This file is indexed.

/usr/share/axiom-20170501/src/algebra/ALGSC.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
)abbrev domain ALGSC AlgebraGivenByStructuralConstants
++ Authors: J. Grabmeier, R. Wisbauer
++ Date Created: 01 March 1991
++ Date Last Updated: 22 January 1992
++ Reference:
++ Gons71 Contributions to Genetic Algebras
++ Reed97 Algebraic Structure of Genetic Inheritance
++ Worz80 Algebra in Genetics
++ Scha66 An Introduction to Nonassociative Algebras
++ Description:
++ AlgebraGivenByStructuralConstants implements finite rank algebras
++ over a commutative ring, given by the structural constants \spad{gamma}
++ with respect to a fixed  basis \spad{[a1,..,an]}, where
++ \spad{gamma} is an \spad{n}-vector of n by n matrices
++ \spad{[(gammaijk) for k in 1..rank()]} defined by
++ \spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}.
++ The symbols for the fixed basis
++ have to be given as a list of symbols.

AlgebraGivenByStructuralConstants(R,n,ls,gamma) : SIG == CODE where
  R : Field
  n : PositiveInteger
  ls : List Symbol
  gamma : Vector Matrix R

  V  ==> Vector
  M  ==> Matrix
  I  ==> Integer
  NNI  ==> NonNegativeInteger
  REC  ==> Record(particular: Union(V R,"failed"),basis: List V R)
  LSMP ==> LinearSystemMatrixPackage(R,V R,V R, M R)

  SIG ==> Join(FramedNonAssociativeAlgebra(R), _
    LeftModule(SquareMatrix(n,R)) ) with

    coerce : Vector R -> %
      ++ coerce(v) converts a vector to a member of the algebra
      ++ by forming a linear combination with the basis element.
      ++ Note: the vector is assumed to have length equal to the
      ++ dimension of the algebra.

  CODE ==> DirectProduct(n,R) add

    Rep := DirectProduct(n,R)

    x,y : %
    dp : DirectProduct(n,R)
    v : V R

    recip(x) == 
      recip(x)$FiniteRankNonAssociativeAlgebra_&(%,R)

    (m:SquareMatrix(n,R))*(x:%) == 
      apply((m :: Matrix R),x)

    coerce v == 
      directProduct(v) :: %

    structuralConstants() == 
      gamma

    coordinates(x) == 
      vector(entries(x :: Rep)$Rep)$Vector(R)

    er1:="coordinates: first argument is not in linear span of second argument"

    coordinates(x,b) ==
      --not (maxIndex b = n) =>
      --  error("coordinates: your 'basis' has not the right length")
      m : NonNegativeInteger := (maxIndex b) :: NonNegativeInteger
      transitionMatrix   : Matrix R := new(n,m,0$R)$Matrix(R)
      for i in 1..m repeat
        setColumn_!(transitionMatrix,i,coordinates(b.i))
      res : REC := solve(transitionMatrix,coordinates(x))$LSMP
      if (not every?(zero?$R,first res.basis)) then
        error("coordinates: warning your 'basis' is linearly dependent")
      (res.particular  case "failed") => error(er1)
      (res.particular) :: (Vector R)

    basis() == 
      [unitVector(i::PositiveInteger)::% for i in 1..n]

    someBasis() == 
      basis()$%

    rank() == 
      n

    elt(x,i) == 
      elt(x:Rep,i)$Rep

    coerce(x:%):OutputForm ==
      zero?(x::Rep)$Rep => (0$R) :: OutputForm
      le : List OutputForm := nil
      for i in 1..n repeat
        coef : R := elt(x::Rep,i)
        not zero?(coef)$R =>
          ((coef) = 1)$R =>
            -- sy : OutputForm := elt(ls,i)$(List Symbol) :: OutputForm
            le := cons(elt(ls,i)$(List Symbol) :: OutputForm, le)
          le := cons(coef :: OutputForm *  elt(ls,i)$(List Symbol)_
              :: OutputForm, le)
      reduce("+",le)

