This file is indexed.

/usr/share/axiom-20170501/src/algebra/AFFSP.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
)abbrev domain AFFSP AffineSpace
++ Author: Gaetan Hache
++ Date Created: 17 nov 1992
++ Date Last Updated: May 2010 by Tim Daly
++ Description:  
++ The following is all the categories and domains related to projective
++ space and part of the PAFF package

AffineSpace(dim,K) : SIG == CODE where
  dim : NonNegativeInteger
  K : Field

  LIST ==> List
  NNI  ==> NonNegativeInteger

  SIG ==> AffineSpaceCategory(K)

  CODE ==> List(K)  add

    Rep:= List(K)

    origin == 
      new(dim,0$K)$List(K)

    coerce(pt:%):OutputForm == 
      dd:OutputForm:= ":" :: OutputForm
      llout:List(OutputForm):=[ hconcat(dd, a::OutputForm) for a in rest pt]
      lout:= cons( (first pt)::OutputForm , llout)
      out:= hconcat lout
      oo:=paren(out)
      ee:OutputForm:= degree(pt) :: OutputForm
      oo**ee

    definingField(pt) ==
      K has PseudoAlgebraicClosureOfPerfectFieldCategory => _
        maxTower(pt@Rep)
      1$K
    
    degree(pt) ==
      K has PseudoAlgebraicClosureOfPerfectFieldCategory => _
        extDegree definingField pt
      1
      
    coerce(pt:%):List(K) == 
      pt@Rep   
      
    affinePoint(pt:LIST(K)) ==
      pt :: %

    list(ptt) ==
      ptt@Rep

    pointValue(ptt) ==
      ptt@Rep

    conjugate(p,e) ==
      lp:Rep:=p
      pc:List(K):=[c**e for c in lp]
      affinePoint(pc)

    rational?(p,n) == 
      p = conjugate(p,n)

    rational?(p) ==
      rational?(p,characteristic()$K)

    removeConjugate(l) ==
      removeConjugate(l,characteristic()$K)

    removeConjugate(l:LIST(%),n:NNI):LIST(%) ==
      if K has FiniteFieldCategory then
        allconj:LIST(%):=empty()
        conjrem:LIST(%):=empty()
        for p in l repeat
          if ^member?(p,allconj) then
            conjrem:=cons(p,conjrem)
            allconj:=concat(allconj,orbit(p,n))
        conjrem
      else
        error "The field is not finite"

    conjugate(p) ==
      conjugate(p,characteristic()$K)

    orbit(p) ==
      orbit(p,characteristic()$K)

    orbit(p,e)==
      if K has FiniteFieldCategory then
        l:LIST(%):=[p]
        np:%:=conjugate(p,e)
        flag:=^(np=p)::Boolean
        while flag repeat
          l:=concat(np,l)
          np:=conjugate(np,e)
          flag:=not (np=p)::Boolean
        l
      else
        error "Cannot compute the conjugate"

    aa:% = bb:% ==
      aa =$Rep bb

    coerce(pt:LIST(K)) ==
        ^(dim=#pt) => error "Le point n'a pas la bonne dimension"
        ptt:%:= pt
        ptt