This file is indexed.

/usr/share/axiom-20170501/src/algebra/ACPLOT.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
)abbrev domain ACPLOT PlaneAlgebraicCurvePlot
++ Author: Clifton J. Williamson and Timothy Daly
++ Date Created: Fall 1988
++ Date Last Updated: 27 April 1990
++ Description:
++ Plot a NON-SINGULAR plane algebraic curve p(x,y) = 0.

PlaneAlgebraicCurvePlot() : SIG == CODE where

  SIG ==> PlottablePlaneCurveCategory with

    makeSketch : (Polynomial Integer,Symbol,Symbol,Segment Fraction Integer,
                 Segment Fraction Integer) -> %
      ++ makeSketch(p,x,y,a..b,c..d) creates an ACPLOT of the
      ++ curve \spad{p = 0} in the region a <= x <= b, c <= y <= d.
      ++ More specifically, 'makeSketch' plots a non-singular algebraic curve
      ++ \spad{p = 0} in an rectangular region xMin <= x <= xMax,
      ++ yMin <= y <= yMax. The user inputs
      ++ \spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}.
      ++ Here p is a polynomial in the variables x and y with
      ++ integer coefficients (p belongs to the domain
      ++ \spad{Polynomial Integer}). The case
      ++ where p is a polynomial in only one of the variables is
      ++ allowed.  The variables x and y are input to specify the
      ++ the coordinate axes.  The horizontal axis is the x-axis and
      ++ the vertical axis is the y-axis.  The rational numbers
      ++ xMin,...,yMax specify the boundaries of the region in
      ++ which the curve is to be plotted.
      ++
      ++X makeSketch(x+y,x,y,-1/2..1/2,-1/2..1/2)$ACPLOT

    refine : (%,DoubleFloat) -> %
      ++ refine(p,x) is not documented
      ++
      ++X sketch:=makeSketch(x+y,x,y,-1/2..1/2,-1/2..1/2)$ACPLOT
      ++X refined:=refine(sketch,0.1)

  CODE ==> add

    import PointPackage DoubleFloat
    import Plot
    import RealSolvePackage

    BoundaryPts ==> Record(left:   List Point DoubleFloat,_
                           right:  List Point DoubleFloat,_
                           bottom: List Point DoubleFloat,_
                           top:    List Point DoubleFloat)

    NewPtInfo   ==> Record(newPt: Point DoubleFloat,_
                           type:  String)

    Corners     ==> Record(minXVal: DoubleFloat,_
                           maxXVal: DoubleFloat,_
                           minYVal: DoubleFloat,_
                           maxYVal: DoubleFloat)

    kinte       ==> solve$RealSolvePackage()
  
    rsolve      ==> realSolve$RealSolvePackage()
  
    singValBetween?:(DoubleFloat,DoubleFloat,List DoubleFloat) -> Boolean
  
    segmentInfo:(DoubleFloat -> DoubleFloat,DoubleFloat,DoubleFloat,_
                 List DoubleFloat,List DoubleFloat,List DoubleFloat,_
                 DoubleFloat,DoubleFloat) -> _
      Record(seg:Segment DoubleFloat,_
             left: DoubleFloat,_
             lowerVals: List DoubleFloat,_
             upperVals:List DoubleFloat)
  
    swapCoords:Point DoubleFloat -> Point DoubleFloat
  
    samePlottedPt?:(Point DoubleFloat,Point DoubleFloat) -> Boolean
  
    findPtOnList:(Point DoubleFloat,List Point DoubleFloat) -> _
      Union(Point DoubleFloat,"failed")
  
    makeCorners:(DoubleFloat,DoubleFloat,DoubleFloat,DoubleFloat) -> Corners
  
    getXMin: Corners -> DoubleFloat
  
    getXMax: Corners -> DoubleFloat
  
    getYMin: Corners -> DoubleFloat
  
    getYMax: Corners -> DoubleFloat
  
    SFPolyToUPoly:Polynomial DoubleFloat -> _
      SparseUnivariatePolynomial DoubleFloat
  
    RNPolyToUPoly:Polynomial Fraction Integer -> _
      SparseUnivariatePolynomial Fraction Integer
  
    coerceCoefsToSFs:Polynomial Integer -> Polynomial DoubleFloat
  
    coerceCoefsToRNs:Polynomial Integer -> Polynomial Fraction Integer
  
    RNtoSF:Fraction Integer -> DoubleFloat
  
    RNtoNF:Fraction Integer -> Float
  
    SFtoNF:DoubleFloat -> Float
  
    listPtsOnHorizBdry:(Polynomial Fraction Integer,Symbol,Fraction Integer,_
                        Float,Float) -> _
      List Point DoubleFloat
  
    listPtsOnVertBdry:(Polynomial Fraction Integer,Symbol,Fraction Integer,_
                       Float,Float) -> _
      List Point DoubleFloat
  
    listPtsInRect:(List List Float,Float,Float,Float,Float) -> _
      List Point DoubleFloat
  
    ptsSuchThat?:(List List Float,List Float -> Boolean) -> Boolean
  
    inRect?:(List Float,Float,Float,Float,Float) -> Boolean
  
    onHorzSeg?:(List Float,Float,Float,Float) -> Boolean
  
    onVertSeg?:(List Float,Float,Float,Float) -> Boolean
  
    newX:(List List Float,List List Float,Float,Float,Float,Fraction Integer,_
          Fraction Integer) -> Fraction Integer
  
    newY:(List List Float,List List Float,Float,Float,Float,_
          Fraction Integer,Fraction Integer) -> Fraction Integer
  
    makeOneVarSketch:(Polynomial Integer,Symbol,Symbol,Fraction Integer,_
                      Fraction Integer,Fraction Integer,Fraction Integer,_
                      Symbol) -> %
  
    makeLineSketch:(Polynomial Integer,Symbol,Symbol,Fraction Integer,_
                    Fraction Integer,Fraction Integer,Fraction Integer) -> %
  
    makeRatFcnSketch:(Polynomial Integer,Symbol,Symbol,Fraction Integer,_
                      Fraction Integer,Fraction Integer,Fraction Integer,_
                      Symbol) -> %
  
    makeGeneralSketch:(Polynomial Integer,Symbol,Symbol,Fraction Integer,_
                       Fraction Integer,Fraction Integer,Fraction Integer) -> %
  
    traceBranches:(Polynomial DoubleFloat,Polynomial DoubleFloat,_
                   Polynomial DoubleFloat,Symbol,Symbol,Corners,DoubleFloat,_
                   DoubleFloat,PositiveInteger, List Point DoubleFloat,_
                   BoundaryPts) -> List List Point DoubleFloat
  
    dummyFirstPt:(Point DoubleFloat,Polynomial DoubleFloat,_
                  Polynomial DoubleFloat,Symbol,Symbol,List Point DoubleFloat,_
                  List Point DoubleFloat,List Point DoubleFloat,_
                  List Point DoubleFloat) -> Point DoubleFloat
  
    listPtsOnSegment:(Polynomial DoubleFloat,Polynomial DoubleFloat,_
                      Polynomial DoubleFloat,Symbol,Symbol,Point DoubleFloat,_
                      Point DoubleFloat,Corners, DoubleFloat,DoubleFloat,_
                      PositiveInteger,List Point DoubleFloat,_
                      List Point DoubleFloat) -> List List Point DoubleFloat
  
    listPtsOnLoop:(Polynomial DoubleFloat,Polynomial DoubleFloat,_
                   Polynomial DoubleFloat,Symbol,Symbol,Point DoubleFloat,_
                   Corners, DoubleFloat,DoubleFloat,PositiveInteger,_
                   List Point DoubleFloat,List Point DoubleFloat) -> _
                   List List Point DoubleFloat
  
    computeNextPt:(Polynomial DoubleFloat,Polynomial DoubleFloat,_
                   Polynomial DoubleFloat,Symbol,Symbol,Point DoubleFloat,_
                   Point DoubleFloat,Corners, DoubleFloat,DoubleFloat,_
                   PositiveInteger,List Point DoubleFloat,_
                   List Point DoubleFloat) -> NewPtInfo
  
    newtonApprox:(SparseUnivariatePolynomial DoubleFloat, DoubleFloat, _
                  DoubleFloat, PositiveInteger) -> Union(DoubleFloat, "failed")
  
