This file is indexed.

/usr/share/axiom-20170501/src/algebra/ANTISYM.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
)abbrev domain ANTISYM AntiSymm
++ Author: Larry A. Lambe
++ Date     : 01/26/91.
++ Revised  : 30 Nov 94
++ Description:
++ The domain of antisymmetric polynomials.
 
AntiSymm(R,lVar) : SIG == CODE where
  R : Ring
  lVar : List Symbol

  LALG ==> LeftAlgebra
  FMR  ==> FM(R,EAB)
  FM   ==> FreeModule
  I    ==> Integer
  L    ==> List
  EAB  ==> ExtAlgBasis     -- these are exponents of basis elements in order
  NNI  ==> NonNegativeInteger
  O    ==> OutputForm
  base ==> k
  coef ==> c
  Term ==> Record(k:EAB,c:R)
 
  SIG ==> Join(LALG(R), RetractableTo(R)) with

      leadingCoefficient : % -> R
        ++ leadingCoefficient(p) returns the leading
        ++ coefficient of antisymmetric polynomial p.

      leadingBasisTerm : % -> %
        ++ leadingBasisTerm(p) returns the leading
        ++ basis term of antisymmetric polynomial p.

      reductum : % -> %
        ++ reductum(p), where p is an antisymmetric polynomial,
        ++ returns p minus the leading
        ++ term of p if p has at least two terms, and 0 otherwise.

      coefficient : (%,%) -> R 
        ++ coefficient(p,u) returns the coefficient of 
        ++ the term in p containing the basis term u if such 
        ++ a term exists, and 0 otherwise.
        ++ Error: if the second argument u is not a basis element.

      generator : NNI -> %
        ++ generator(n) returns the nth multiplicative generator,
        ++ a basis term.
        ++
        ++X AS:=AntiSymm(Integer,[x,y,z])
        ++X [dx,dy,dz]:=[generator(i)$AS for i in 1..3]

      exp : L I -> %
        ++ exp([i1,...in]) returns \spad{u_1\^{i_1} ... u_n\^{i_n}}

      homogeneous? : % -> Boolean
        ++ homogeneous?(p) tests if all of the terms of 
        ++ p have the same degree.

      retractable? : % -> Boolean
        ++ retractable?(p) tests if p is a 0-form,
        ++ if degree(p) = 0.

      degree : % -> NNI
        ++ degree(p) returns the homogeneous degree of p.

      map : (R -> R, %) -> %
        ++ map(f,p) changes each coefficient of p by the
        ++ application of f.

--    1 corresponds to the empty monomial Nul = [0,...,0]
--    from EAB.  In terms of the exterior algebra on X,
--    it corresponds to the identity element which lives
--    in homogeneous degree 0.
 
  CODE ==> FMR add

      Rep := L Term
      x,y :  EAB
      a,b :  %
      r   :  R
      m   :  I

      dim := #lVar

      1 == 
        [[ Nul(dim)$EAB, 1$R ]]

      coefficient(a,u) ==
        not null u.rest => error "2nd argument must be a basis element"
        x := u.first.base
        for t in a repeat
          if t.base = x then return t.coef
          if t.base < x then return 0
        0

      retractable?(a) ==
        null a or (a.first.k  =  Nul(dim))

      retractIfCan(a):Union(R,"failed") ==
        null a               => 0$R
        a.first.k = Nul(dim) => leadingCoefficient a
        "failed"

      retract(a):R ==
        null a => 0$R
        leadingCoefficient a

      homogeneous? a ==
        null a => true
        siz := _+/exponents(a.first.base)
        for ta in reductum a repeat
          _+/exponents(ta.base) ^= siz => return false
        true

      degree a ==
        null a => 0$NNI
        homogeneous? a => (_+/exponents(a.first.base)) :: NNI
        error "not a homogeneous element"

      zo : (I,I) -> L I
      zo(p,q) ==
        p = 0 => [1,q]
        q = 0 => [1,1]
        [0,0]

      getsgn : (EAB,EAB) -> I
      getsgn(x,y) ==
        sgn:I  := 0
        xx:L I := exponents x
        yy:L I := exponents y
        for i in 1 .. (dim-1) repeat
          xx  := rest xx
          sgn := sgn + (_+/xx)*yy.i
        sgn rem 2 = 0 => 1
        -1

      Nalpha: (EAB,EAB) -> L I
      Nalpha(x,y) ==
        i:I := 1
        dum2:L I := [0 for i in 1..dim]
        for j in 1..dim repeat
          dum:=zo((exponents x).j,(exponents y).j)
          (i:= i*dum.1) = 0 => leave
          dum2.j := dum.2
        i = 0 => cons(i, dum2)
        cons(getsgn(x,y), dum2)

      a * b ==
        null a => 0
        null b => 0
        ((null a.rest) and (a.first.k = Nul(dim))) => a.first.c * b
        ((null b.rest) and (b.first.k = Nul(dim))) => b.first.c * a
        z:% := 0
        for tb in b repeat
          for ta in a repeat
            stuff:=Nalpha(ta.base,tb.base)
            r:=first(stuff)*ta.coef*tb.coef
            if r ^= 0 then z := z + [[rest(stuff)::EAB, r]]
        z

      coerce(r):% == 
        r = 0 => 0
        [ [Nul(dim), r] ]

      coerce(m):% == 
        m = 0 => 0
        [ [Nul(dim), m::R] ]

      characteristic() == 
        characteristic()$R

      generator(j) == 
        -- j < 1 or j > dim => error "your subscript is out of range"
        -- error will be generated by dum.j if out of range
        dum:L I := [0 for i in 1..dim]
        dum.j:=1
        [[dum::EAB, 1::R]]

      exp(li:(L I)) == 
        [[li::EAB, 1]]
 
      leadingBasisTerm a ==
        [[a.first.k, 1]]

      displayList:EAB -> O
      displayList(x):O ==
        le: L I := exponents(x)$EAB
        reduce(_*,[(lVar.i)::O for i in 1..dim | ((le.i) = 1)])$L(O)

      makeTerm:(R,EAB) -> O
      makeTerm(r,x) ==
        -- we know that r ^= 0
        x = Nul(dim)$EAB  => r::O
        (r = 1) => displayList(x)
        r::O * displayList(x)

      coerce(a):O ==
        zero? a     => 0$I::O
        null rest(a @ Rep) => 
                 t := first(a @ Rep)
                 makeTerm(t.coef,t.base)
        reduce(_+,[makeTerm(t.coef,t.base) for t in (a @ Rep)])$L(O)