/usr/share/audacity/nyquist/nyquist.lsp is in audacity-data 2.2.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 | ;;;
;;; ###########################################################
;;; ### NYQUIST-- A Language for Composition and Synthesis. ###
;;; ### ###
;;; ### Copyright (c) 1994-2006 by Roger B. Dannenberg ###
;;; ###########################################################
;;;
(load "fileio.lsp" :verbose NIL)
(prog ()
(setq lppp -12.0) (setq lpp -9.0) (setq lp -6.0) (setq lmp -3.0)
(setq lfff 12.0) (setq lff 9.0) (setq lf 6.0) (setq lmf 3.0)
(setq dB0 1.00) (setq dB1 1.122) (setq dB10 3.1623)
(setq s 0.25) (setq sd 0.375) (setq st (/ 0.5 3.0))
(setq i 0.5) (setq id 0.75) (setq it (* st 2.0))
(setq q 1.0) (setq qd 1.5) (setq qt (* st 4.0))
(setq h 2.0) (setq hd 3.0) (setq ht (* st 8.0))
(setq w 4.0) (setq wd 6.0) (setq wt (* st 16.0))
)
(init-global *A4-Hertz* 440.0)
; next pitch, for initializations below
;
(defun np () (incf nyq:next-pitch))
(defun set-pitch-names ()
(setq no-pitch 116.0)
; note: 58.0 is A4 - (C0 - 1) = 69 - (12 - 1)
(setf nyq:next-pitch (- (hz-to-step *A4-Hertz*) 58.0))
(setf nyq:pitch-names
'(c0 (cs0 df0) d0 (ds0 ef0) e0 f0 (fs0 gf0) g0 (gs0 af0) a0
(as0 bf0) b0
c1 (cs1 df1) d1 (ds1 ef1) e1 f1 (fs1 gf1) g1 (gs1 af1) a1
(as1 bf1) b1
c2 (cs2 df2) d2 (ds2 ef2) e2 f2 (fs2 gf2) g2 (gs2 af2) a2
(as2 bf2) b2
c3 (cs3 df3) d3 (ds3 ef3) e3 f3 (fs3 gf3) g3 (gs3 af3) a3
(as3 bf3) b3
c4 (cs4 df4) d4 (ds4 ef4) e4 f4 (fs4 gf4) g4 (gs4 af4) a4
(as4 bf4) b4
c5 (cs5 df5) d5 (ds5 ef5) e5 f5 (fs5 gf5) g5 (gs5 af5) a5
(as5 bf5) b5
c6 (cs6 df6) d6 (ds6 ef6) e6 f6 (fs6 gf6) g6 (gs6 af6) a6
(as6 bf6) b6
c7 (cs7 df7) d7 (ds7 ef7) e7 f7 (fs7 gf7) g7 (gs7 af7) a7
(as7 bf7) b7))
(dolist (p nyq:pitch-names)
(cond ((atom p) (set p (np)))
(t (let ((pitch (np)))
(dolist (s p) (set s pitch)))))))
(set-pitch-names)
(init-global *default-sound-srate* 44100.0)
(init-global *default-control-srate* 2205.0)
(setf *environment-variables*
'(*WARP* *SUSTAIN* *START* *LOUD* *TRANSPOSE*
*STOP* *CONTROL-SRATE* *SOUND-SRATE*))
(setfn environment-time car)
(setfn environment-stretch cadr)
; ENVIRONMENT-MAP - map virtual time using an environment
;
;(defun environment-map (env tim)
; (+ (environment-time env)
; (* (environment-stretch env) tim)))
(defun nyq:the-environment () (mapcar 'eval *environment-variables*))
;; GLOBAL ENVIRONMENT VARIABLES and their startup values:
(defun nyq:environment-init ()
(setq *WARP* '(0.0 1.0 nil))
(setq *LOUD* 0.0) ; now in dB
(setq *TRANSPOSE* 0.0)
(setq *SUSTAIN* 1.0)
(setq *START* MIN-START-TIME)
(setq *STOP* MAX-STOP-TIME)
(setq *CONTROL-SRATE* *DEFAULT-CONTROL-SRATE*)
(setq *SOUND-SRATE* *DEFAULT-SOUND-SRATE*)
t) ; return nothing in particular
(nyq:environment-init)
(defun get-duration (dur)
(let ((duration
(- (local-to-global (* (get-sustain) dur))
(setf *rslt* (local-to-global 0)))))
(cond ((minusp duration)
(error
"duration is less than zero: perhaps a warp or stretch
is ill-formed. Nyquist cannot continue because synthesis
functions assume durations are always positive.")))
duration))
(defun get-loud ()
(cond ((numberp *loud*) *loud*)
((soundp *loud*)
(sref *loud* 0))
(t
(error (format t "*LOUD* should be a number or sound: ~A" *LOUD*)))))
(defun get-sustain ()
(cond ((numberp *SUSTAIN*) *SUSTAIN*)
((soundp *SUSTAIN*)
;(display "get-sustain: lookup " (local-to-global 0) 0))
(sref *SUSTAIN* 0))
(t
(error (format t "*SUSTAIN* should be a number or sound: ~A" *SUSTAIN*)))))
(defun get-tempo ()
(slope (snd-inverse (get-warp) (local-to-global 0)
*control-srate*)))
(defun get-transpose ()
(cond ((numberp *TRANSPOSE*) *TRANSPOSE*)
((soundp *TRANSPOSE*)
; (display "get-transpose: lookup " 0)
; (format t "samples: ~A~%" (snd-samples *TRANSPOSE* 100))
(sref *TRANSPOSE* 0))
(t
(error (format t "*TRANSPOSE* should be a number or sound: ~A" *TRANSPOSE*)))))
(defun get-warp ()
(let ((f (warp-function *WARP*)))
(cond ((null f) (error "Null warp function"))
(t
(shift-time (scale-srate f (/ (warp-stretch *WARP*)))
(- (warp-time *WARP*)))))))
;;;;;;;;;;;;;;;;;;;;;;
;; OSCILATORS
;;;;;;;;;;;;;;;;;;;;;;
(defun build-harmonic (n table-size) (snd-sine 0 n table-size 1))
(setf *SINE-TABLE* (list (build-harmonic 1 2048)
(hz-to-step 1.0)
T))
(setf *TABLE* *SINE-TABLE*)
(defun calculate-hz (pitch what)
(let ((hz (step-to-hz (+ pitch (get-transpose))))
(octaves 0))
(cond ((> hz (/ *SOUND-SRATE* 2))
(format t "Warning: ~A frequency (~A hz) will alias at current sample rate (~A hz).\n"
what hz *SOUND-SRATE*)
(while (> hz *SOUND-SRATE*)
(setf octaves (1+ octaves)
hz (* hz 0.5)))
(cond ((> octaves 0)
(format t "Warning: ~A frequency reduced by ~A octaves to ~A hz (which will still alias).\n"
what octaves hz)))))
hz))
;; AMOSC
;;
(defun amosc (pitch modulation &optional (sound *table*) (phase 0.0))
(let ((modulation-srate (snd-srate modulation))
(hz (calculate-hz pitch "amosc")))
(scale-db (get-loud)
(snd-amosc
(car sound) ; samples for table
(cadr sound) ; step represented by table
*SOUND-SRATE* ; output sample rate
hz ; output hz
(local-to-global 0) ; starting time
modulation ; modulation
phase)))) ; phase
;; FMOSC
;;
;; modulation rate must be less than or equal to sound-srate, so
;; force resampling and issue a warning if necessary. snd-fmosc can
;; handle upsampling cases internally.