  --% representation
  
    Rep := Record(poly    : Polynomial Integer,_
                  xVar    : Symbol,_
                  yVar    : Symbol,_
                  minXVal : Fraction Integer,_
                  maxXVal : Fraction Integer,_
                  minYVal : Fraction Integer,_
                  maxYVal : Fraction Integer,_
                  bdryPts : BoundaryPts,_
                  hTanPts : List Point DoubleFloat,_
                  vTanPts : List Point DoubleFloat,_
                  branches: List List Point DoubleFloat)
  
  --% global constants
  
    EPSILON : Float := .000001 -- precision to which realSolve finds roots
    PLOTERR : DoubleFloat := float(1,-3,10)
      -- maximum allowable difference in each coordinate when
      -- determining if 2 plotted points are equal
  
  --% global flags
  
    NADA   : String := "nothing in particular"
    BDRY   : String := "boundary point"
    CRIT   : String := "critical point"
    BOTTOM : String := "bottom"
    TOP    : String := "top"
  
  --% hacks
  
    NFtoSF: Float -> DoubleFloat
    NFtoSF x == 0 + convert(x)$Float
  
  --% points
    makePt: (DoubleFloat,DoubleFloat) -> Point DoubleFloat
    makePt(xx,yy) == point(l : List DoubleFloat := [xx,yy])
  
    swapCoords(pt) == makePt(yCoord pt,xCoord pt)
  
    samePlottedPt?(p0,p1) ==
      -- determines if p1 lies in a square with side 2 PLOTERR
      -- centered at p0
      x0 := xCoord p0; y0 := yCoord p0
      x1 := xCoord p1; y1 := yCoord p1
      (abs(x1-x0) < PLOTERR) and (abs(y1-y0) < PLOTERR)
  
    findPtOnList(pt,pointList) ==
      for point in pointList repeat
        samePlottedPt?(pt,point) => return point
      "failed"
  
  --% corners
  
    makeCorners(xMinSF,xMaxSF,yMinSF,yMaxSF) ==
      [xMinSF,xMaxSF,yMinSF,yMaxSF]
  
    getXMin(corners) == corners.minXVal
    getXMax(corners) == corners.maxXVal
    getYMin(corners) == corners.minYVal
    getYMax(corners) == corners.maxYVal
  
  --% coercions
  
    SFPolyToUPoly(p) ==
    -- 'p' is of type Polynomial, but has only one variable
      zero? p => 0
      monomial(leadingCoefficient p,totalDegree p) +
         SFPolyToUPoly(reductum p)
  
    RNPolyToUPoly(p) ==
    -- 'p' is of type Polynomial, but has only one variable
      zero? p => 0
      monomial(leadingCoefficient p,totalDegree p) +
          RNPolyToUPoly(reductum p)
  
    coerceCoefsToSFs(p) ==
    -- coefficients of 'p' are coerced to be DoubleFloat's
      map(coerce,p)$PolynomialFunctions2(Integer,DoubleFloat)
  
    coerceCoefsToRNs(p) ==
    -- coefficients of 'p' are coerced to be DoubleFloat's
      map(coerce,p)$PolynomialFunctions2(Integer,Fraction Integer)
  
    RNtoSF(r) == coerce(r)@DoubleFloat
    RNtoNF(r) == coerce(r)@Float
    SFtoNF(x) == convert(x)@Float
  
  --% computation of special points
  
    listPtsOnHorizBdry(pRN,y,y0,xMinNF,xMaxNF) ==
    -- strict inequality here: corners on vertical boundary
      pointList : List Point DoubleFloat := nil()
      ySF := RNtoSF(y0)
      f := eval(pRN,y,y0)
      roots : List Float := kinte(f,EPSILON)
      for root in roots repeat
        if (xMinNF < root) and (root < xMaxNF) then
          pointList := cons(makePt(NFtoSF root, ySF), pointList)
      pointList
  
    listPtsOnVertBdry(pRN,x,x0,yMinNF,yMaxNF) ==
      pointList : List Point DoubleFloat := nil()
      xSF := RNtoSF(x0)
      f := eval(pRN,x,x0)
      roots : List Float := kinte(f,EPSILON)
      for root in roots repeat
        if (yMinNF <= root) and (root <= yMaxNF) then
          pointList := cons(makePt(xSF, NFtoSF root), pointList)
      pointList
  
    listPtsInRect(points,xMin,xMax,yMin,yMax) ==
      pointList : List Point DoubleFloat := nil()
      for point in points repeat
        xx := first point; yy := second point
        if (xMin<=xx) and (xx<=xMax) and (yMin<=yy) and (yy<=yMax) then
          pointList := cons(makePt(NFtoSF xx,NFtoSF yy),pointList)
      pointList
  
    ptsSuchThat?(points,pred) ==
      for point in points repeat
        if pred point then return true
      false
  
    inRect?(point,xMinNF,xMaxNF,yMinNF,yMaxNF) ==
      xx := first point; yy := second point
      xMinNF <= xx and xx <= xMaxNF and yMinNF <= yy and yy <= yMaxNF
  
    onHorzSeg?(point,xMinNF,xMaxNF,yNF) ==
      xx := first point; yy := second point
      yy = yNF and xMinNF <= xx and xx <= xMaxNF
  
    onVertSeg?(point,yMinNF,yMaxNF,xNF) ==
      xx := first point; yy := second point
      xx = xNF and yMinNF <= yy and yy <= yMaxNF
  
    newX(vtanPts,singPts,yMinNF,yMaxNF,xNF,xRN,horizInc) ==
      xNewNF := xNF + RNtoNF horizInc
      xRtNF := max(xNF,xNewNF); xLftNF := min(xNF,xNewNF)
  --  ptsSuchThat?(singPts,inRect?(#1,xLftNF,xRtNF,yMinNF,yMaxNF)) =>
      foo :List Float -> Boolean := x +-> inRect?(x,xLftNF,xRtNF,yMinNF,yMaxNF)
      ptsSuchThat?(singPts,foo) =>
        newX(vtanPts,singPts,yMinNF,yMaxNF,xNF,xRN,_
          horizInc/2::(Fraction Integer))
  --  ptsSuchThat?(vtanPts,onVertSeg?(#1,yMinNF,yMaxNF,xNewNF)) =>
      goo : List Float -> Boolean := x +-> onVertSeg?(x,yMinNF,yMaxNF,xNewNF)
      ptsSuchThat?(vtanPts,goo) =>
        newX(vtanPts,singPts,yMinNF,yMaxNF,xNF,xRN,_
          horizInc/2::(Fraction Integer))
      xRN + horizInc
  