    x * y ==
      v : Vector R :=  new(n,0)
      for k in 1..n repeat
        h : R := 0
        for i in 1..n repeat
          for j in 1..n repeat
            h := h  +$R elt(x,i) *$R elt(y,j) *$R elt(gamma.k,i,j )
        v.k := h
      directProduct v

    er2:="algebra satisfies 2*associator(a,b,b)=0 = 2*associator(a,a,b)=0"

    alternative?() ==
      for i in 1..n repeat
        -- expression for check of left alternative is symmetric in i and j:
        -- expression for check of right alternative is symmetric in j and k:
        for j in 1..i-1 repeat
          for k in j..n repeat
            -- right check
            for r in 1..n repeat
              res := 0$R
              for l in 1..n repeat
                res := res - _
                  (elt(gamma.l,j,k)+elt(gamma.l,k,j))*elt(gamma.r,i,l)+_
                  (elt(gamma.l,i,j)*elt(gamma.r,l,k) + elt(gamma.l,i,k)*_
                  elt(gamma.r,l,j) )
              not zero? res =>
                messagePrint("algebra is not right alternative")$OutputForm
                return false
        for j in i..n repeat
          for k in 1..j-1 repeat
            -- left check
            for r in 1..n repeat
              res := 0$R
              for l in 1..n repeat
                res := res + _
                  (elt(gamma.l,i,j)+elt(gamma.l,j,i))*elt(gamma.r,l,k)-_
                  (elt(gamma.l,j,k)*elt(gamma.r,i,l) + elt(gamma.l,i,k)*_
                   elt(gamma.r,j,l) )
              not (zero? res) =>
                messagePrint("algebra is not left alternative")$OutputForm
                return false

          for k in j..n repeat
            -- left check
            for r in 1..n repeat
              res := 0$R
              for l in 1..n repeat
                res := res + _
                  (elt(gamma.l,i,j)+elt(gamma.l,j,i))*elt(gamma.r,l,k)-_
                  (elt(gamma.l,j,k)*elt(gamma.r,i,l) + elt(gamma.l,i,k)*_
                   elt(gamma.r,j,l) )
              not (zero? res) =>
                messagePrint("algebra is not left alternative")$OutputForm
                return false
            -- right check
            for r in 1..n repeat
              res := 0$R
              for l in 1..n repeat
                res := res - _
                  (elt(gamma.l,j,k)+elt(gamma.l,k,j))*elt(gamma.r,i,l)+_
                  (elt(gamma.l,i,j)*elt(gamma.r,l,k) + elt(gamma.l,i,k)*_
                  elt(gamma.r,l,j) )
              not (zero? res) =>
                messagePrint("algebra is not right alternative")$OutputForm
                return false

      messagePrint(er2)$OutputForm
      true

    associative?() ==
      for i in 1..n repeat
       for j in 1..n repeat
        for k in 1..n repeat
         for r in 1..n repeat
           res := 0$R
           for l in 1..n repeat
             res := res + elt(gamma.l,i,j)*elt(gamma.r,l,k)-_
                          elt(gamma.l,j,k)*elt(gamma.r,i,l)
           not (zero? res) =>
            messagePrint("algebra is not associative")$OutputForm
            return false
      messagePrint("algebra is associative")$OutputForm
      true

    antiAssociative?() ==
      for i in 1..n repeat
       for j in 1..n repeat
        for k in 1..n repeat
         for r in 1..n repeat
           res := 0$R
           for l in 1..n repeat
             res := res + elt(gamma.l,i,j)*elt(gamma.r,l,k)+_
                          elt(gamma.l,j,k)*elt(gamma.r,i,l)
           not (zero? res) =>
            messagePrint("algebra is not anti-associative")$OutputForm
            return false
      messagePrint("algebra is anti-associative")$OutputForm
      true

