This file is indexed.

/usr/share/axiom-20170501/src/algebra/ABELMON.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
)abbrev category ABELMON AbelianMonoid
++ Description:
++ The class of multiplicative monoids, that is, semigroups with an
++ additive identity element.
++
++ Axioms\br
++ \tab{5}\spad{leftIdentity("+":(%,%)->%,0)}\tab{5}\spad{0+x=x}\br
++ \tab{5}\spad{rightIdentity("+":(%,%)->%,0)}\tab{4}\spad{x+0=x}
-- following domain must be compiled with subsumption disabled
-- define SourceLevelSubset to be EQUAL

AbelianMonoid() : Category == SIG where

  SIG ==> AbelianSemiGroup with

    0 : constant -> % 
      ++ \spad{0} is the additive identity element.

    sample : constant -> %
      ++ sample yields a value of type %

    zero? : % -> Boolean
      ++ zero?(x) tests if x is equal to 0.

    "*" : (NonNegativeInteger,%) -> %
      ++ n * x is left-multiplication by a non negative integer

   add

      import RepeatedDoubling(%)

      zero? x == x = 0

      n:PositiveInteger * x:% == (n::NonNegativeInteger) * x

      sample() == 0

      if not (% has Ring) then

        n:NonNegativeInteger * x:% ==
          zero? n => 0
          double(n pretend PositiveInteger,x)