    newY(htanPts,singPts,xMinNF,xMaxNF,yNF,yRN,vertInc) ==
      yNewNF := yNF + RNtoNF vertInc
      yTopNF := max(yNF,yNewNF); yBotNF := min(yNF,yNewNF)
  --  ptsSuchThat?(singPts,inRect?(#1,xMinNF,xMaxNF,yBotNF,yTopNF)) =>
      foo:List Float -> Boolean := x +-> inRect?(x,xMinNF,xMaxNF,yBotNF,yTopNF)
      ptsSuchThat?(singPts,foo) =>
        newY(htanPts,singPts,xMinNF,xMaxNF,yNF,yRN,_
          vertInc/2::(Fraction Integer))
  --  ptsSuchThat?(htanPts,onHorzSeg?(#1,xMinNF,xMaxNF,yNewNF)) =>
      goo : List Float -> Boolean := x +-> onHorzSeg?(x,xMinNF,xMaxNF,yNewNF)
      ptsSuchThat?(htanPts,goo) =>
        newY(htanPts,singPts,xMinNF,xMaxNF,yNF,yRN,_
          vertInc/2::(Fraction Integer))
      yRN + vertInc
  
  --% creation of sketches
  
    makeSketch(p,x,y,xRange,yRange) ==
      xMin := lo xRange; xMax := hi xRange
      yMin := lo yRange; yMax := hi yRange
      -- test input for consistency
      xMax <= xMin =>
        error "makeSketch: bad range for first variable"
      yMax <= yMin =>
        error "makeSketch: bad range for second variable"
      varList := variables p
      # varList > 2 =>
        error "makeSketch: polynomial in more than 2 variables"
      # varList = 0 =>
        error "makeSketch: constant polynomial"
      -- polynomial in 1 variable
      # varList = 1 =>
        (not member?(x,varList)) and (not member?(y,varList)) =>
          error "makeSketch: bad variables"
        makeOneVarSketch(p,x,y,xMin,xMax,yMin,yMax,first varList)
      -- polynomial in 2 variables
      (not member?(x,varList)) or (not member?(y,varList)) =>
        error "makeSketch: bad variables"
      totalDegree p = 1 =>
        makeLineSketch(p,x,y,xMin,xMax,yMin,yMax)
      -- polynomial is linear in one variable
      -- y is a rational function of x
      degree(p,y) = 1 =>
        makeRatFcnSketch(p,x,y,xMin,xMax,yMin,yMax,y)
      -- x is a rational function of y
      degree(p,x) = 1 =>
        makeRatFcnSketch(p,x,y,xMin,xMax,yMin,yMax,x)
      -- the general case
      makeGeneralSketch(p,x,y,xMin,xMax,yMin,yMax)
  
  --% special cases
  
    makeOneVarSketch(p,x,y,xMin,xMax,yMin,yMax,var) ==
    -- the case where 'p' is a polynomial in only one variable
    -- the graph consists of horizontal or vertical lines
      if var = x then
        minVal := RNtoNF xMin
        maxVal := RNtoNF xMax
      else
        minVal := RNtoNF yMin
        maxVal := RNtoNF yMax
      lf : List Point DoubleFloat := nil()
      rt : List Point DoubleFloat := nil()
      bt : List Point DoubleFloat := nil() 
      tp : List Point DoubleFloat := nil()
      htans : List Point DoubleFloat := nil() 
      vtans : List Point DoubleFloat := nil()
      bran : List List Point DoubleFloat := nil()
      roots := kinte(p,EPSILON)
      sketchRoots : List DoubleFloat := nil()
      for root in roots repeat
        if (minVal <= root) and (root <= maxVal) then
            sketchRoots := cons(NFtoSF root,sketchRoots)
      null sketchRoots =>
        [p,x,y,xMin,xMax,yMin,yMax,[lf,rt,bt,tp],htans,vtans,bran]
      if var = x then
        yMinSF := RNtoSF yMin; yMaxSF := RNtoSF yMax
        for rootSF in sketchRoots repeat
            tp := cons(pt1 := makePt(rootSF,yMaxSF),tp)
            bt := cons(pt2 := makePt(rootSF,yMinSF),bt)
            branch : List Point DoubleFloat := [pt1,pt2]
            bran := cons(branch,bran)
      else
        xMinSF := RNtoSF xMin; xMaxSF := RNtoSF xMax
        for rootSF in sketchRoots repeat
            rt := cons(pt1 := makePt(xMaxSF,rootSF),rt)
            lf := cons(pt2 := makePt(xMinSF,rootSF),lf)
            branch : List Point DoubleFloat := [pt1,pt2]
            bran := cons(branch,bran)
      [p,x,y,xMin,xMax,yMin,yMax,[lf,rt,bt,tp],htans,vtans,bran]
  
    makeLineSketch(p,x,y,xMin,xMax,yMin,yMax) ==
    -- the case where p(x,y) = a x + b y + c with a ^= 0, b ^= 0
    -- this is a line which is neither vertical nor horizontal
      xMinSF := RNtoSF xMin; xMaxSF := RNtoSF xMax
      yMinSF := RNtoSF yMin; yMaxSF := RNtoSF yMax
      -- determine the coefficients a, b, and c
      a := ground(coefficient(p,x,1)) :: DoubleFloat
      b := ground(coefficient(p,y,1)) :: DoubleFloat
      c := ground(coefficient(coefficient(p,x,0),y,0)) :: DoubleFloat
      lf : List Point DoubleFloat := nil()
      rt : List Point DoubleFloat := nil()
      bt : List Point DoubleFloat := nil()
      tp : List Point DoubleFloat := nil()
      htans : List Point DoubleFloat := nil()
      vtans : List Point DoubleFloat := nil()
      branch : List Point DoubleFloat := nil()
      bran : List List Point DoubleFloat := nil()
      -- compute x coordinate of point on line with y = yMin
      xBottom := (- b*yMinSF - c)/a
      -- compute x coordinate of point on line with y = yMax
      xTop    := (- b*yMaxSF - c)/a
      -- compute y coordinate of point on line with x = xMin
      yLeft   := (- a*xMinSF - c)/b
      -- compute y coordinate of point on line with x = xMax
      yRight  := (- a*xMaxSF - c)/b
      -- determine which of the above 4 points are in the region
      -- to be plotted and list them as a branch
      if (xMinSF < xBottom) and (xBottom < xMaxSF) then
          bt := cons(pt := makePt(xBottom,yMinSF),bt)
          branch := cons(pt,branch)
      if (xMinSF < xTop) and (xTop < xMaxSF) then
          tp := cons(pt := makePt(xTop,yMaxSF),tp)
          branch := cons(pt,branch)
      if (yMinSF <= yLeft) and (yLeft <= yMaxSF) then
          lf := cons(pt := makePt(xMinSF,yLeft),lf)
          branch := cons(pt,branch)
      if (yMinSF <= yRight) and (yRight <= yMaxSF) then
          rt := cons(pt := makePt(xMaxSF,yRight),rt)
          branch := cons(pt,branch)
      bran := cons(branch,bran)
      [p,x,y,xMin,xMax,yMin,yMax,[lf,rt,bt,tp],htans,vtans,bran]
  
