This file is indexed.

/usr/share/axiom-20170501/src/algebra/A1AGG.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
)abbrev category A1AGG OneDimensionalArrayAggregate
++ Author: Michael Monagan; revised by Manuel Bronstein and Richard Jenks
++ Date Created: August 87 through August 88
++ Date Last Updated: April 1991
++ Description:
++ One-dimensional-array aggregates serves as models for one-dimensional 
++ arrays. Categorically, these aggregates are finite linear aggregates
++ with the \spadatt{shallowlyMutable} property, that is, any component of
++ the array may be changed without affecting the
++ identity of the overall array.
++ Array data structures are typically represented by a fixed area in 
++ storage and cannot efficiently grow or shrink on demand as can list 
++ structures (see however \spadtype{FlexibleArray} for a data structure 
++ which is a cross between a list and an array).
++ Iteration over, and access to, elements of arrays is extremely fast
++ (and often can be optimized to open-code).
++ Insertion and deletion however is generally slow since an entirely new
++ data structure must be created for the result.

OneDimensionalArrayAggregate(S) : Category == SIG where
  S : Type

  SIG ==> FiniteLinearAggregate S with shallowlyMutable

   add

     parts x == [qelt(x, i) for i in minIndex x .. maxIndex x]

     sort_!(f, a) == quickSort(f, a)$FiniteLinearAggregateSort(S, %)

     any?(f, a) ==
       for i in minIndex a .. maxIndex a repeat
         f qelt(a, i) => return true
       false

     every?(f, a) ==
       for i in minIndex a .. maxIndex a repeat
         not(f qelt(a, i)) => return false
       true

     position(f:S -> Boolean, a:%) ==
       for i in minIndex a .. maxIndex a repeat
         f qelt(a, i) => return i
       minIndex(a) - 1

     find(f, a) ==
       for i in minIndex a .. maxIndex a repeat
         f qelt(a, i) => return qelt(a, i)
       "failed"

     count(f:S->Boolean, a:%) ==
       n:NonNegativeInteger := 0
       for i in minIndex a .. maxIndex a repeat
         if f(qelt(a, i)) then n := n+1
       n

     map_!(f, a) ==
       for i in minIndex a .. maxIndex a repeat
         qsetelt_!(a, i, f qelt(a, i))
       a

     setelt(a:%, s:UniversalSegment(Integer), x:S) ==
       l := lo s; h := if hasHi s then hi s else maxIndex a
       l < minIndex a or h > maxIndex a => error "index out of range"
       for k in l..h repeat qsetelt_!(a, k, x)
       x

     reduce(f, a) ==
       empty? a => error "cannot reduce an empty aggregate"
       r := qelt(a, m := minIndex a)
       for k in m+1 .. maxIndex a repeat r := f(r, qelt(a, k))
       r

     reduce(f, a, identity) ==
       for k in minIndex a .. maxIndex a repeat
         identity := f(identity, qelt(a, k))
       identity

     if S has SetCategory then

       reduce(f, a, identity,absorber) ==
         for k in minIndex a .. maxIndex a while identity ^= absorber
                repeat identity := f(identity, qelt(a, k))
         identity

     -- this is necessary since new has disappeared.
     stupidnew: (NonNegativeInteger, %, %) -> %

     stupidget: List % -> S

     -- a and b are not both empty if n > 0
     stupidnew(n, a, b) ==
       zero? n => empty()
       new(n, (empty? a => qelt(b, minIndex b); qelt(a, minIndex a)))

     -- at least one element of l must be non-empty
     stupidget l ==
       for a in l repeat
         not empty? a => return first a
       error "Should not happen"
 
     map(f, a, b) ==
       m := max(minIndex a, minIndex b)
       n := min(maxIndex a, maxIndex b)
       l := max(0, n - m + 1)::NonNegativeInteger
       c := stupidnew(l, a, b)
       for i in minIndex(c).. for j in m..n repeat
         qsetelt_!(c, i, f(qelt(a, j), qelt(b, j)))
       c

     merge(f, a, b) ==
       r := stupidnew(#a + #b, a, b)
       i := minIndex a
       m := maxIndex a
       j := minIndex b
       n := maxIndex b
       for k in minIndex(r).. while i <= m and j <= n repeat
         if f(qelt(a, i), qelt(b, j)) then
           qsetelt_!(r, k, qelt(a, i))
           i := i+1
         else
           qsetelt_!(r, k, qelt(b, j))
           j := j+1
       for k in k.. for i in i..m repeat qsetelt_!(r, k, elt(a, i))
       for k in k.. for j in j..n repeat qsetelt_!(r, k, elt(b, j))
       r
 