;;
(defun fmosc (pitch modulation &optional (sound *table*) (phase 0.0))
(let ((modulation-srate (snd-srate modulation))
(hz (calculate-hz pitch "fmosc")))
(scale-db (get-loud)
(snd-fmosc
(car sound) ; samples for table
(cadr sound) ; step represented by table
*SOUND-SRATE* ; output sample rate
hz ; output hz
(local-to-global 0) ; starting time
modulation ; modulation
phase)))) ; phase
;; FMFB
;;
;; this code is based on FMOSC above
;;
(defun fmfb (pitch index &optional dur)
(let ((hz (calculate-hz pitch "fmfb")))
(setf dur (get-duration dur))
(cond ((soundp index) (ny:fmfbv hz index))
(t
(scale-db (get-loud)
(snd-fmfb (local-to-global 0)
hz *SOUND-SRATE* index dur))))))
;; private variable index version of fmfb
(defun ny:fmfbv (hz index)
(let ((modulation-srate (snd-srate index)))
(cond ((< *SOUND-SRATE* modulation-srate)
(format t "Warning: down-sampling FM modulation in fmfb~%")
(setf index (snd-down *SOUND-SRATE* index))))
(scale-db (get-loud)
(snd-fmfbv (local-to-global 0) hz *SOUND-SRATE* index))))
;; BUZZ
;;
;; (ARGUMENTS ("long" "n") ("rate_type" "sr") ("double" "hz")
;; ("time_type" "t0") ("sound_type" "s_fm"))
;;
(defun buzz (n pitch modulation)
(let ((modulation-srate (snd-srate modulation))
(hz (calculate-hz pitch "buzz nominal")))
(cond ((< *SOUND-SRATE* modulation-srate)
(format t "Warning: down-sampling modulation in buzz~%")
(setf modulation (snd-down *SOUND-SRATE* modulation))))
(setf n (max n 1)) ; avoid divide by zero problem
(scale-db (get-loud)
(snd-buzz n ; number of harmonics
*SOUND-SRATE* ; output sample rate
hz ; output hz
(local-to-global 0) ; starting time
modulation)))) ; freq. modulation
;; (HZOSC hz [table [phase]])
;;
;; similar to FMOSC, but without "carrier" frequency parameter
;; also, hz may be a scalar or a sound
;;
(defun hzosc (hz &optional (sound *table*) (phase 0.0))
(let (hz-srate)
(cond ((numberp hz)
(osc (hz-to-step hz) 1.0 sound phase))
(t
(setf hz-srate (snd-srate hz))
(cond ((< *SOUND-SRATE* hz-srate)
(format t "Warning: down-sampling hz in hzosc~%")
(setf hz (snd-down *SOUND-SRATE* hz))))
(scale-db (get-loud)
(snd-fmosc (car sound) ; samples for table
(cadr sound) ; step repr. by table
*SOUND-SRATE* ; output sample rate
0.0 ; dummy carrier
(local-to-global 0) ; starting time
hz phase))))))
;; (SIOSC-BREAKPOINTS tab0 t1 tab1 ... tn tabn)
;; converts times to sample numbers
;; NOTE: time-warping the spectral envelope seems
;; like the wrong thing to do (wouldn't it be better
;; to warp the parameters that control the spectra,
;; or don't warp at all?). Nominally, a note should
;; have a "score" or local time duration equal to the
;; SUSTAIN environment variable. (When sustain is 1.0
;; and no time-warping is in effect, the duration is 1).
;; So, scale all times by
;; (local-to-global (get-sustain))
;; so that if the final time tn = 1.0, we get a nominal
;; length note.
(defun siosc-breakpoints (breakpoints)
(display "siosc-breakpoints" breakpoints)
(prog (sample-count result (last-count 0) time-factor)
(setf time-factor
(- (local-to-global (get-sustain))
(local-to-global 0.0)))
(setf time-factor (* time-factor *SOUND-SRATE*))
(cond ((and (listp breakpoints)
(cdr breakpoints)
(cddr breakpoints)))
(t (error "SIOSC table list must have at least 3 elements")))
loop
(cond ((and (listp breakpoints)
(soundp (car breakpoints)))
(push (car breakpoints) result)
(setf breakpoints (cdr breakpoints)))
(t
(error "SIOSC expecting SOUND in table list")))
(cond ((and breakpoints
(listp breakpoints)
(numberp (car breakpoints)))
(setf sample-count (truncate
(+ 0.5 (* time-factor (car breakpoints)))))
(cond ((< sample-count last-count)
(setf sample-count (1+ last-count))))
(push sample-count result)
(setf last-count sample-count)
(setf breakpoints (cdr breakpoints))
(cond (breakpoints
(go loop))))
(breakpoints
(error "SIOSC expecting number (time) in table list")))
(setf result (reverse result))
(display "siosc-breakpoints" result)
(return result)))
;; SIOSC -- spectral interpolation oscillator
;;
;; modulation rate must be less than or equal to sound-srate, so
;; force resampling and issue a warning if necessary. snd-fmosc can
;; handle upsampling cases internally.
;;
(defun siosc (pitch modulation breakpoints)
(let ((modulation-srate (snd-srate modulation))
(hz (calculate-hz pitch "siosc nominal")))
(cond ((< *SOUND-SRATE* modulation-srate)
(format t "Warning: down-sampling FM modulation in siosc~%")
(setf modulation (snd-down *SOUND-SRATE* modulation))))
(scale-db (get-loud)
(snd-siosc (siosc-breakpoints breakpoints) ; tables
*SOUND-SRATE* ; output sample rate
hz ; output hz
(local-to-global 0) ; starting time
modulation)))) ; modulation
;; LFO -- freq &optional duration sound phase)
;;
;; Default duration is 1.0 sec, default sound is *TABLE*,
;; default phase is 0.0.