    singValBetween?(xCurrent,xNext,xSingList) ==
      for xVal in xSingList repeat
        (xCurrent < xVal) and (xVal < xNext) => return true
      false
  
    segmentInfo(f,lo,hi,botList,topList,singList,minSF,maxSF) ==
      repeat
        -- 'current' is the smallest element of 'topList' and 'botList'
        -- 'currentFrom' records the list from which it was taken
        if null topList then
          if null botList then
            return [segment(lo,hi),hi,nil(),nil()]
          else
            current := first botList
            botList := rest  botList
            currentFrom := BOTTOM
        else
          if null botList then
            current := first topList
            topList := rest  topList
            currentFrom := TOP
          else
            bot := first botList
            top := first topList
            if bot < top then
              current := bot
              botList := rest botList
              currentFrom := BOTTOM
            else
              current := top
              topList := rest topList
              currentFrom := TOP
        -- 'nxt' is the next smallest element of 'topList'
        --  and 'botList'
        -- 'nextFrom' records the list from which it was taken
        if null topList then
          if null botList then
            return [segment(lo,hi),hi,nil(),nil()]
          else
            nxt := first botList
            botList := rest botList
            nextFrom := BOTTOM
        else
          if null botList then
            nxt := first topList
            topList := rest topList
            nextFrom := TOP
          else
            bot := first botList
            top := first topList
            if bot < top then
              nxt := bot
              botList := rest botList
              nextFrom := BOTTOM
            else
              nxt := top
              topList := rest topList
              nextFrom := TOP
        if currentFrom = nextFrom then
          if singValBetween?(current,nxt,singList) then
            return [segment(lo,current),nxt,botList,topList]
          else
            val := f((nxt - current)/2::DoubleFloat)
            if (val <= minSF) or (val >= maxSF) then
              return [segment(lo,current),nxt,botList,topList]
        else
          if singValBetween?(current,nxt,singList) then
            return [segment(lo,current),nxt,botList,topList]
  
    makeRatFcnSketch(p,x,y,xMin,xMax,yMin,yMax,depVar) ==
    -- the case where p(x,y) is linear in x or y
    -- Thus, one variable is a rational function of the other.
    -- Therefore, we may use the 2-dimensional function plotting
    -- package.  The only problem is determining the intervals on
    -- on which the function is to be plotted.
    --!! corners: for example, upper left corner is on graph with y' > 0
      factoredP := p ::(Factored Polynomial Integer)
      numberOfFactors(factoredP) > 1 =>
          error "reducible polynomial"  --!! sketch each factor
      dpdx := differentiate(p,x)
      dpdy := differentiate(p,y)
      pRN := coerceCoefsToRNs p
      xMinSF := RNtoSF xMin; xMaxSF := RNtoSF xMax
      yMinSF := RNtoSF yMin; yMaxSF := RNtoSF yMax
      xMinNF := RNtoNF xMin; xMaxNF := RNtoNF xMax
      yMinNF := RNtoNF yMin; yMaxNF := RNtoNF yMax
      -- 'p' is of degree 1 in the variable 'depVar'.
      -- Thus, 'depVar' is a rational function of the other variable.
      num := -coefficient(p,depVar,0)
      den :=  coefficient(p,depVar,1)
      numUPolySF := SFPolyToUPoly(coerceCoefsToSFs(num))
      denUPolySF := SFPolyToUPoly(coerceCoefsToSFs(den))
      -- this is the rational function
      f:DoubleFloat -> DoubleFloat := s +-> elt(numUPolySF,s)/elt(denUPolySF,s)
      -- values of the dependent and independent variables
      if depVar = x then
        indVarMin   := yMin;   indVarMax   := yMax
        indVarMinNF := yMinNF; indVarMaxNF := yMaxNF
        indVarMinSF := yMinSF; indVarMaxSF := yMaxSF
        depVarMin   := xMin;   depVarMax   := xMax
        depVarMinSF := xMinSF; depVarMaxSF := xMaxSF
      else
        indVarMin   := xMin;   indVarMax   := xMax
        indVarMinNF := xMinNF; indVarMaxNF := xMaxNF
        indVarMinSF := xMinSF; indVarMaxSF := xMaxSF
        depVarMin   := yMin;   depVarMax   := yMax
        depVarMinSF := yMinSF; depVarMaxSF := yMaxSF
      -- Create lists of critical points.
      htanPts := rsolve([p,dpdx],[x,y],EPSILON)
      vtanPts := rsolve([p,dpdy],[x,y],EPSILON)
      htans := listPtsInRect(htanPts,xMinNF,xMaxNF,yMinNF,yMaxNF)
      vtans := listPtsInRect(vtanPts,xMinNF,xMaxNF,yMinNF,yMaxNF)
      -- Create lists which will contain boundary points.
      lf : List Point DoubleFloat := nil()
      rt : List Point DoubleFloat := nil()
      bt : List Point DoubleFloat := nil()
      tp : List Point DoubleFloat := nil()
      -- Determine values of the independent variable at the which
      -- the rational function has a pole as well as the values of
      -- the independent variable for which there is a point on the
      -- upper or lower boundary.
      singList : List DoubleFloat :=
        roots : List Float := kinte(den,EPSILON)
        outList : List DoubleFloat := nil()
        for root in roots repeat
          if (indVarMinNF < root) and (root < indVarMaxNF) then
            outList := cons(NFtoSF root,outList)
        sort((x,y) +-> x < y, outList)
      topList : List DoubleFloat :=
        roots : List Float := kinte(eval(pRN,depVar,depVarMax),EPSILON)
        outList : List DoubleFloat := nil()
        for root in roots repeat
          if (indVarMinNF < root) and (root < indVarMaxNF) then
            outList := cons(NFtoSF root,outList)
        sort((x,y) +-> x < y, outList)
      botList : List DoubleFloat :=
        roots : List Float := kinte(eval(pRN,depVar,depVarMin),EPSILON)
        outList : List DoubleFloat := nil()
        for root in roots repeat
          if (indVarMinNF < root) and (root < indVarMaxNF) then
            outList := cons(NFtoSF root,outList)
        sort((x,y) +-> x < y, outList)
      -- We wish to determine if the graph has points on the 'left'
      -- and 'right' boundaries, so we compute the value of the
      -- rational function at the lefthand and righthand values of
      -- the dependent variable.  If the function has a singularity
      -- on the left or right boundary, then 'leftVal' or 'rightVal'
      -- is given a dummy valuewhich will convince the program that
      -- there is no point on the left or right boundary.
      denUPolyRN := RNPolyToUPoly(coerceCoefsToRNs(den))
      if elt(denUPolyRN,indVarMin) = 0$(Fraction Integer) then
        leftVal  := depVarMinSF - (abs(depVarMinSF) + 1$DoubleFloat)
      else
        leftVal  := f(indVarMinSF)
      if elt(denUPolyRN,indVarMax) = 0$(Fraction Integer) then
        rightVal := depVarMinSF - (abs(depVarMinSF) + 1$DoubleFloat)
      else
        rightVal := f(indVarMaxSF)
      -- Now put boundary points on the appropriate lists.
      if depVar = x then
        if (xMinSF < leftVal) and (leftVal < xMaxSF) then
          bt := cons(makePt(leftVal,yMinSF),bt)
        if (xMinSF < rightVal) and (rightVal < xMaxSF) then
          tp := cons(makePt(rightVal,yMaxSF),tp)
        for val in botList repeat
          lf := cons(makePt(xMinSF,val),lf)
        for val in topList repeat
          rt := cons(makePt(xMaxSF,val),rt)
      else
        if (yMinSF < leftVal) and (leftVal < yMaxSF) then
          lf := cons(makePt(xMinSF,leftVal),lf)
        if (yMinSF < rightVal) and (rightVal < yMaxSF) then
          rt := cons(makePt(xMaxSF,rightVal),rt)
        for val in botList repeat
          bt := cons(makePt(val,yMinSF),bt)
        for val in topList repeat
          tp := cons(makePt(val,yMaxSF),tp)
      bran : List List Point DoubleFloat := nil()
      -- Determine segments on which the rational function is to
      -- be plotted.
      if (depVarMinSF < leftVal) and (leftVal < depVarMaxSF) then
        lo := indVarMinSF
      else
        if null topList then
          if null botList then
            return [p,x,y,xMin,xMax,yMin,yMax,[lf,rt,bt,tp],_
                                            htans,vtans,bran]
          else
            lo := first botList
            botList := rest botList
        else
          if null botList then
            lo := first topList
            topList := rest topList
          else
            bot := first botList
            top := first topList
            if bot < top then
              lo := bot
              botList := rest botList
            else
              lo := top
              topList := rest topList
      hi := 0$DoubleFloat  -- @#$%^&* compiler
      if (depVarMinSF < rightVal) and (rightVal < depVarMaxSF) then
        hi := indVarMaxSF
      else
        if null topList then
          if null botList then
            error "makeRatFcnSketch: plot domain"
          else
            hi := last botList
            botList := remove(hi,botList)
        else
          if null botList then
            hi := last topList
            topList := remove(hi,topList)
          else
            bot := last botList
            top := last topList
            if bot > top then
              hi := bot
              botList := remove(hi,botList)
            else
              hi := top
              topList := remove(hi,topList)
      if (depVar = x) then
        (minSF := xMinSF; maxSF := xMaxSF)
      else
        (minSF := yMinSF; maxSF := yMaxSF)
      segList : List Segment DoubleFloat := nil()
      repeat
        segInfo := segmentInfo(f,lo,hi,botList,topList,singList,_
                                    minSF,maxSF)
        segList := cons(segInfo.seg,segList)
        lo := segInfo.left
        botList := segInfo.lowerVals
        topList := segInfo.upperVals
        if lo = hi then break
      for segment in segList repeat
        RFPlot : Plot := plot(f,segment)
        curve := first(listBranches(RFPlot))
        if depVar = y then
          bran := cons(curve,bran)
        else
          bran := cons(map(swapCoords,curve),bran)
      [p,x,y,xMin,xMax,yMin,yMax,[lf,rt,bt,tp],htans,vtans,bran]
  