     elt(a:%, s:UniversalSegment(Integer)) ==
       l := lo s
       h := if hasHi s then hi s else maxIndex a
       l < minIndex a or h > maxIndex a => error "index out of range"
       r := stupidnew(max(0, h - l + 1)::NonNegativeInteger, a, a)
       for k in minIndex r.. for i in l..h repeat
         qsetelt_!(r, k, qelt(a, i))
       r
 
     insert(a:%, b:%, i:Integer) ==
       m := minIndex b
       n := maxIndex b
       i < m or i > n => error "index out of range"
       y := stupidnew(#a + #b, a, b)
       for k in minIndex y.. for j in m..i-1 repeat
         qsetelt_!(y, k, qelt(b, j))
       for k in k.. for j in minIndex a .. maxIndex a repeat
         qsetelt_!(y, k, qelt(a, j))
       for k in k.. for j in i..n repeat qsetelt_!(y, k, qelt(b, j))
       y
 
     copy x ==
       y := stupidnew(#x, x, x)
       for i in minIndex x .. maxIndex x for j in minIndex y .. repeat
         qsetelt_!(y, j, qelt(x, i))
       y
 
     copyInto_!(y, x, s) ==
       s < minIndex y or s + #x > maxIndex y + 1 =>
                                               error "index out of range"
       for i in minIndex x .. maxIndex x for j in s.. repeat
         qsetelt_!(y, j, qelt(x, i))
       y
 
     construct l ==
       empty? l => empty()
       a := new(#l, first l)
       for i in minIndex(a).. for x in l repeat qsetelt_!(a, i, x)
       a
 
     delete(a:%, s:UniversalSegment(Integer)) ==
       l := lo s; h := if hasHi s then hi s else maxIndex a
       l < minIndex a or h > maxIndex a => error "index out of range"
       h < l => copy a
       r := stupidnew((#a - h + l - 1)::NonNegativeInteger, a, a)
       for k in minIndex(r).. for i in minIndex a..l-1 repeat
         qsetelt_!(r, k, qelt(a, i))
       for k in k.. for i in h+1 .. maxIndex a repeat
         qsetelt_!(r, k, qelt(a, i))
       r
 
     delete(x:%, i:Integer) ==
       i < minIndex x or i > maxIndex x => error "index out of range"
       y := stupidnew((#x - 1)::NonNegativeInteger, x, x)
       for i in minIndex(y).. for j in minIndex x..i-1 repeat
         qsetelt_!(y, i, qelt(x, j))
       for i in i .. for j in i+1 .. maxIndex x repeat
         qsetelt_!(y, i, qelt(x, j))
       y
 
     reverse_! x ==
       m := minIndex x
       n := maxIndex x
       for i in 0..((n-m) quo 2) repeat swap_!(x, m+i, n-i)
       x
 
     concat l ==
       empty? l => empty()
       n := _+/[#a for a in l]
       i := minIndex(r := new(n, stupidget l))
       for a in l repeat
         copyInto_!(r, a, i)
         i := i + #a
       r
 
     sorted?(f, a) ==
       for i in minIndex(a)..maxIndex(a)-1 repeat
         not f(qelt(a, i), qelt(a, i + 1)) => return false
       true
 
     concat(x:%, y:%) ==
       z := stupidnew(#x + #y, x, y)
       copyInto_!(z, x, i := minIndex z)
       copyInto_!(z, y, i + #x)
       z
 
     if S has SetCategory then
 
       x = y ==
         #x ^= #y => false
         for i in minIndex x .. maxIndex x repeat
           not(qelt(x, i) = qelt(y, i)) => return false
         true
 
       coerce(r:%):OutputForm ==
         bracket commaSeparate
               [qelt(r, k)::OutputForm for k in minIndex r .. maxIndex r]
 
       position(x:S, t:%, s:Integer) ==
         n := maxIndex t
         s < minIndex t or s > n => error "index out of range"
         for k in s..n repeat
           qelt(t, k) = x => return k
         minIndex(t) - 1
 
     if S has OrderedSet then
 
       a < b ==
         for i in minIndex a .. maxIndex a
           for j in minIndex b .. maxIndex b repeat
             qelt(a, i) ^= qelt(b, j) => return a.i < b.j
         #a < #b