This file is indexed.

/usr/share/axiom-20170501/src/algebra/ACF.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
)abbrev category ACF AlgebraicallyClosedField
++ Author: Manuel Bronstein
++ Date Created: 22 Mar 1988
++ Date Last Updated: 27 November 1991
++ Description:
++ Model for algebraically closed fields.

AlgebraicallyClosedField() : Category == SIG where

  SIG ==> Join(Field,RadicalCategory) with

    rootOf : Polynomial $ -> $
      ++rootOf(p) returns y such that \spad{p(y) = 0}.
      ++ Error: if p has more than one variable y.
      ++
      ++X a:Polynomial(Integer):=-3*x^3+2*x+13
      ++X rootOf(a)

    rootOf : SparseUnivariatePolynomial $ -> $
      ++rootOf(p) returns y such that \spad{p(y) = 0}.
      ++
      ++X a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13
      ++X rootOf(a)

    rootOf : (SparseUnivariatePolynomial $, Symbol) -> $
      ++rootOf(p, y) returns y such that \spad{p(y) = 0}.
      ++ The object returned displays as \spad{'y}.
      ++
      ++X a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13
      ++X rootOf(a,x)

    rootsOf : Polynomial $ -> List $
      ++rootsOf(p) returns \spad{[y1,...,yn]} such that \spad{p(yi) = 0}.
      ++ Note that the returned symbols y1,...,yn are bound in the
      ++ interpreter to respective root values.
      ++ Error: if p has more than one variable y.
      ++
      ++X a:Polynomial(Integer):=-3*x^3+2*x+13
      ++X rootsOf(a)

    rootsOf : SparseUnivariatePolynomial $ -> List $
      ++rootsOf(p) returns \spad{[y1,...,yn]} such that \spad{p(yi) = 0}.
      ++ Note that the returned symbols y1,...,yn are bound in the interpreter
      ++ to respective root values.
      ++
      ++X a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13
      ++X rootsOf(a)

    rootsOf : (SparseUnivariatePolynomial $, Symbol) -> List $
      ++rootsOf(p, y) returns \spad{[y1,...,yn]} such that \spad{p(yi) = 0};
      ++ The returned roots display as \spad{'y1},...,\spad{'yn}.
      ++ Note that the returned symbols y1,...,yn are bound in the interpreter
      ++ to respective root values.
      ++
      ++X a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13
      ++X rootsOf(a,x)

    zeroOf : Polynomial $ -> $
      ++zeroOf(p) returns y such that \spad{p(y) = 0}.
      ++ If possible, y is expressed in terms of radicals.
      ++ Otherwise it is an implicit algebraic quantity.
      ++ Error: if p has more than one variable y.
      ++
      ++X a:Polynomial(Integer):=-3*x^2+2*x-13
      ++X zeroOf(a)

    zeroOf : SparseUnivariatePolynomial $ -> $
      ++zeroOf(p) returns y such that \spad{p(y) = 0};
      ++ if possible, y is expressed in terms of radicals.
      ++ Otherwise it is an implicit algebraic quantity.
      ++
      ++X a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13
      ++X zeroOf(a)

    zeroOf : (SparseUnivariatePolynomial $, Symbol) -> $
      ++zeroOf(p, y) returns y such that \spad{p(y) = 0};
      ++ if possible, y is expressed in terms of radicals.
      ++ Otherwise it is an implicit algebraic quantity which
      ++ displays as \spad{'y}.
      ++
      ++X a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13
      ++X zeroOf(a,x)

    zerosOf : Polynomial $ -> List $
      ++zerosOf(p) returns \spad{[y1,...,yn]} such that \spad{p(yi) = 0}.
      ++ The yi's are expressed in radicals if possible.
      ++ Otherwise they are implicit algebraic quantities.
      ++ The returned symbols y1,...,yn are bound in the interpreter
      ++ to respective root values.
      ++ Error: if p has more than one variable y.
      ++
      ++X a:Polynomial(Integer):=-3*x^2+2*x-13
      ++X zerosOf(a)

    zerosOf : SparseUnivariatePolynomial $ -> List $
      ++zerosOf(p) returns \spad{[y1,...,yn]} such that \spad{p(yi) = 0}.
      ++ The yi's are expressed in radicals if possible, and otherwise
      ++ as implicit algebraic quantities.
      ++ The returned symbols y1,...,yn are bound in the interpreter
      ++ to respective root values.
      ++
      ++X a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13
      ++X zerosOf(a)