  --% the general case
  
    makeGeneralSketch(pol,x,y,xMin,xMax,yMin,yMax) ==
      --!! corners of region should not be on curve
      --!! enlarge region if necessary
      factoredPol := pol :: (Factored Polynomial Integer)
      numberOfFactors(factoredPol) > 1 =>
          error "reducible polynomial"  --!! sketch each factor
      p := nthFactor(factoredPol,1)
      dpdx := differentiate(p,x); dpdy := differentiate(p,y)
      xMinNF := RNtoNF xMin; xMaxNF := RNtoNF xMax
      yMinNF := RNtoNF yMin; yMaxNF := RNtoNF yMax
      -- compute singular points; error if singularities in region
      singPts := rsolve([p,dpdx,dpdy],[x,y],EPSILON)
  --  ptsSuchThat?(singPts,inRect?(#1,xMinNF,xMaxNF,yMinNF,yMaxNF)) =>
      foo:List Float -> Boolean := s +-> inRect?(s,xMinNF,xMaxNF,yMinNF,yMaxNF)
      ptsSuchThat?(singPts,foo) =>
        error "singular pts in region of sketch"
      -- compute critical points
      htanPts := rsolve([p,dpdx],[x,y],EPSILON)
      vtanPts := rsolve([p,dpdy],[x,y],EPSILON)
      critPts := append(htanPts,vtanPts)
      -- if there are critical points on the boundary, then enlarge
      -- the region, but be sure that the new region does not contain
      -- any singular points
      hInc : Fraction Integer := (1/20) * (xMax - xMin)
      vInc : Fraction Integer := (1/20) * (yMax - yMin)
  --  if ptsSuchThat?(critPts,onVertSeg?(#1,yMinNF,yMaxNF,xMinNF)) then
      foo : List Float -> Boolean := s +-> onVertSeg?(s,yMinNF,yMaxNF,xMinNF)
      if ptsSuchThat?(critPts,foo) then
        xMin := newX(critPts,singPts,yMinNF,yMaxNF,xMinNF,xMin,-hInc)
        xMinNF := RNtoNF xMin
  --  if ptsSuchThat?(critPts,onVertSeg?(#1,yMinNF,yMaxNF,xMaxNF)) then
      foo : List Float -> Boolean := s +-> onVertSeg?(s,yMinNF,yMaxNF,xMaxNF)
      if ptsSuchThat?(critPts,foo) then
        xMax := newX(critPts,singPts,yMinNF,yMaxNF,xMaxNF,xMax,hInc)
        xMaxNF := RNtoNF xMax
  --  if ptsSuchThat?(critPts,onHorzSeg?(#1,xMinNF,xMaxNF,yMinNF)) then
      foo : List Float -> Boolean := s +-> onHorzSeg?(s,xMinNF,xMaxNF,yMinNF)
      if ptsSuchThat?(critPts,foo) then
        yMin := newY(critPts,singPts,xMinNF,xMaxNF,yMinNF,yMin,-vInc)
        yMinNF := RNtoNF yMin
  --  if ptsSuchThat?(critPts,onHorzSeg?(#1,xMinNF,xMaxNF,yMaxNF)) then
      foo : List Float -> Boolean := s +-> onHorzSeg?(s,xMinNF,xMaxNF,yMaxNF)
      if ptsSuchThat?(critPts,foo) then
        yMax := newY(critPts,singPts,xMinNF,xMaxNF,yMaxNF,yMax,vInc)
        yMaxNF := RNtoNF yMax
      htans := listPtsInRect(htanPts,xMinNF,xMaxNF,yMinNF,yMaxNF)
      vtans := listPtsInRect(vtanPts,xMinNF,xMaxNF,yMinNF,yMaxNF)
      crits := append(htans,vtans)
      -- conversions to DoubleFloats
      xMinSF := RNtoSF xMin; xMaxSF := RNtoSF xMax
      yMinSF := RNtoSF yMin; yMaxSF := RNtoSF yMax
      corners := makeCorners(xMinSF,xMaxSF,yMinSF,yMaxSF)
      pSF := coerceCoefsToSFs p
      dpdxSF := coerceCoefsToSFs dpdx
      dpdySF := coerceCoefsToSFs dpdy
      delta := min((xMaxSF - xMinSF)/25,(yMaxSF - yMinSF)/25)
      err := min(delta/100,PLOTERR/100)
      bound : PositiveInteger := 10
      -- compute points on the boundary
      pRN := coerceCoefsToRNs(p)
      lf : List Point DoubleFloat := 
        listPtsOnVertBdry(pRN,x,xMin,yMinNF,yMaxNF)
      rt : List Point DoubleFloat := 
        listPtsOnVertBdry(pRN,x,xMax,yMinNF,yMaxNF)
      bt : List Point DoubleFloat := 
        listPtsOnHorizBdry(pRN,y,yMin,xMinNF,xMaxNF)
      tp : List Point DoubleFloat := 
        listPtsOnHorizBdry(pRN,y,yMax,xMinNF,xMaxNF)
      bdPts : BoundaryPts := [lf,rt,bt,tp]
      bran := traceBranches(pSF,dpdxSF,dpdySF,x,y,corners,delta,err,_
                             bound,crits,bdPts)
      [p,x,y,xMin,xMax,yMin,yMax,bdPts,htans,vtans,bran]
  