;;
(defun lfo (freq &optional (duration 1.0)
(sound *SINE-TABLE*) (phase 0.0))
(let ((d (get-duration duration)))
(if (minusp d) (setf d 0))
(cond ((> freq (/ *CONTROL-SRATE* 2))
(format t "Warning: lfo frequency (~A hz) will alias at current control rate (~A hz).\n"
freq *CONTROL-SRATE*)))
(set-logical-stop
(snd-osc
(car sound) ; samples for table
(cadr sound) ; step represented by table
*CONTROL-SRATE* ; output sample rate
freq ; output hz
*rslt* ; starting time
d ; duration
phase) ; phase
duration)))
;; FMLFO -- like LFO but uses frequency modulation
;;
(defun fmlfo (freq &optional (sound *SINE-TABLE*) (phase 0.0))
(let ()
(cond ((numberp freq)
(lfo freq 1.0 sound phase))
((soundp freq)
(cond ((> (snd-srate freq) *CONTROL-SRATE*)
(setf freq (force-srate *CONTROL-SRATE* freq))))
(snd-fmosc (car sound) (cadr sound) *CONTROL-SRATE* 0.0
(local-to-global 0) freq phase))
(t
(error "frequency must be a number or sound")))))
;; OSC - table lookup oscillator
;;
(defun osc (pitch &optional (duration 1.0)
(sound *TABLE*) (phase 0.0))
(let ((d (get-duration duration))
(hz (calculate-hz pitch "osc")))
(set-logical-stop
(scale-db (get-loud)
(snd-osc
(car sound) ; samples for table
(cadr sound) ; step represented by table
*SOUND-SRATE* ; output sample rate
hz ; output hz
*rslt* ; starting time
d ; duration
phase)) ; phase
duration)))
;; PARTIAL -- sine osc with built-in envelope scaling
;;
(defun partial (steps env)
(let ((hz (calculate-hz steps "partial")))
(scale-db (get-loud)
(snd-partial *sound-srate* hz
(force-srate *sound-srate* env)))))
;; SAMPLER -- simple attack + sustain sampler
;;
(defun sampler (pitch modulation
&optional (sample *table*) (npoints 2))
(let ((samp (car sample))
(samp-pitch (cadr sample))
(samp-loop-start (caddr sample))
(hz (calculate-hz pitch "sampler nominal")))
; make a waveform table look like a sample with no attack:
(cond ((not (numberp samp-loop-start))
(setf samp-loop-start 0.0)))
(scale-db (get-loud)
(snd-sampler
samp ; samples for table
samp-pitch ; step represented by table
samp-loop-start ; time to start loop
*SOUND-SRATE* ; output sample rate
hz ; output hz
(local-to-global 0) ; starting time
modulation ; modulation
npoints)))) ; number of interpolation points
;; SINE -- simple sine oscillator
;;
(defun sine (steps &optional (duration 1.0))
(let ((hz (calculate-hz steps "sine"))
(d (get-duration duration)))
(set-logical-stop
(scale-db (get-loud)
(snd-sine *rslt* hz *sound-srate* d))
duration)))
;; PLUCK
;;
;; (ARGUMENTS ("double" "sr") ("double" "hz") ("time_type" "t0")
;; ("time_type" "d") ("double" "final_amp"))
;;
(defun pluck (steps &optional (duration 1.0) (final-amp 0.001))
(let ((hz (calculate-hz steps "pluck"))
(d (get-duration duration)))
(set-logical-stop
(scale-db (get-loud)
(snd-pluck *SOUND-SRATE* hz *rslt* d final-amp))
duration)))
;; abs-env -- restore the standard environment
;;
(defmacro abs-env (s)
`(progv '(*WARP* *LOUD* *TRANSPOSE* *SUSTAIN*
*START* *STOP*
*CONTROL-SRATE* *SOUND-SRATE*)
(list '(0.0 1.0 NIL) 0.0 0.0 1.0
MIN-START-TIME MAX-STOP-TIME
*DEFAULT-CONTROL-SRATE* *DEFAULT-SOUND-SRATE*)
,s))
; nyq:add2 - add two arguments
;
(defun nyq:add2 (s1 s2)
(cond ((and (arrayp s1) (not (arrayp s2)))
(setf s2 (vector s2)))
((and (arrayp s2) (not (arrayp s1)))
(setf s1 (vector s1))))
(cond ((arrayp s1)
(sum-of-arrays s1 s2))
(t
(nyq:add-2-sounds s1 s2))))
; (NYQ:ADD-2-SOUNDS S1 S2) - add two sound (or number) arguments
;
(defun nyq:add-2-sounds (s1 s2)
(cond ((numberp s1)
(cond ((numberp s2)
(+ s1 s2))
(t
(snd-offset s2 s1))))
((numberp s2)
(snd-offset s1 s2))
(t
(let ((s1sr (snd-srate s1))
(s2sr (snd-srate s2)))
; (display "nyq:add-2-sounds" s1sr s2sr)
(cond ((> s1sr s2sr)
(snd-add s1 (snd-up s1sr s2)))
((< s1sr s2sr)
(snd-add (snd-up s2sr s1) s2))
(t
(snd-add s1 s2)))))))
(defmacro at (x s)
`(progv '(*WARP*) (list (list (+ (warp-time *WARP*)
(* (warp-stretch *WARP*) ,x))
(warp-stretch *WARP*)
(warp-function *WARP*)))
,s))
;; (AT-ABS t behavior) evaluate behavior at global time t
;;
;; *WARP* is the triple (d s f) denoting the function f(st+d),
;; a mapping from local to global time.
;; We want (d' s f) such that f(s*0 + d') = t
;; (Note that we keep the same s and f, and only change the offset.
;; To eliminate the warp and stretch use "(abs-env (at t behavior))")
;; Applying the inverse of f, d' = f-1(t), or (sref (snd-inverse f ...) t)
;; Rather than invert the entire function just to evaluate at one point,
;; we use SREF-INVERSE to find d'.
;;
(defmacro at-abs (x s)
`(progv '(*WARP*)
(if (warp-function *WARP*)
(list (list (sref-inverse (warp-function *WARP*) ,x)
(warp-stretch *WARP*)
(warp-function *WARP*)))
(list (list ,x (warp-stretch *WARP*) NIL)))
;; issue warning if sound starts in the past
(check-t0 ,s ',s)))
(defun check-t0 (s src)
(let (flag t0 (now (local-to-global 0)))
(cond ((arrayp s)
(dotimes (i (length s))
(setf t0 (snd-t0 (aref s i))))
(if (< t0 now) (setf flag t0)))
(t
(setf t0 (snd-t0 s))
(if (< t0 now) (setf flag t0))))
(if flag
(format t "Warning: cannot go back in time to ~A, sound came from ~A~%"
flag src))
; (display "check-t0" t0 now src)
; return s whether or not warning was reported
s))
;; (CLIP S1 VALUE) - clip maximum amplitude to value
;
(defun clip (x v)
(cond ((numberp x)
(max (min x v) (- v)))
((arrayp x)
(let* ((len (length x))
(result (make-array len)))
(dotimes (i len)
(setf (aref result i)
(snd-clip (aref x i) v)))
result))
(t
(snd-clip x v))))
;; (NYQ:COERCE-TO S1 S2) - expand sound s1 to type of s2
;
(defun nyq:coerce-to (s1 s2)
(cond ((or (soundp s1) (numberp s1))
(cond ((arrayp s2)
(nyq:sound-to-array s1 (length s2)))
(t s1)))
(t s1)))
(defmacro continuous-control-warp (beh)
`(snd-compose (warp-abs nil ,beh)
(snd-inverse (get-warp)
(local-to-global 0) *control-srate*)))
(defmacro continuous-sound-warp (beh)
`(snd-compose (warp-abs nil ,beh)
(snd-inverse (get-warp)
(local-to-global 0) *sound-srate*)))
(defmacro control-srate-abs (r s)
`(progv '(*CONTROL-SRATE*) (list ,r)
,s))
; db = 20log(ratio)
; db = 20 ln(ratio)/ln(10)
; db/20 = ln(ratio)/ln(10)
; db ln(10)/20 = ln(ratio)
; e^(db ln(10)/20) = ratio
;
(setf ln10over20 (/ (log 10.0) 20))
(defun db-to-linear (x)
(cond ((numberp x)
(exp (* ln10over20 x)))
((arrayp x)
(let* ((len (length x))
(result (make-array len)))
(dotimes (i len)
(setf (aref result i)
(snd-exp (snd-scale ln10over20 (aref x i)))))
result))
(t
(snd-exp (snd-scale ln10over20 x)))))
(defun linear-to-db (x)
(cond ((numberp x)
(/ (log (float x)) ln10over20))
((arrayp x)
(let* ((len (length x))
(result (make-array len)))
(dotimes (i len)
(setf (aref result i)
(snd-scale (/ 1.0 ln10over20) (snd-log (aref x i)))))
result))
(t
(snd-scale (/ 1.0 ln10over20) (snd-log x)))))
(cond ((not (fboundp 'scalar-step-to-hz))
(setfn scalar-step-to-hz step-to-hz)
(setfn scalar-hz-to-step hz-to-step)))
(defun step-to-hz (x)
(cond ((numberp x)
(scalar-step-to-hz x))
((arrayp x)
(let* ((len (length x))
(result (make-array len)))
(dotimes (i len)
(setf (aref result i) (step-to-hz (aref x i))))
result))
(t
(s-exp (snd-offset (snd-scale 0.0577622650466621 x)
2.1011784386926213)))))
(defun hz-to-step (x)
(cond ((numberp x)
(scalar-hz-to-step x))
((arrayp x)
(let* ((len (length x))
(result (make-array len)))
(dotimes (i len)
(setf (aref result i) (hz-to-step (aref x i))))
result))
(t
(snd-scale 17.312340490667565
(snd-offset (s-log x) -2.1011784386926213)))))
; sref - access a sound at a given time point
; note that the time is transformed to global
(defun sref (sound point)
(snd-sref sound (local-to-global point)))
; extract - start is stretched and shifted as is stop
; result is shifted to start at local time zero
(defun extract (start stop sound)
(extract-abs (local-to-global start) (local-to-global stop) sound
(local-to-global 0)))
; extract-abs - return sound between start and stop
; start-time is optional (to aid the implementation of
; extract) and gives the start time of the result, normally 0.
