/usr/share/axiom-20170501/src/algebra/ALGMANIP.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 | )abbrev package ALGMANIP AlgebraicManipulations
++ Author: Manuel Bronstein
++ Date Created: 28 Mar 1988
++ Date Last Updated: 5 August 1993
++ Description:
++ AlgebraicManipulations provides functions to simplify and expand
++ expressions involving algebraic operators.
AlgebraicManipulations(R, F) : SIG == CODE where
R : IntegralDomain
F : Join(Field, ExpressionSpace) with
numer : $ -> SparseMultivariatePolynomial(R, Kernel $)
++ numer(x) \undocumented
denom : $ -> SparseMultivariatePolynomial(R, Kernel $)
++ denom(x) \undocumented
coerce : SparseMultivariatePolynomial(R, Kernel $) -> $
++ coerce(x) \undocumented
N ==> NonNegativeInteger
Z ==> Integer
OP ==> BasicOperator
SY ==> Symbol
K ==> Kernel F
P ==> SparseMultivariatePolynomial(R, K)
RF ==> Fraction P
REC ==> Record(ker:List K, exponent: List Z)
ALGOP ==> "%alg"
NTHR ==> "nthRoot"
SIG ==> with
rootSplit : F -> F
++ rootSplit(f) transforms every radical of the form
++ \spad{(a/b)**(1/n)} appearing in f into \spad{a**(1/n) / b**(1/n)}.
++ This transformation is not in general valid for all
++ complex numbers \spad{a} and b.
ratDenom : F -> F
++ ratDenom(f) rationalizes the denominators appearing in f
++ by moving all the algebraic quantities into the numerators.
ratDenom : (F, F) -> F
++ ratDenom(f, a) removes \spad{a} from the denominators in f
++ if \spad{a} is an algebraic kernel.
ratDenom : (F, List F) -> F
++ ratDenom(f, [a1,...,an]) removes the ai's which are
++ algebraic kernels from the denominators in f.
ratDenom : (F, List K) -> F
++ ratDenom(f, [a1,...,an]) removes the ai's which are
++ algebraic from the denominators in f.
ratPoly : F -> SparseUnivariatePolynomial F
++ ratPoly(f) returns a polynomial p such that p has no
++ algebraic coefficients, and \spad{p(f) = 0}.
if R has Join(OrderedSet, GcdDomain, RetractableTo Integer)
and F has FunctionSpace(R) then
rootPower : F -> F
++ rootPower(f) transforms every radical power of the form
++ \spad{(a**(1/n))**m} into a simpler form if \spad{m} and
++ \spad{n} have a common factor.
rootProduct : F -> F
++ rootProduct(f) combines every product of the form
++ \spad{(a**(1/n))**m * (a**(1/s))**t} into a single power
++ of a root of \spad{a}, and transforms every radical power
++ of the form \spad{(a**(1/n))**m} into a simpler form.
rootSimp : F -> F
++ rootSimp(f) transforms every radical of the form
++ \spad{(a * b**(q*n+r))**(1/n)} appearing in f into
++ \spad{b**q * (a * b**r)**(1/n)}.
++ This transformation is not in general valid for all
++ complex numbers b.
rootKerSimp : (OP, F, N) -> F
++ rootKerSimp(op,f,n) should be local but conditional.