    refine(plot,stepFraction) ==
      p := plot.poly; x := plot.xVar; y := plot.yVar
      dpdx := differentiate(p,x); dpdy := differentiate(p,y)
      pSF := coerceCoefsToSFs p
      dpdxSF := coerceCoefsToSFs dpdx
      dpdySF := coerceCoefsToSFs dpdy
      xMin := plot.minXVal; xMax := plot.maxXVal
      yMin := plot.minYVal; yMax := plot.maxYVal
      xMinSF := RNtoSF xMin; xMaxSF := RNtoSF xMax
      yMinSF := RNtoSF yMin; yMaxSF := RNtoSF yMax
      corners := makeCorners(xMinSF,xMaxSF,yMinSF,yMaxSF)
      pSF := coerceCoefsToSFs p
      dpdxSF := coerceCoefsToSFs dpdx
      dpdySF := coerceCoefsToSFs dpdy
      delta :=
        stepFraction * min((xMaxSF - xMinSF)/25,(yMaxSF - yMinSF)/25)
      err := min(delta/100,PLOTERR/100)
      bound : PositiveInteger := 10
      crits := append(plot.hTanPts,plot.vTanPts)
      bdPts := plot.bdryPts
      bran := traceBranches(pSF,dpdxSF,dpdySF,x,y,corners,delta,err,_
                             bound,crits,bdPts)
      htans := plot.hTanPts; vtans := plot.vTanPts
      [p,x,y,xMin,xMax,yMin,yMax,bdPts,htans,vtans,bran]
  
    traceBranches(pSF,dpdxSF,dpdySF,x,y,corners,delta,err,bound,_
                      crits,bdPts) ==
      -- for boundary points, trace curve from boundary to boundary
      -- add the branch to the list of branches
      -- update list of boundary points by deleting first and last
      -- points on this branch
      -- update list of critical points by deleting any critical
      -- points which were plotted
      lf := bdPts.left; rt := bdPts.right
      tp := bdPts.top ; bt := bdPts.bottom
      bdry := append(append(lf,rt),append(bt,tp))
      bran : List List Point DoubleFloat := nil()
      while not null bdry repeat
        pt := first bdry
        p0 := dummyFirstPt(pt,dpdxSF,dpdySF,x,y,lf,rt,bt,tp)
        segInfo := listPtsOnSegment(pSF,dpdxSF,dpdySF,x,y,p0,pt,_
                         corners,delta,err,bound,crits,bdry)
        bran  := cons(first segInfo,bran)
        crits := second segInfo
        bdry  := third segInfo
      -- trace loops beginning and ending with critical points
      -- add the branch to the list of branches
      -- update list of critical points by deleting any critical
      -- points which were plotted
      while not null crits repeat
        pt := first crits
        segInfo := listPtsOnLoop(pSF,dpdxSF,dpdySF,x,y,pt,_
                         corners,delta,err,bound,crits,bdry)
        bran  := cons(first segInfo,bran)
        crits := second segInfo
      bran
  
    dummyFirstPt(p1,dpdxSF,dpdySF,x,y,lf,rt,bt,tp) ==
    -- The function 'computeNextPt' requires 2 points, p0 and p1.
    -- When computing the second point on a branch which starts
    -- on the boundary, we use the boundary point as p1 and the
    -- 'dummy' point returned by this function as p0.
      x1 := xCoord p1; y1 := yCoord p1
      zero := 0$DoubleFloat; one := 1$DoubleFloat
      px := ground(eval(dpdxSF,[x,y],[x1,y1]))
      py := ground(eval(dpdySF,[x,y],[x1,y1]))
      if px * py < zero then       -- positive slope at p1
        member?(p1,lf) or member?(p1,bt) =>
          makePt(x1 - one,y1 - one)
        makePt(x1 + one,y1 + one)
      else
        member?(p1,lf) or member?(p1,tp) =>
          makePt(x1 - one,y1 + one)
        makePt(x1 + one,y1 - one)
  
  
    listPtsOnSegment(pSF,dpdxSF,dpdySF,x,y,p0,p1,corners,_
                                   delta,err,bound,crits,bdry) ==
    -- p1 is a boundary point; p0 is a 'dummy' point
      bdry := remove(p1,bdry)
      pointList : List Point DoubleFloat := [p1]
      ptInfo := computeNextPt(pSF,dpdxSF,dpdySF,x,y,p0,p1,corners,_
                                   delta,err,bound,crits,bdry)
      p2 := ptInfo.newPt
      ptInfo.type = BDRY =>
        bdry := remove(p2,bdry)
        pointList := cons(p2,pointList)
        [pointList,crits,bdry]
      if ptInfo.type = CRIT then crits := remove(p2,crits)
      pointList := cons(p2,pointList)
      repeat
        pt0 := second pointList; pt1 := first pointList
        ptInfo := computeNextPt(pSF,dpdxSF,dpdySF,x,y,pt0,pt1,corners,_
                                     delta,err,bound,crits,bdry)
        p2 := ptInfo.newPt
        ptInfo.type = BDRY =>
          bdry := remove(p2,bdry)
          pointList := cons(p2,pointList)
          return [pointList,crits,bdry]
        if ptInfo.type = CRIT then crits := remove(p2,crits)
        pointList := cons(p2,pointList)
      --!! delete next line (compiler bug)
      [pointList,crits,bdry]
  
  
    listPtsOnLoop(pSF,dpdxSF,dpdySF,x,y,p1,corners,_
                                   delta,err,bound,crits,bdry) ==
      x1 := xCoord p1; y1 := yCoord p1
      px := ground(eval(dpdxSF,[x,y],[x1,y1]))
      py := ground(eval(dpdySF,[x,y],[x1,y1]))
      p0 := makePt(x1 - 1$DoubleFloat,y1 - 1$DoubleFloat)
      pointList : List Point DoubleFloat := [p1]
      ptInfo := computeNextPt(pSF,dpdxSF,dpdySF,x,y,p0,p1,corners,_
                                   delta,err,bound,crits,bdry)
      p2 := ptInfo.newPt
      ptInfo.type = BDRY =>
        error "boundary reached while on loop"
      if ptInfo.type = CRIT then
        p1 = p2 =>
          error "first and second points on loop are identical"
        crits := remove(p2,crits)
      pointList := cons(p2,pointList)
      repeat
        pt0 := second pointList; pt1 := first pointList
        ptInfo := computeNextPt(pSF,dpdxSF,dpdySF,x,y,pt0,pt1,corners,_
                                     delta,err,bound,crits,bdry)
        p2 := ptInfo.newPt
        ptInfo.type = BDRY =>
          error "boundary reached while on loop"
        if ptInfo.type = CRIT then
          crits := remove(p2,crits)
          p1 = p2 =>
            pointList := cons(p2,pointList)
            return [pointList,crits,bdry]
        pointList := cons(p2,pointList)
      --!! delete next line (compiler bug)
      [pointList,crits,bdry]
  