; There is a problem if sound t0 is not equal to start-time.
; E.g. if sound was created with AT, its t0 might be
; in the future, but snd-xform works by first shifting
; t0 to local time zero, so we need to be very careful.
; The solution is that if t0 > start_time, subtract the difference
; from start and stop to shift them appropriately.
(defun extract-abs (start stop sound &optional (start-time 0))
(let ((t0 (snd-t0 sound)) offset)
(cond ((/= t0 start-time)
(setf offset (- t0 start-time))
(setf start (- start offset))
(setf stop (- stop offset))))
(snd-xform sound (snd-srate sound) start-time start stop 1.0)))
(defun local-to-global (local-time)
(let ((d (warp-time *WARP*))
(s (warp-stretch *WARP*))
(w (warp-function *WARP*))
global-time)
(setf global-time (+ (* s local-time) d))
(if w (snd-sref w global-time) global-time)))
(defmacro loud (x s)
`(progv '(*LOUD*) (list (sum *LOUD* ,x))
,s))
(defmacro loud-abs (x s)
`(progv '(*LOUD*) (list ,x)
,s))
(defun must-be-sound (x)
(cond ((soundp x) x)
(t
(error "SOUND type expected" x))))
;; SCALE-DB -- same as scale, but argument is in db
;;
(defun scale-db (factor sound)
(scale (db-to-linear factor) sound))
(defun set-control-srate (rate)
(setf *default-control-srate* (float rate))
(nyq:environment-init))
(defun set-sound-srate (rate)
(setf *default-sound-srate* (float rate))
(nyq:environment-init))
; s-plot -- compute and write n data points for plotting
;
; dur is how many seconds of sound to plot. If necessary, cut the
; sample rate to allow plotting dur seconds
; n is the number of points to plot. If there are more than n points,
; cut the sample rate. If there are fewer than n samples, just
; plot the points that exist.
;
(defun s-plot (snd &optional (dur 2.0) (n 1000))
(prog* ((sr (snd-srate snd))
(t0 (snd-t0 snd))
(filename (soundfilename *default-plot-file*))
(s snd) ;; s is either snd or resampled copy of snd
(outf (open filename :direction :output)) ;; for plot data
(maximum -1000000.0) ;; maximum amplitude
(minimum 1000000.0) ;; minimum amplitude
actual-dur ;; is the actual-duration of snd
sample-count ;; is how many samples to get from s
period ;; is the period of samples to be plotted
truncation-flag ;; true if we didn't get whole sound
points) ;; is array of samples
;; If we need more than n samples to get dur seconds, resample
(cond ((< n (* dur sr))
(setf s (force-srate (/ (float n) dur) snd))))
;; Get samples from the signal
(setf points (snd-samples s (1+ n)))
;; If we got fewer than n points, we can at least estimate the
;; actual duration (we might not know exactly if we use a lowered
;; sample rate). If the actual sample rate was lowered to avoid
;; getting more than n samples, we can now raise the sample rate
;; based on our estimate of the actual sample duration.
(display "test" (length points) n)
(cond ((< (length points) n)
;; sound is shorter than dur, estimate actual length
(setf actual-dur (/ (length points) (snd-srate s)))
(setf sample-count (round (min n (* actual-dur sr))))
(cond ((< n (* actual-dur sr))
(setf s (force-srate (/ (float n) actual-dur) snd)))
(t ;; we can use original signal
(setf s snd)))
(setf points (snd-samples s sample-count))
;; due to rounding, need to recalculate exact count
(setf sample-count (length points)))
((= (length points) n)
(setf actual-dur dur)
(setf sample-count n))
(t ;; greater than n points, so we must have truncated sound
(setf actual-dur dur)
(setf sample-count n)
(setf truncation-flag t)))
;; actual-dur is the duration of the plot
;; sample-count is how many samples we have
(setf period (/ 1.0 (snd-srate s)))
(cond ((null outf)
(format t "s-plot: could not open ~A!~%" filename)
(return nil)))
(format t "s-plot: writing ~A ... ~%" filename)
(cond (truncation-flag
(format t " !!TRUNCATING SOUND TO ~As\n" actual-dur)))
(cond ((/= (snd-srate s) (snd-srate snd))
(format t " !!RESAMPLING SOUND FROM ~A to ~Ahz\n"
(snd-srate snd) (snd-srate s))))
(cond (truncation-flag
(format t " Plotting ~As, actual sound duration is greater\n"
actual-dur))
(t
(format t " Sound duration is ~As~%" actual-dur)))
(dotimes (i sample-count)
(setf maximum (max maximum (aref points i)))
(setf minimum (min minimum (aref points i)))
(format outf "~A ~A~%" (+ t0 (* i period)) (aref points i)))
(close outf)
(format t " Wrote ~A points from ~As to ~As~%"
sample-count t0 (+ t0 actual-dur))
(format t " Range of values ~A to ~A\n" minimum maximum)
(cond ((or (< minimum -1) (> maximum 1))
(format t " !!SIGNAL EXCEEDS +/-1~%")))))
; run something like this to plot the points:
; graph < points.dat | plot -Ttek
(defmacro sound-srate-abs (r s)
`(progv '(*SOUND-SRATE*) (list ,r)
,s))
(defmacro stretch (x s)
`(progv '(*WARP*) (list (list (warp-time *WARP*)
(* (warp-stretch *WARP*) ,x)
(warp-function *WARP*)))
(if (minusp (warp-stretch *WARP*))
(break "Negative stretch factor is not allowed"))
,s))
(defmacro stretch-abs (x s)
`(progv '(*WARP*) (list (list (local-to-global 0)
,x
nil))
(if (minusp (warp-stretch *WARP*))
(break "Negative stretch factor is not allowed"))
,s))
(defmacro sustain (x s)
`(progv '(*SUSTAIN*) (list (prod *SUSTAIN* ,x))
,s))
(defmacro sustain-abs (x s)
`(progv '(*SUSTAIN*) (list ,x)
,s))
;; (WARP-FUNCTION *WARP*) - extracts function field of warp triple
;;
(setfn warp-function caddr)
;; (WARP-STRETCH *WARP*) - extracts stretch field of warp triple
;;
(setfn warp-stretch cadr)
;; (WARP-TIME *WARP*) - extracts time field of warp triple
;;
(setfn warp-time car)
(defmacro transpose (x s)
`(progv '(*TRANSPOSE*) (list (sum *TRANSPOSE* ,x))
,s))
(defmacro transpose-abs (x s)
`(progv '(*TRANSPOSE*) (list ,x)
,s))
;; COMPUTE-DEFAULT-SOUND-FILE -- construct and set *default-sound-file*
;;
;; (this is harder than it might seem because the default place for
;; sound files is in /tmp, which is shared by users, so we'd like to
;; use a user-specific name to avoid collisions)
;;
(defun compute-default-sound-file ()
(let (inf user extension)
; the reason for the user name is that if UserA creates a temp file,
; then UserB will not be able to overwrite it. The user name is a
; way to give each user a unique temp file name. Note that we don't
; want each session to generate a unique name because Nyquist doesn't
; delete the sound file at the end of the session.