    commutative?() ==
      for i in 1..n repeat
       for j in (i+1)..n repeat
        for k in 1..n repeat
           not ( elt(gamma.k,i,j)=elt(gamma.k,j,i) ) =>
            messagePrint("algebra is not commutative")$OutputForm
            return false
      messagePrint("algebra is commutative")$OutputForm
      true

    antiCommutative?() ==
      for i in 1..n repeat
       for j in i..n repeat
        for k in 1..n repeat
          not zero? (i=j => elt(gamma.k,i,i); _
                                 elt(gamma.k,i,j)+elt(gamma.k,j,i) ) =>
            messagePrint("algebra is not anti-commutative")$OutputForm
            return false
      messagePrint("algebra is anti-commutative")$OutputForm
      true

    leftAlternative?() ==
      for i in 1..n repeat
       -- expression is symmetric in i and j:
       for j in i..n repeat
        for k in 1..n repeat
         for r in 1..n repeat
           res := 0$R
           for l in 1..n repeat
             res := res+(elt(gamma.l,i,j)+elt(gamma.l,j,i))*elt(gamma.r,l,k)-_
               (elt(gamma.l,j,k)*elt(gamma.r,i,l) + _
                elt(gamma.l,i,k)*elt(gamma.r,j,l) )
           not (zero? res) =>
            messagePrint("algebra is not left alternative")$OutputForm
            return false
      messagePrint("algebra is left alternative")$OutputForm
      true


    rightAlternative?() ==
      for i in 1..n repeat
       for j in 1..n repeat
       -- expression is symmetric in j and k:
        for k in j..n repeat
         for r in 1..n repeat
           res := 0$R
           for l in 1..n repeat
             res := res-(elt(gamma.l,j,k)+elt(gamma.l,k,j))*elt(gamma.r,i,l)+_
               (elt(gamma.l,i,j)*elt(gamma.r,l,k) + _
                elt(gamma.l,i,k)*elt(gamma.r,l,j) )
           not (zero? res) =>
            messagePrint("algebra is not right alternative")$OutputForm
            return false
      messagePrint("algebra is right alternative")$OutputForm
      true


    flexible?() ==
      for i in 1..n repeat
       for j in 1..n repeat
       -- expression is symmetric in i and k:
        for k in i..n repeat
         for r in 1..n repeat
           res := 0$R
           for l in 1..n repeat
             res := res + elt(gamma.l,i,j)*elt(gamma.r,l,k)-_
                          elt(gamma.l,j,k)*elt(gamma.r,i,l)+_
                          elt(gamma.l,k,j)*elt(gamma.r,l,i)-_
                          elt(gamma.l,j,i)*elt(gamma.r,k,l)
           not (zero? res) =>
            messagePrint("algebra is not flexible")$OutputForm
            return false
      messagePrint("algebra is flexible")$OutputForm
      true

    lieAdmissible?() ==
      for i in 1..n repeat
       for j in 1..n repeat
        for k in 1..n repeat
         for r in 1..n repeat
           res := 0$R
           for l in 1..n repeat
             res := res_
              + (elt(gamma.l,i,j)-elt(gamma.l,j,i))*_
                (elt(gamma.r,l,k)-elt(gamma.r,k,l)) _
              + (elt(gamma.l,j,k)-elt(gamma.l,k,j))*_
                (elt(gamma.r,l,i)-elt(gamma.r,i,l)) _
              + (elt(gamma.l,k,i)-elt(gamma.l,i,k))*_
                (elt(gamma.r,l,j)-elt(gamma.r,j,l))
           not (zero? res) =>
            messagePrint("algebra is not Lie admissible")$OutputForm
            return false
      messagePrint("algebra is Lie admissible")$OutputForm
      true

    er3:="this algebra is not Jordan admissible, _
          as 2 is not invertible in the ground ring"