    computeNextPt(pSF,dpdxSF,dpdySF,x,y,p0,p1,corners,_
                                   delta,err,bound,crits,bdry) ==
    -- p0=(x0,y0) and p1=(x1,y1) are the last two points on the curve.
    -- The function computes the next point on the curve.
    -- The function determines if the next point is a critical point
    -- or a boundary point.
    -- The function returns a record of the form
    -- Record(newPt:Point DoubleFloat,type:String).
    -- If the new point is a boundary point, then 'type' is
    -- "boundary point" and 'newPt' is a boundary point to be
    -- deleted from the list of boundary points yet to be plotted.
    -- Similarly, if the new point is a critical point, then 'type' is
    -- "critical point" and 'newPt' is a critical point to be
    -- deleted from the list of critical points yet to be plotted.
    -- If the new point is neither a critical point nor a boundary
    -- point, then 'type' is "nothing in particular".
      xMinSF := getXMin corners; xMaxSF := getXMax corners
      yMinSF := getYMin corners; yMaxSF := getYMax corners
      x0 := xCoord p0; y0 := yCoord p0
      x1 := xCoord p1; y1 := yCoord p1
      px := ground(eval(dpdxSF,[x,y],[x1,y1]))
      py := ground(eval(dpdySF,[x,y],[x1,y1]))
      -- let m be the slope of the tangent line at p1
      -- if |m| < 1, we will increment the x-coordinate by delta
      -- (indicated by 'incVar = x'), find an approximate
      -- y-coordinate using the tangent line, then find the actual
      -- y-coordinate using a Newton iteration
      if abs(py) > abs(px) then
        incVar0 := incVar := x
        deltaX := (if x1 > x0 then delta else -delta)
        x2Approx := x1 + deltaX
        y2Approx := y1 + (-px/py)*deltaX
      -- if |m| >= 1, we interchange the roles of the x- and y-
      -- coordinates
      else
        incVar0 := incVar := y
        deltaY := (if y1 > y0 then delta else -delta)
        x2Approx := x1 + (-py/px)*deltaY
        y2Approx := y1 + deltaY
      lookingFor := NADA
      -- See if (x2Approx,y2Approx) is out of bounds.
      -- If so, find where the line segment connecting (x1,y1) and
      -- (x2Approx,y2Approx) intersects the boundary and use this
      -- point as (x2Approx,y2Approx).
      -- If the resulting point is on the left or right boundary,
      -- we will now consider x as the 'incremented variable' and we
      -- will compute the y-coordinate using a Newton iteration.
      -- Similarly, if the point is on the top or bottom boundary,
      -- we will consider y as the 'incremented variable' and we
      -- will compute the x-coordinate using a Newton iteration.
      if x2Approx >= xMaxSF then
        incVar := x
        lookingFor := BDRY
        x2Approx := xMaxSF
        y2Approx := y1 + (-px/py)*(x2Approx - x1)
      else
        if x2Approx <= xMinSF then
          incVar := x
          lookingFor := BDRY
          x2Approx := xMinSF
          y2Approx := y1 + (-px/py)*(x2Approx - x1)
      if y2Approx >= yMaxSF then
        incVar := y
        lookingFor := BDRY
        y2Approx := yMaxSF
        x2Approx := x1 + (-py/px)*(y2Approx - y1)
      else
        if y2Approx <= yMinSF then
          incVar := y
          lookingFor := BDRY
          y2Approx := yMinSF
          x2Approx := x1 + (-py/px)*(y2Approx - y1)
      -- set xLo = min(x1,x2Approx), xHi = max(x1,x2Approx)
      -- set yLo = min(y1,y2Approx), yHi = max(y1,y2Approx)
      if x1 < x2Approx then
        xLo := x1
        xHi := x2Approx
      else
        xLo := x2Approx
        xHi := x1
      if y1 < y2Approx then
        yLo := y1
        yHi := y2Approx
      else
        yLo := y2Approx
        yHi := y1
      -- check for critical points (x*,y*) with x* between
      -- x1 and x2Approx or y* between y1 and y2Approx
      -- store values of x2Approx and y2Approx
      x2Approxx := x2Approx
      y2Approxx := y2Approx
      -- xPointList will contain all critical points (x*,y*)
      -- with x* between x1 and x2Approx
      xPointList : List Point DoubleFloat := nil()
      -- yPointList will contain all critical points (x*,y*)
      -- with y* between y1 and y2Approx
      yPointList : List Point DoubleFloat := nil()
      for pt in crits repeat
        xx := xCoord pt; yy := yCoord pt
        -- if x1 = x2Approx, then p1 is a point with horizontal
        -- tangent line
        -- in this case, we don't want critical points with
        -- x-coordinate x1
        if xx = x2Approx and not (xx = x1) then
          if min(abs(yy-yLo),abs(yy-yHi)) < delta then
            xPointList := cons(pt,xPointList)
        if ((xLo < xx) and (xx < xHi)) then
          if min(abs(yy-yLo),abs(yy-yHi)) < delta then
            xPointList := cons(pt,nil())
            x2Approx := xx
            if xx < x1 then xLo := xx else xHi := xx
        -- if y1 = y2Approx, then p1 is a point with vertical
        -- tangent line
        -- in this case, we don't want critical points with
        -- y-coordinate y1
        if yy = y2Approx and not (yy = y1) then
            yPointList := cons(pt,yPointList)
        if ((yLo < yy) and (yy < yHi)) then
          if min(abs(xx-xLo),abs(xx-xHi)) < delta then
            yPointList := cons(pt,nil())
            y2Approx := yy
            if yy < y1 then yLo := yy else yHi := yy
      -- points in both xPointList and yPointList
      if (not null xPointList) and (not null yPointList) then
        xPointList = yPointList =>
        -- this implies that the lists have only one point
          incVar := incVar0
          if incVar = x then
            y2Approx := y1 + (-px/py)*(x2Approx - x1)
          else
            x2Approx := x1 + (-py/px)*(y2Approx - y1)
          lookingFor := CRIT        -- proceed
        incVar0 = x =>
        -- first try Newton iteration with 'y' as incremented variable
          x2Temp := x1 + (-py/px)*(y2Approx - y1)
          f := SFPolyToUPoly(eval(pSF,y,y2Approx))
          x2New := newtonApprox(f,x2Temp,err,bound)
          x2New case "failed" =>
            y2Approx := y1 + (-px/py)*(x2Approx - x1)
            incVar := x
            lookingFor := CRIT      -- proceed
          y2Temp := y1 + (-px/py)*(x2Approx - x1)
          f := SFPolyToUPoly(eval(pSF,x,x2Approx))
          y2New := newtonApprox(f,y2Temp,err,bound)
          y2New case "failed" =>
            return computeNextPt(pSF,dpdxSF,dpdySF,x,y,p0,p1,corners,_
                          abs((x2Approx-x1)/2),err,bound,crits,bdry)
          pt1 := makePt(x2Approx,y2New :: DoubleFloat)
          pt2 := makePt(x2New :: DoubleFloat,y2Approx)
          critPt1 := findPtOnList(pt1,crits)
          critPt2 := findPtOnList(pt2,crits)
          (critPt1 case "failed") and (critPt2 case "failed") =>
            abs(x2Approx - x1) > abs(x2Temp - x1) =>
              return [pt1,NADA]
            return [pt2,NADA]
          (critPt1 case "failed") =>
            return [critPt2::(Point DoubleFloat),CRIT]
          (critPt2 case "failed") =>
            return [critPt1::(Point DoubleFloat),CRIT]
          abs(x2Approx - x1) > abs(x2Temp - x1) =>
            return [critPt2::(Point DoubleFloat),CRIT]
          return [critPt1::(Point DoubleFloat),CRIT]
        y2Temp := y1 + (-px/py)*(x2Approx - x1)
        f := SFPolyToUPoly(eval(pSF,x,x2Approx))
        y2New := newtonApprox(f,y2Temp,err,bound)
        y2New case "failed" =>
          x2Approx := x1 + (-py/px)*(y2Approx - y1)
          incVar := y
          lookingFor := CRIT      -- proceed
        x2Temp := x1 + (-py/px)*(y2Approx - y1)
        f := SFPolyToUPoly(eval(pSF,y,y2Approx))
        x2New := newtonApprox(f,x2Temp,err,bound)
        x2New case "failed" =>
          return computeNextPt(pSF,dpdxSF,dpdySF,x,y,p0,p1,corners,_
                        abs((y2Approx-y1)/2),err,bound,crits,bdry)
        pt1 := makePt(x2Approx,y2New :: DoubleFloat)
        pt2 := makePt(x2New :: DoubleFloat,y2Approx)
        critPt1 := findPtOnList(pt1,crits)
        critPt2 := findPtOnList(pt2,crits)
        (critPt1 case "failed") and (critPt2 case "failed") =>
          abs(y2Approx - y1) > abs(y2Temp - y1) =>
            return [pt2,NADA]
          return [pt1,NADA]
        (critPt1 case "failed") =>
          return [critPt2::(Point DoubleFloat),CRIT]
        (critPt2 case "failed") =>
          return [critPt1::(Point DoubleFloat),CRIT]
        abs(y2Approx - y1) > abs(y2Temp - y1) =>
          return [critPt1::(Point DoubleFloat),CRIT]
        return [critPt2::(Point DoubleFloat),CRIT]
      if (not null xPointList) and (null yPointList) then
        y2Approx := y1 + (-px/py)*(x2Approx - x1)
        incVar0 = x =>
          incVar := x
          lookingFor := CRIT        -- proceed
        f := SFPolyToUPoly(eval(pSF,x,x2Approx))
        y2New := newtonApprox(f,y2Approx,err,bound)
        y2New case "failed" =>
          x2Approx := x2Approxx
          y2Approx := y2Approxx     -- proceed
        pt := makePt(x2Approx,y2New::DoubleFloat)
        critPt := findPtOnList(pt,crits)
        critPt case "failed" =>
          return [pt,NADA]
        return [critPt :: (Point DoubleFloat),CRIT]
      if (null xPointList) and (not null yPointList) then
        x2Approx := x1 + (-py/px)*(y2Approx - y1)
        incVar0 = y =>
          incVar := y
          lookingFor := CRIT        -- proceed
        f := SFPolyToUPoly(eval(pSF,y,y2Approx))
        x2New := newtonApprox(f,x2Approx,err,bound)
        x2New case "failed" =>
          x2Approx := x2Approxx
          y2Approx := y2Approxx     -- proceed
        pt := makePt(x2New::DoubleFloat,y2Approx)
        critPt := findPtOnList(pt,crits)
        critPt case "failed" =>
          return [pt,NADA]
        return [critPt :: (Point DoubleFloat),CRIT]
      if incVar = x then
        x2 := x2Approx
        f := SFPolyToUPoly(eval(pSF,x,x2))
        y2New := newtonApprox(f,y2Approx,err,bound)
        y2New case "failed" =>
          return computeNextPt(pSF,dpdxSF,dpdySF,x,y,p0,p1,corners,_
                                 abs((x2-x1)/2),err,bound,crits,bdry)
        y2 := y2New :: DoubleFloat
      else
        y2 := y2Approx
        f := SFPolyToUPoly(eval(pSF,y,y2))
        x2New := newtonApprox(f,x2Approx,err,bound)
        x2New case "failed" =>
          return computeNextPt(pSF,dpdxSF,dpdySF,x,y,p0,p1,corners,_
                                 abs((y2-y1)/2),err,bound,crits,bdry)
        x2 := x2New :: DoubleFloat
      pt := makePt(x2,y2)
      --!! check that 'pt' is not out of bounds
      -- check if you've gotten a critical or boundary point
      lookingFor = NADA =>
        [pt,lookingFor]
      lookingFor = BDRY =>
        bdryPt := findPtOnList(pt,bdry)
        bdryPt case "failed" =>
          error "couldn't find boundary point"
        [bdryPt :: (Point DoubleFloat),BDRY]
      critPt := findPtOnList(pt,crits)
      critPt case "failed" =>
        [pt,NADA]
      [critPt :: (Point DoubleFloat),CRIT]
  