    zerosOf : (SparseUnivariatePolynomial $, Symbol) -> List $
      ++zerosOf(p, y) returns \spad{[y1,...,yn]} such that \spad{p(yi) = 0}.
      ++ The yi's are expressed in radicals if possible, and otherwise
      ++ as implicit algebraic quantities
      ++ which display as \spad{'yi}.
      ++ The returned symbols y1,...,yn are bound in the interpreter
      ++ to respective root values.
      ++
      ++X a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13
      ++X zerosOf(a,x)

   add

     SUP ==> SparseUnivariatePolynomial $
 
     assign  : (Symbol, $) -> $

     allroots: (SUP, Symbol, (SUP, Symbol) -> $) -> List $

     binomialRoots: (SUP, Symbol, (SUP, Symbol) -> $) -> List $
 
     zeroOf(p:SUP) == assign(x := new(), zeroOf(p, x))
 
     rootOf(p:SUP) == assign(x := new(), rootOf(p, x))
 
     zerosOf(p:SUP) == zerosOf(p, new())
 
     rootsOf(p:SUP) == rootsOf(p, new())
 
     rootsOf(p:SUP, y:Symbol) == allroots(p, y, rootOf)
 
     zerosOf(p:SUP, y:Symbol) == allroots(p, y, zeroOf)
 
     assign(x, f) == (assignSymbol(x, f, $)$Lisp; f)
 
     zeroOf(p:Polynomial $) ==
       empty?(l := variables p) => error "zeroOf: constant polynomial"
       zeroOf(univariate p, first l)
 
     rootOf(p:Polynomial $) ==
       empty?(l := variables p) => error "rootOf: constant polynomial"
       rootOf(univariate p, first l)
 
     zerosOf(p:Polynomial $) ==
       empty?(l := variables p) => error "zerosOf: constant polynomial"
       zerosOf(univariate p, first l)
 
     rootsOf(p:Polynomial $) ==
       empty?(l := variables p) => error "rootsOf: constant polynomial"
       rootsOf(univariate p, first l)
 
     zeroOf(p:SUP, y:Symbol) ==
       zero?(d := degree p) => error "zeroOf: constant polynomial"
       zero? coefficient(p, 0) => 0
       a := leadingCoefficient p
       d = 2 =>
         b := coefficient(p, 1)
         (sqrt(b**2 - 4 * a * coefficient(p, 0)) - b) / (2 * a)
       (r := retractIfCan(reductum p)@Union($,"failed")) case "failed" =>
         rootOf(p, y)
       nthRoot(- (r::$ / a), d)
 
     binomialRoots(p, y, fn) ==
       alpha := assign(x := new(y)$Symbol, fn(p, x))
       ((n := degree p) = 1) =>  [ alpha ]
       cyclo := cyclotomic(n,monomial(1,1)$SUP)_
                     $NumberTheoreticPolynomialFunctions(SUP)
       beta := assign(x := new(y)$Symbol, fn(cyclo, x))
       [alpha*beta**i for i in 0..(n-1)::NonNegativeInteger]
 
     import PolynomialDecomposition(SUP,$)
 
     allroots(p, y, fn) ==
       zero? p => error "allroots: polynomial must be nonzero"
       zero? coefficient(p,0) =>
          concat(0, allroots(p quo monomial(1,1), y, fn))
       zero?(p1:=reductum p) => empty()
       zero? reductum p1 => binomialRoots(p, y, fn)
       decompList := decompose(p)
       # decompList > 1 =>
           h := last decompList
           g := leftFactor(p,h) :: SUP
           groots := allroots(g, y, fn)
           "append"/[allroots(h-r::SUP, y, fn) for r in groots]
       ans := nil()$List($)
       while not ground? p repeat
         alpha := assign(x := new(y)$Symbol, fn(p, x))
         q     := monomial(1, 1)$SUP - alpha::SUP
         if not zero?(p alpha) then
           p   := p quo q
           ans := concat(alpha, ans)
         else while zero?(p alpha) repeat
           p   := (p exquo q)::SUP
           ans := concat(alpha, ans)
       reverse_! ans