(setf user (get-user))
#|
(cond ((null user)
(format t
"Please type your user-id so that I can construct a default
sound-file name. To avoid this message in the future, add
this to your .login file:
setenv USER <your id here>
or add this to your init.lsp file:
(setf *default-sound-file* \"<your filename here>\")
(setf *default-sf-dir* \"<full pathname of desired directory here>\")
Your id please: ")
(setf user (read))))
|#
; now compute the extension based on *default-sf-format*
(cond ((= *default-sf-format* snd-head-AIFF)
(setf extension ".aif"))
((= *default-sf-format* snd-head-Wave)
(setf extension ".wav"))
(t
(setf extension ".snd")))
(setf *default-sound-file*
(strcat (string-downcase user) "-temp" extension))
(format t "Default sound file is ~A.~%" *default-sound-file*)))
;; CONTROL-WARP -- apply a warp function to a control function
;;
(defun control-warp (warp-fn control &optional wrate)
(cond (wrate
(snd-resamplev control *control-srate*
(snd-inverse warp-fn (local-to-global 0) wrate)))
(t
(snd-compose control
(snd-inverse warp-fn (local-to-global 0) *control-srate*)))))
;; (cue sound)
;; Cues the given sound; that is, it applies the current *WARP*, *LOUD*,
;; *START*, and *STOP* values to the argument. The logical start time is at
;; local time 0.
(defun cue (sound)
(cond ((arrayp sound)
(let* ((len (length sound))
(result (make-array len)))
(dotimes (i len)
(setf (aref result i)
(cue-sound (aref sound i))))
result))
(t
(cue-sound sound))))
(defun cue-sound (sound)
(snd-xform sound
(snd-srate sound)
(local-to-global 0) *START* *STOP* (db-to-linear (get-loud))))
;; (sound sound)
;; Same as (cue sound), except also warps the sound.
;; Note that the *WARP* can change the pitch of the
;; sound as a result of resampling.
;; Here's the derivation for the warping code:
;; *WARP* is a triple: (d s f) which denotes that the warp from local to
;; global time is: f(st+d)
;; We need to compose sound with the inverse of this to get a function
;; of global time
;; Let f-1 be the inverse of f. Then the inverse of f(st+d) is
;; (f-1(t) - d)/s
;; The composition gives us: (snd-compose sound (f-1(t) - d)/s)
;; Eliminate the 1/s term by changing the sample rate of sound:
;; = (snd-compose (snd-scale-srate sound s) (f-1(t) - d))
;; Eliminate the -d term by shifting f before taking the inverse:
;; = (snd-compose (scale-srate sound s) ((inverse f) - d))
;; = (snd-compose (scale-srate sound s) (inverse f(t + d)))
;; = (snd-compose (scale-srate sound s) (inverse (shift f -d)))
;; snd-inverse takes a time and sample rate. For time, use zero.
;; The sample rate of inverse determines the final sample rate of
;; this function, so use *SOUND-SRATE*:
;; = (snd-compose (scale-srate sound s) (snd-inverse (shift-time f (- d))
;; 0 *SOUND-SRATE*))
;;
(defun nyq:sound (sound)
(cond ((null (warp-function *WARP*))
(snd-xform sound (/ (snd-srate sound) (warp-stretch *WARP*))
(local-to-global 0)
*START* *STOP* (db-to-linear (get-loud))))
(t
(snd-compose (scale-srate sound (warp-stretch *WARP*))
(snd-inverse (shift-time (warp-function *WARP*)
(- (warp-time *WARP*)))
0 *SOUND-SRATE*)))))
(defun nyq:sound-of-array (sound)
(let* ((n (length sound))
(s (make-array n)))
(dotimes (i n)
(setf (aref s i) (nyq:sound (aref sound i))))
s))
(defun sound (sound)
(cond ((arrayp sound)
(nyq:sound-of-array sound))
(t
(nyq:sound sound))))
;; (SCALE-SRATE SOUND SCALE)
;; multiplies the sample rate by scale
(defun scale-srate (sound scale)
(let ((new-srate (* scale (snd-srate sound))))
(snd-xform sound new-srate (snd-time sound)
MIN-START-TIME MAX-STOP-TIME 1.0)))
;; (SHIFT-TIME SOUND SHIFT)
;; shift the time of a function by SHIFT, i.e. if SOUND is f(t),
;; then (shift-time SOUND SHIFT) is f(t - SHIFT). Note that if
;; you look at plots, the shifted sound will move *right* when SHIFT
;; is positive.
(defun shift-time (sound shift)
(snd-xform sound (snd-srate sound) (+ (snd-t0 sound) shift)
MIN-START-TIME MAX-STOP-TIME 1.0))
;; (NYQ:SOUND-TO-ARRAY SOUND N) - duplicate SOUND to N channels
;;
(defun nyq:sound-to-array (sound n)
(let ((result (make-array n)))
(dotimes (i n)
(setf (aref result i) sound))
result))
;; (control sound)
;; Same as (sound sound), except this is used for control signals.
;; This code is identical to sound.
(setfn control sound)
;; (cue-file string)
;; Loads a sound file with the given name, returning a sound which is
;; transformed to the current environment.
(defun cue-file (name)
(cue (force-srate *SOUND-SRATE* (s-read name))))
;; (env t1 t2 t4 l1 l2 l3 &optional duration)
;; Creates a 4-phase envelope.