    jordanAdmissible?()  ==
      recip(2 * 1$R) case "failed" =>
        messagePrint(er3)$OutputForm
        false
      for i in 1..n repeat
       for j in 1..n repeat
        for k in 1..n repeat
         for w in 1..n repeat
          for t in 1..n repeat
           res := 0$R
           for l in 1..n repeat
            for r in 1..n repeat
             res := res_
              + (elt(gamma.l,i,j)+elt(gamma.l,j,i))_
                * (elt(gamma.r,w,k)+elt(gamma.r,k,w))_
                * (elt(gamma.t,l,r)+elt(gamma.t,r,l))_
              - (elt(gamma.r,w,k)+elt(gamma.r,k,w))_
                * (elt(gamma.l,j,r)+elt(gamma.l,r,j))_
                * (elt(gamma.t,i,l)+elt(gamma.t,l,i))_
              + (elt(gamma.l,w,j)+elt(gamma.l,j,w))_
                * (elt(gamma.r,k,i)+elt(gamma.r,i,k))_
                * (elt(gamma.t,l,r)+elt(gamma.t,r,l))_
              - (elt(gamma.r,k,i)+elt(gamma.r,k,i))_
                * (elt(gamma.l,j,r)+elt(gamma.l,r,j))_
                * (elt(gamma.t,w,l)+elt(gamma.t,l,w))_
              + (elt(gamma.l,k,j)+elt(gamma.l,j,k))_
                * (elt(gamma.r,i,w)+elt(gamma.r,w,i))_
                * (elt(gamma.t,l,r)+elt(gamma.t,r,l))_
              - (elt(gamma.r,i,w)+elt(gamma.r,w,i))_
                * (elt(gamma.l,j,r)+elt(gamma.l,r,j))_
                * (elt(gamma.t,k,l)+elt(gamma.t,l,k))
           not (zero? res) =>
             messagePrint("algebra is not Jordan admissible")$OutputForm
             return false
      messagePrint("algebra is Jordan admissible")$OutputForm
      true

    er4:="this is not a Jordan algebra, _
          as 2 is not invertible in the ground ring"

    jordanAlgebra?()  ==
      recip(2 * 1$R) case "failed" =>
        messagePrint(er4)$OutputForm
        false
      not commutative?() =>
        messagePrint("this is not a Jordan algebra")$OutputForm
        false
      for i in 1..n repeat
       for j in 1..n repeat
        for k in 1..n repeat
         for l in 1..n repeat
           for t in 1..n repeat
             res := 0$R
             for r in 1..n repeat
               for s in 1..n repeat
                 res := res +  _
                   elt(gamma.r,i,j)*elt(gamma.s,l,k)*elt(gamma.t,r,s) - _
                   elt(gamma.r,l,k)*elt(gamma.s,j,r)*elt(gamma.t,i,s) + _
                   elt(gamma.r,l,j)*elt(gamma.s,k,k)*elt(gamma.t,r,s) - _
                   elt(gamma.r,k,i)*elt(gamma.s,j,r)*elt(gamma.t,l,s) + _
                   elt(gamma.r,k,j)*elt(gamma.s,i,k)*elt(gamma.t,r,s) - _
                   elt(gamma.r,i,l)*elt(gamma.s,j,r)*elt(gamma.t,k,s)
                 not zero? res =>
                   messagePrint("this is not a Jordan algebra")$OutputForm
                   return false
      messagePrint("this is a Jordan algebra")$OutputForm
      true


    jacobiIdentity?()  ==
      for i in 1..n repeat
       for j in 1..n repeat
        for k in 1..n repeat
         for r in 1..n repeat
           res := 0$R
           for s in 1..n repeat
                 res := res +  elt(gamma.r,i,j)*elt(gamma.s,j,k) +_
                               elt(gamma.r,j,k)*elt(gamma.s,k,i) +_
                               elt(gamma.r,k,i)*elt(gamma.s,i,j)
           not zero? res =>
                 messagePrint("Jacobi identity does not hold")$OutputForm
                 return false
      messagePrint("Jacobi identity holds")$OutputForm
      true