weight: bold;"><span
style="font-weight: bold;">-t</span></span> parameters.<br>
<br>
After the initial calibration, the device can be re-calibrated (<span
style="font-weight: bold;">-r</span>) by printing a calibration
test chart under the same conditions as the initial one, but with
the calibration aimed at reproducing the same response as the
initial calibration, rather that setting new targets.<br>
<br>
The calibration can be verified (<span style="font-weight: bold;">-e</span>)
by printing a calibration test chart on <span
style="text-decoration: underline;">non-color managed</span>, <span
style="text-decoration: underline;"></span>but calibrated device,
the verification evaluating any discrepancy between the device
response achieved, and the device response expected. For a numerical
evaluation the verbose flag (<span style="font-weight: bold;">-v</span>)
should be used, and for a visual evaluation the plot flag (<span
style="font-weight: bold;">-p</span>) should be used.<br>
<br>
If there are several devices of the same or similar model, then one
device can be used to set the initial calibration target, and then
the other devices can be re-calibrated against the same .cal file,
to create matching responses. An alternative to creating an initial
linear target for calibration, is to use the <span
style="font-weight: bold;">-I</span> option with an initial
device, which sets the initial target to be that devices absolute
response. Naturally the corresponding calibration will be linear
(null). The calibration target can then be used to later return that
device to its initial response, or to make another similar device
have the same response. Note though, that bad things will happen if
the imitated devices response is non-monotonic, or if on
re-calibration the device is unable to reach the same density
levels.<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
</body>
</html>
|