;; tN is the duration of phase N, and lN is the final level of
;; phase N. t3 is implied by the duration, and l4 is 0.0.
;; If dur is not supplied, then 1.0 is assumed. The envelope
;; duration is the product of dur, *STRETCH*, and *SUSTAIN*. If
;; t1 + t2 + 2ms + t4 > duration, then a two-phase envelope is
;; substituted that has an attack/release time ratio = t1/t4.
;; The sample rate of the returned sound is *CONTROL-SRATE*.
;;
;; Time transformation: the envelope is not warped; the start time and
;; stop times are warped to global time. Then the value of *SUSTAIN* at
;; the begining of the envelope is used to determing absolute duration.
;; Since PWL is ultimately called to create the envelope, we must use
;; ABS-ENV to prevent any further transforms inside PWL. We use
;; (AT global-start ...) inside ABS-ENV so that the final result has
;; the proper starting time.
;;
(defun env (t1 t2 t4 l1 l2 l3 &optional (duration 1.0))
(let (actual-dur min-dur ratio t3
(actual-dur (get-duration duration)))
(setf min-dur (+ t1 t2 t4 0.002))
(cond ((< actual-dur min-dur)
(setf ratio (/ t1 (float (+ t1 t4))))
(setf t1 (* ratio actual-dur))
(setf t2 (- actual-dur t1))
(setf t3 0.0)
(setf t4 0.0)
(setf l2 0.0)
(setf l3 0.0))
(t
(setf t3 (- actual-dur t1 t2 t4))))
(set-logical-stop
(abs-env (at *rslt*
(pwl t1 l1 (+ t1 t2) l2 (- actual-dur t4) l3 actual-dur)))
duration)))
(defun gate (sound lookahead risetime falltime floor threshold)
(cond ((< lookahead risetime)
(break "lookahead must be greater than risetime in GATE function"))
((or (< risetime 0) (< falltime 0) (< floor 0))
(break "risetime, falltime, and floor must all be positive in GATE function"))
(t
(let ((s
(snd-gate (seq (cue sound) (abs-env (s-rest lookahead)))
lookahead risetime falltime floor threshold)))
(snd-xform s (snd-srate s) (snd-t0 sound)
(+ (snd-t0 sound) lookahead) MAX-STOP-TIME 1.0)))))
;; (osc-note step &optional duration env sust volume sound)
;; Creates a note using table-lookup osc, but with an envelope.
;; The ENV parameter may be a parameter list for the env function,
;; or it may be a sound.
;;
(defun osc-note (pitch &optional (duration 1.0)
(env-spec '(0.02 0.1 0.3 1.0 .8 .7))
(volume 0.0)
(table *TABLE*))
(set-logical-stop
(mult (loud volume (osc pitch duration table))
(if (listp env-spec)
(apply 'env env-spec)
env-spec))
duration))
;; force-srate -- resample snd if necessary to get sample rate
;
(defun force-srate (sr snd)
(cond ((not (numberp sr))
(error "force-srate: SR should be a number")))
(cond ((arrayp snd)
(let* ((len (length snd))
(result (make-array len)))
(dotimes (i len)
(setf (aref result i)
(force-srate sr (aref snd i))))
result))
(t
(let ((snd-sr (snd-srate snd)))
(cond ((> sr snd-sr) (snd-up sr snd))
((< sr snd-sr) (snd-down sr snd))
(t snd))))))
(defun force-srates (srs snd)
(cond ((and (numberp srs) (soundp snd))
(force-srate srs snd))
((and (arrayp srs) (arrayp snd))
(let* ((len (length snd))
(result (make-array len)))
(dotimes (i len)
(setf (aref result i)
(force-srate (aref srs i) (aref snd i))))
result))
(t (error "arguments not compatible"))))
;; (breakpoints-convert (t1 x1 t2 x2 ... tn) t0)
;; converts times to sample numbers and scales amplitudes
;; t0 is the global (after warping) start time
;;
;; NOTE: there were some stack overflow problems with the original
;; recursive version (in comments now), so it was rewritten as an
;; iteration.
;;
(defun breakpoints-convert (list t0)
(prog (sample-count result sust (last-count 0))
(setf sust (get-sustain))
loop
(setf sample-count
(truncate (+ 0.5 (* (- (local-to-global (* (car list) sust)) t0)
*control-srate*))))
; now we have a new sample count to put into result list
; make sure result is non-decreasing
(cond ((< sample-count last-count)
(setf sample-count last-count)))
(setf last-count sample-count)
(push sample-count result)
(cond ((cdr list)
(setf list (cdr list))
(push (float (car list)) result)))
(setf list (cdr list))
(cond (list
(go loop)))
(return (reverse result))))
;; (pwl t1 l1 t2 l2 ... tn)
;; Creates a piece-wise linear envelope from breakpoint data.
;;
(defun pwl (&rest breakpoints) (pwl-list breakpoints))
(defun pwlr (&rest breakpoints) (pwlr-list breakpoints))
;; (breakpoints-relative list)
;; converts list, which has the form (value dur value dur value ...)
;; into the form (value time value time value ...)
;; the list may have an even or odd length
;;
(defun breakpoints-relative (breakpoints)
(prog (result (sum 0.0))
loop
(cond (breakpoints
(push (car breakpoints) result)
(setf breakpoints (cdr breakpoints))
(cond (breakpoints
(setf sum (+ sum (car breakpoints)))
(push sum result)
(setf breakpoints (cdr breakpoints))
(go loop)))))
(return (reverse result))))
(defun breakpoints-relative (breakpoints)
(prog (result (sum 0.0))
loop
(setf sum (+ sum (car breakpoints)))
(push sum result)
(cond ((cdr breakpoints)
(setf breakpoints (cdr breakpoints))
(push (car breakpoints) result)))
(setf breakpoints (cdr breakpoints))
(cond (breakpoints
(go loop)))
(return (reverse result))))
(defun pwlr-list (breakpoints)
(pwl-list (breakpoints-relative breakpoints)))
(defun pwl-list (breakpoints)
(let ((t0 (local-to-global 0)))
(snd-pwl t0 *control-srate* (breakpoints-convert breakpoints t0))))
;; (pwlv l1 t1 l2 t2 ... ln)
;; Creates a piece-wise linear envelope from breakpoint data;
;; the function initial and final values are explicit
;;
(defun pwlv (&rest breakpoints)
;use pwl, modify breakpoints with initial and final changes
;need to put initial time of 0, and final time of 0
(pwlv-list breakpoints))
(defun pwlv-list (breakpoints)
(pwl-list (cons 0.0 (append breakpoints '(0.0)))))
(defun pwlvr (&rest breakpoints) (pwlvr-list breakpoints))
(defun pwlvr-list (breakpoints)
(pwlr-list (cons 0.0 (append breakpoints '(0.0)))))
(defun pwe (&rest breakpoints)
(pwe-list breakpoints))
(defun pwe-list (breakpoints)
(pwev-list (cons 1.0 (append breakpoints '(1.0)))))
(defun pwer (&rest breakpoints) (pwer-list breakpoints))
(defun pwer-list (breakpoints)
(pwe-list (breakpoints-relative breakpoints)))
(defun pwev (&rest breakpoints)
(pwev-list breakpoints))
(defun pwev-list (breakpoints)
(let ((lis (breakpoints-log breakpoints)))
(s-exp (pwl-list lis))))
(defun pwevr (&rest breakpoints) (pwevr-list breakpoints))
(defun pwevr-list (breakpoints)
(pwev-list (cdr (breakpoints-relative (cons 0.0 breakpoints)))))
(defun breakpoints-log (breakpoints)
(prog ((result '(0.0)) val tim)
loop
(cond (breakpoints
(setf val (float (car breakpoints)))
(setf breakpoints (cdr breakpoints))
(cond (breakpoints
(setf tim (car breakpoints))
(setf breakpoints (cdr breakpoints))))
(setf result (cons tim (cons (log val) result)))
(cond ((null breakpoints)
(return (reverse result))))
(go loop))
(t
(error "Expected odd number of elements in breakpoint list")))))
;; SOUND-WARP -- apply warp function to a sound
;;
(defun sound-warp (warp-fn signal &optional wrate)
(cond (wrate
(snd-resamplev signal *sound-srate*
(snd-inverse warp-fn (local-to-global 0) wrate)))
(t
(snd-compose signal
(snd-inverse warp-fn (local-to-global 0) *sound-srate*)))))
(defun snd-extent (sound maxsamples)
(list (snd-t0 sound)
(+ (snd-t0 sound) (/ (snd-length sound maxsamples)
(snd-srate sound)))))
(setfn snd-flatten snd-length)
;; (maketable sound)
;; Creates a table for osc, lfo, etc. by assuming that the samples
;; in sound represent one period. The sound must start at time 0.