  --% Newton iterations
  
    newtonApprox(f,a0,err,bound) ==
    -- Newton iteration to approximate a root of the polynomial 'f'
    -- using an initial approximation of 'a0'
    -- Newton iteration terminates when consecutive approximations
    -- are within 'err' of each other
    -- returns "failed" if this has not been achieved after 'bound'
    -- iterations
      Df := differentiate f
      oldApprox := a0
      newApprox := a0 - elt(f,a0)/elt(Df,a0)
      i : PositiveInteger := 1
      while abs(newApprox - oldApprox) > err repeat
        i = bound => return "failed"
        oldApprox := newApprox
        newApprox := oldApprox - elt(f,oldApprox)/elt(Df,oldApprox)
        i := i+1
      newApprox
  
  --% graphics output
  
    listBranches(acplot) == acplot.branches
  
  --% terminal output
  
    coerce(acplot:%) ==
      pp := acplot.poly :: OutputForm
      xx := acplot.xVar :: OutputForm
      yy := acplot.yVar :: OutputForm
      xLo := acplot.minXVal :: OutputForm
      xHi := acplot.maxXVal :: OutputForm
      yLo := acplot.minYVal :: OutputForm
      yHi := acplot.maxYVal :: OutputForm
      zip := message(" = 0")
      com := message(",   ")
      les := message(" <= ")
      l : List OutputForm :=
        [pp,zip,com,xLo,les,xx,les,xHi,com,yLo,les,yy,les,yHi]
      f : List OutputForm := nil()
      for branch in acplot.branches repeat
        ll : List OutputForm := [p :: OutputForm for p in branch]
        f := cons(vconcat ll,f)
      ff := vconcat(hconcat l,vconcat f)
      vconcat(message "ACPLOT",ff)