CODE ==> add
import PolynomialCategoryQuotientFunctions(IndexedExponents K,K,R,P,F)
innerRF : (F, List K) -> F
rootExpand : K -> F
algkernels : List K -> List K
rootkernels: List K -> List K
dummy := kernel(new()$SY)$K
ratDenom x == innerRF(x, algkernels tower x)
ratDenom(x:F, l:List K):F == innerRF(x, algkernels l)
ratDenom(x:F, y:F) == ratDenom(x, [y])
ratDenom(x:F, l:List F) == ratDenom(x, [retract(y)@K for y in l]$List(K))
algkernels l == select_!((z1:K):Boolean +-> has?(operator z1, ALGOP), l)
rootkernels l == select_!((z1:K):Boolean +-> is?(operator z1, NTHR::SY), l)
ratPoly x ==
numer univariate(denom(ratDenom inv(dummy::P::F - x))::F, dummy)
rootSplit x ==
lk := rootkernels tower x
eval(x, lk, [rootExpand k for k in lk])
rootExpand k ==
x := first argument k
n := second argument k
op := operator k
op(numer(x)::F, n) / op(denom(x)::F, n)
-- all the kernels in ll must be algebraic
innerRF(x, ll) ==
empty?(l := sort_!((z1:K,z2:K):Boolean +-> z1 > z2,kernels x)$List(K)) or
empty? setIntersection(ll, tower x) => x
lk := empty()$List(K)
while not member?(k := first l, ll) repeat
lk := concat(k, lk)
empty?(l := rest l) =>
return eval(x, lk, [map((z3:F):F+->innerRF(z3,ll), kk) for kk in lk])
q := univariate(eval(x, lk,
[map((z4:F):F+->innerRF(z4,ll),kk) for kk in lk]),k,minPoly k)
map((z5:F):F+->innerRF(z5, ll), q) (map((z6:F):F+->innerRF(z6, ll), k))
if R has Join(OrderedSet, GcdDomain, RetractableTo Integer)
and F has FunctionSpace(R) then
import PolynomialRoots(IndexedExponents K, K, R, P, F)
sroot : K -> F
inroot : (OP, F, N) -> F
radeval: (P, K) -> F
breakup: List K -> List REC
if R has RadicalCategory then
rootKerSimp(op, x, n) ==
(r := retractIfCan(x)@Union(R, "failed")) case R =>
nthRoot(r::R, n)::F
inroot(op, x, n)
else
rootKerSimp(op, x, n) == inroot(op, x, n)
-- l is a list of nth-roots, returns a list of records of the form
-- [a**(1/n1),a**(1/n2),...], [n1,n2,...]]
-- such that the whole list covers l exactly
breakup l ==
empty? l => empty()
k := first l
a := first(arg := argument(k := first l))
n := retract(second arg)@Z
expo := empty()$List(Z)
others := same := empty()$List(K)
for kk in rest l repeat
if (a = first(arg := argument kk)) then
same := concat(kk, same)
expo := concat(retract(second arg)@Z, expo)
else others := concat(kk, others)
ll := breakup others
concat([concat(k, same), concat(n, expo)], ll)
rootProduct x ==
for rec in breakup rootkernels tower x repeat
k0 := first(l := rec.ker)
nx := numer x; dx := denom x
if empty? rest l then x := radeval(nx, k0) / radeval(dx, k0)
else
n := lcm(rec.exponent)
k := kernel(operator k0, [first argument k0, n::F], height k0)$K
lv := [monomial(1, k, (n quo m)::N) for m in rec.exponent]$List(P)
x := radeval(eval(nx, l, lv), k) / radeval(eval(dx, l, lv), k)
x
rootPower x ==
for k in rootkernels tower x repeat
x := radeval(numer x, k) / radeval(denom x, k)
x
-- replaces (a**(1/n))**m in p by a power of a simpler radical of a if
-- n and m have a common factor
radeval(p, k) ==
a := first(arg := argument k)
n := (retract(second arg)@Integer)::NonNegativeInteger
ans:F := 0
q := univariate(p, k)
while (d := degree q) > 0 repeat
term :=
((g := gcd(d, n)) = 1) => monomial(1, k, d)
monomial(1,kernel(operator k, [a,(n quo g)::F], height k), d quo g)
ans := ans + leadingCoefficient(q)::F * term::F
q := reductum q
leadingCoefficient(q)::F + ans
inroot(op, x, n) ==
(x = 1) => x
(x ^= -1) and (((num := numer x) = 1) or (num = -1)) =>
inv inroot(op, (num * denom x)::F, n)
(u := isExpt(x, op)) case "failed" => kernel(op, [x, n::F])
pr := u::Record(var:K, exponent:Integer)
q := pr.exponent /$Fraction(Z)
(n * retract(second argument(pr.var))@Z)
qr := divide(numer q, denom q)
x := first argument(pr.var)
x ** qr.quotient * rootKerSimp(op,x,denom(q)::N) ** qr.remainder
sroot k ==
pr := froot(first(arg := argument k),(retract(second arg)@Z)::N)
pr.coef * rootKerSimp(operator k, pr.radicand, pr.exponent)
rootSimp x ==
lk := rootkernels tower x
eval(x, lk, [sroot k for k in lk])
|