(defun maketable (sound)
(list sound
(hz-to-step
(/ 1.0
(cadr (snd-extent sound 1000000))))
T))
;(defmacro endTime (sound)
; `(get-logical-stop ,sound))
;(defmacro beginTime (sound)
; `(car (snd-extent ,sound)))
; simple stereo pan: as where goes from 0 to 1, sound
; is linearly panned from left to right
;
(defun pan (sound where)
(vector (mult sound (sum 1 (mult -1 where)))
(mult sound where)))
(defun prod (&rest snds)
(cond ((null snds)
(snd-zero (local-to-global 0) *sound-srate*))
((null (cdr snds))
(car snds))
((null (cddr snds))
(nyq:prod2 (car snds) (cadr snds)))
(t
(nyq:prod2 (car snds) (apply #'prod (cdr snds))))))
(setfn mult prod)
;; (NYQ:PROD-OF-ARRAYS S1 S2) - form pairwise products
;
(defun nyq:prod-of-arrays (s1 s2)
(let* ((n (length s1))
(p (make-array n)))
(cond ((/= n (length s2))
(error "unequal number of channels in prod")))
(dotimes (i n)
(setf (aref p i) (nyq:prod2 (aref s1 i) (aref s2 i))))
p))
; nyq:prod2 - multiply two arguments
;
(defun nyq:prod2 (s1 s2)
(setf s1 (nyq:coerce-to s1 s2))
(setf s2 (nyq:coerce-to s2 s1))
(cond ((arrayp s1)
(nyq:prod-of-arrays s1 s2))
(t
(nyq:prod-2-sounds s1 s2))))
; (PROD-2-SOUNDS S1 S2) - multiply two sound arguments
;
(defun nyq:prod-2-sounds (s1 s2)
(cond ((numberp s1)
(cond ((numberp s2)
(* s1 s2))
(t
(scale s1 s2))))
((numberp s2)
(scale s2 s1))
(t
(snd-prod s1 s2))))
;; RAMP -- linear ramp from 0 to x
;;
(defun ramp (&optional (x 1))
(let* ((duration (get-duration x)))
(set-logical-stop
(warp-abs nil
(at *rslt*
(sustain-abs 1
(pwl duration 1 (+ duration (/ *control-srate*))))))
x)))
(defun resample (snd rate)
(cond ((arrayp snd)
(let* ((len (length snd))
(result (make-array len)))
(dotimes (i len)
(setf (aref result i)
(snd-resample (aref snd i) rate)))
result))
(t
(snd-resample snd rate))))
(defun scale (amt snd)
(cond ((arrayp snd)
(let* ((len (length snd))
(result (make-array len)))
(dotimes (i len)
(setf (aref result i) (snd-scale amt (aref snd i))))
result))
(t
(snd-scale amt snd))))
(setfn s-print-tree snd-print-tree)
;; (PEAK sound-expression number-of-samples) - find peak amplitude
;
; NOTE: this used to be called s-max
;
(defmacro peak (expression maxlen)
`(snd-max ',expression ,maxlen))
;; (S-MAX S1 S2) - return maximum of S1, S2
;
(defun s-max (s1 s2)
(setf s1 (nyq:coerce-to s1 s2))
(setf s2 (nyq:coerce-to s2 s1))
(cond ((arrayp s1)
(nyq:max-of-arrays s1 s2))
(t
(nyq:max-2-sounds s1 s2))))
(defun nyq:max-of-arrays (s1 s2)
(let* ((n (length s1))
(p (make-array n)))
(cond ((/= n (length s2))
(error "unequal number of channels in max")))
(dotimes (i n)
(setf (aref p i) (s-max (aref s1 i) (aref s2 i))))
p))
(defun nyq:max-2-sounds (s1 s2)
(cond ((numberp s1)
(cond ((numberp s2)
(max s1 s2))
(t
(snd-maxv s2
(snd-const s1 (local-to-global 0.0)
(snd-srate s2) (get-duration 1.0))))))
((numberp s2)
(snd-maxv s1 (snd-const s2 (local-to-global 0.0)
(snd-srate s1) (get-duration 1.0))))
(t
(snd-maxv s1 s2))))
(defun s-min (s1 s2)
(setf s1 (nyq:coerce-to s1 s2))
(setf s2 (nyq:coerce-to s2 s1))
(cond ((arrayp s1)
(nyq:min-of-arrays s1 s2))
(t
(nyq:min-2-sounds s1 s2))))
(defun nyq:min-of-arrays (s1 s2)
(let* ((n (length s1))
(p (make-array n)))
(cond ((/= n (length s2))
(error "unequal number of channels in max")))
(dotimes (i n)
(setf (aref p i) (s-min (aref s1 i) (aref s2 i))))
p))
(defun nyq:min-2-sounds (s1 s2)
(cond ((numberp s1)
(cond ((numberp s2)
(min s1 s2))
(t
(snd-minv s2
(snd-const s1 (local-to-global 0.0)
(snd-srate s2) (get-duration 1.0))))))
((numberp s2)
(snd-minv s1 (snd-const s2 (local-to-global 0.0)
(snd-srate s1) (get-duration 1.0))))
(t
(snd-minv s1 s2))))
(defun snd-minv (s1 s2)
(scale -1.0 (snd-maxv (scale -1.0 s1) (scale -1.0 s2))))
; sequence macros SEQ and SEQREP are now in seq.lsp:
;
(load "seq" :verbose NIL)
; set-logical-stop - modify the sound and return it, time is shifted and
; stretched
(defun set-logical-stop (snd tim)
(let ((d (local-to-global tim)))
(multichan-expand #'set-logical-stop-abs snd d)))
; set-logical-stop-abs - modify the sound and return it
;
(defun set-logical-stop-abs (snd tim) (snd-set-logical-stop snd tim) snd)
(defmacro simrep (pair sound)
`(let (_snds)
(dotimes ,pair (push ,sound _snds))
(sim-list _snds)))
(defun sim (&rest snds)
(sim-list snds))
(setfn sum sim)
(defun sim-list (snds)
(cond ((null snds)
(snd-zero (local-to-global 0) *sound-srate*))
((null (cdr snds))
(car snds))
((null (cddr snds))
(nyq:add2 (car snds) (cadr snds)))
(t
(nyq:add2 (car snds) (sim-list (cdr snds))))))
(defun s-rest (&optional (dur 1.0) (chans 1))
(let ((d (get-duration dur))
r)
(cond ((= chans 1)
(snd-const 0.0 *rslt* *SOUND-SRATE* d))
(t
(setf r (make-array chans))
(dotimes (i chans)
(setf (aref r i) (snd-const 0.0 *rslt* *SOUND-SRATE* d)))
r))))
(defun tempo (warpfn)
(slope (snd-inverse warpfn (local-to-global 0) *control-srate*)))
;; (SUM-OF-ARRAYS S1 S2) - add multichannel sounds
;
; result has as many channels the largest of s1, s2
; corresponding channels are added, extras are copied
;
(defun sum-of-arrays (s1 s2)
(let* ((n1 (length s1))
(n2 (length s2))
(n (min n1 n2))
(m (max n1 n2))
(result (make-array m))
(big-s (if (> n1 n2) s1 s2)))
(dotimes (i n)
(setf (aref result i) (nyq:add-2-sounds (aref s1 i) (aref s2 i))))
(dotimes (i (- m n))
(setf (aref result (+ n i)) (aref big-s (+ n i))))
result))
;; (WARP fn behavior) - warp behavior according to fn
;;
;; fn is a map from behavior time to local time, and *WARP* expresses
;; a map from local to global time.
;; To produce a new *WARP* for the environment, we want to compose the
;; effect of the current *WARP* with fn. Note that fn is also a behavior.
;; It is evaluated in the current environment first, then it is used to
;; modify the environment seen by behavior.
;; *WARP* is a triple: (d s f) denoting the function f(st+d).
;; Letting g represent the new warp function fn, we want f(st+d) o g, or
;; f(s*g(t) + d) in the form (d' s' f').
;; Let's do this one step at a time:
;; f(s*g(t) + d) = f(scale(s, g) + d)
;; = (shift f -d)(scale(s, g))
;; = (snd-compose (shift-time f (- d)) (scale s g))
;;
;; If f in NIL, it denotes the identity mapping f(t)=t, so we can
;; simplify:
;; f(scale(s, g) + d) = scale(s, g) + d
;; = (snd-offset (scale s g) d)
(defmacro warp (x s)
`(progv '(*WARP*) (list
(list 0.0 1.0
(if (warp-function *WARP*)
(snd-compose (shift-time (warp-function *WARP*)
(- (warp-time *WARP*)))
(scale (warp-stretch *WARP*)
(must-be-sound ,x)))
(snd-offset (scale (warp-stretch *WARP*)
(must-be-sound ,x))
(warp-time *WARP*)))))
,s))
(defmacro warp-abs (x s)
`(progv '(*WARP*) (list (list 0.0 1.0 ,x))
,s))
;; MULTICHAN-EXPAND -- construct and return array according to args
;;
;; arrays are used in Nyquist to represent multiple channels
;; if any argument is an array, make sure all array arguments
;; have the same length. Then, construct a multichannel result
;; by calling fn once for each channel. The arguments passed to
;; fn for the i'th channel are either the i'th element of an array
;; argument, or just a copy of a non-array argument.
;;
(defun multichan-expand (fn &rest args)
(let (len newlen result) ; len is a flag as well as a count
(dolist (a args)
(cond ((arrayp a)
(setf newlen (length a))
(cond ((and len (/= len newlen))
(error (format nil "In ~A, two arguments are vectors of differing length." fn))))
(setf len newlen))))
(cond (len
(setf result (make-array len))
; for each channel, call fn with args
(dotimes (i len)
(setf (aref result i)
(apply fn
(mapcar
#'(lambda (a)
; take i'th entry or replicate:
(cond ((arrayp a) (aref a i))
(t a)))
args))))
result)
(t
(apply fn args)))))
;; SELECT-IMPLEMENTATION-? -- apply an implementation according to args
;;
;; There is a different Nyquist primitive for each combination of
;; constant (NUMBERP) and time-variable (SOUNDP) arguments. E.g.
;; a filter with fixed parameters differs from one with varying
;; parameters. In most cases, the user just calls one function,
;; and the arguments are decoded here:
;; SELECT-IMPLEMENTATION-1-1 -- 1 sound arg, 1 selector
;;
(defun select-implementation-1-1 (fns snd sel1 &rest others)
(if (numberp sel1)
(apply (aref fns 0) (cons snd (cons sel1 others)))
(apply (aref fns 1) (cons snd (cons sel1 others)))))
;; SELECT-IMPLEMENTATION-1-2 -- 1 sound arg, 2 selectors
;;
;; choose implemenation according to args 2 and 3
;;
(defun select-implementation-1-2 (fns snd sel1 sel2 &rest others)
(if (numberp sel2)
(if (numberp sel1)
(apply (aref fns 0) (cons snd (cons sel1 (cons sel2 others))))
(apply (aref fns 1) (cons snd (cons sel1 (cons sel2 others)))))
(if (numberp sel1)
(apply (aref fns 2) (cons snd (cons sel1 (cons sel2 others))))
(apply (aref fns 3) (cons snd (cons sel1 (cons sel2 others)))))))
;; some waveforms
(setf *saw-table* (pwlvr -1 1 1)) ; eh, creepy way to get 2205 samples.
(setf *saw-table* (list *saw-table* (hz-to-step 1) T))
(setf *tri-table* (pwlvr -1 0.5 1 0.5 -1))
(setf *tri-table* (list *tri-table* (hz-to-step 1) T))
(setf *id-shape* (pwlvr -1 2 1 .01 1)) ; identity
(setf *step-shape* (seq (const -1) (const 1 1.01))) ; hard step at zero
(defun exp-dec (hold halfdec length)
(let* ((target (expt 0.5 (/ length halfdec)))
(expenv (pwev 1 hold 1 length target)))
expenv)
)
;;; operations on sounds
(defun diff (x &rest y)
(cond (y (sum x (prod -1 (car y))))
(t (prod -1 x))))
; compare-shape is a shape table -- origin 1.
(defun compare (x y &optional (compare-shape *step-shape*))
(let ((xydiff (diff x y)))
(shape xydiff compare-shape 1)))
;;; oscs
(defun osc-saw (hz) (hzosc hz *saw-table*))
(defun osc-tri (hz) (hzosc hz *tri-table*))
; bias is [-1, 1] pulse width. sound or scalar.
; hz is a sound or scalar
(defun osc-pulse (hz bias &optional (compare-shape *step-shape*))
(compare bias (osc-tri hz) compare-shape))
;;; tapped delays
;(tapv snd offset vardelay maxdelay)
(setfn tapv snd-tapv) ;; linear interpolation
(setfn tapf snd-tapf) ;; no interpolation
|