/usr/share/axiom-20170501/src/algebra/ARR2CAT.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 | )abbrev category ARR2CAT TwoDimensionalArrayCategory
++ Date Created: 27 October 1989
++ Date Last Updated: 27 June 1990
++ Keywords: array, data structure
++ Description:
++ Two dimensional array categories and domains
TwoDimensionalArrayCategory(R,Row,Col) : Category == SIG where
R : Type
Row : FiniteLinearAggregate R
Col : FiniteLinearAggregate R
SIG ==> HomogeneousAggregate(R) with
shallowlyMutable
++ one may destructively alter arrays
finiteAggregate
++ two-dimensional arrays are finite
--% Array creation
new : (NonNegativeInteger,NonNegativeInteger,R) -> %
++ new(m,n,r) is an m-by-n array all of whose entries are r
++
++X arr : ARRAY2 INT := new(5,4,0)
fill_! : (%,R) -> %
++ fill!(m,r) fills m with r's
++
++X arr : ARRAY2 INT := new(5,4,0)
++X fill!(arr,10)
--% Size inquiries
minRowIndex : % -> Integer
++ minRowIndex(m) returns the index of the 'first' row of the array m
++
++X arr : ARRAY2 INT := new(5,4,10)
++X minRowIndex(arr)
maxRowIndex : % -> Integer
++ maxRowIndex(m) returns the index of the 'last' row of the array m
++
++X arr : ARRAY2 INT := new(5,4,10)
++X maxRowIndex(arr)
minColIndex : % -> Integer
++ minColIndex(m) returns the index of the 'first' column of the array m
++
++X arr : ARRAY2 INT := new(5,4,10)
++X minColIndex(arr)
maxColIndex : % -> Integer
++ maxColIndex(m) returns the index of the 'last' column of the array m
++
++X arr : ARRAY2 INT := new(5,4,10)
++X maxColIndex(arr)
nrows : % -> NonNegativeInteger
++ nrows(m) returns the number of rows in the array m
++
++X arr : ARRAY2 INT := new(5,4,10)
++X nrows(arr)
ncols : % -> NonNegativeInteger
++ ncols(m) returns the number of columns in the array m
++
++X arr : ARRAY2 INT := new(5,4,10)
++X ncols(arr)
--% Part extractions
elt : (%,Integer,Integer) -> R
++ elt(m,i,j) returns the element in the ith row and jth
++ column of the array m
++ error check to determine if indices are in proper ranges
++
++X arr : ARRAY2 INT := new(5,4,10)
++X elt(arr,1,1)
qelt : (%,Integer,Integer) -> R
++ qelt(m,i,j) returns the element in the ith row and jth
++ column of the array m
++ NO error check to determine if indices are in proper ranges
++
++X arr : ARRAY2 INT := new(5,4,10)
++X qelt(arr,1,1)
elt : (%,Integer,Integer,R) -> R
++ elt(m,i,j,r) returns the element in the ith row and jth
++ column of the array m, if m has an ith row and a jth column,
++ and returns r otherwise
++
++X arr : ARRAY2 INT := new(5,4,10)
++X elt(arr,1,1,6)
++X elt(arr,1,10,6)
row : (%,Integer) -> Row
++ row(m,i) returns the ith row of m
++ error check to determine if index is in proper ranges
++
++X arr : ARRAY2 INT := new(5,4,10)
++X row(arr,1)
column : (%,Integer) -> Col
++ column(m,j) returns the jth column of m
++ error check to determine if index is in proper ranges
++
++X arr : ARRAY2 INT := new(5,4,10)
++X column(arr,1)
parts : % -> List R
++ parts(m) returns a list of the elements of m in row major order
++
++X arr : ARRAY2 INT := new(5,4,10)
++X parts(arr)
--% Part assignments
setelt : (%,Integer,Integer,R) -> R
++ setelt(m,i,j,r) sets the element in the ith row and jth
++ column of m to r
++ error check to determine if indices are in proper ranges
++
++X arr : ARRAY2 INT := new(5,4,0)
++X setelt(arr,1,1,17)
qsetelt_! : (%,Integer,Integer,R) -> R
++ qsetelt!(m,i,j,r) sets the element in the ith row and jth
++ column of m to r
++ NO error check to determine if indices are in proper ranges
++
++X arr : ARRAY2 INT := new(5,4,0)
++X qsetelt!(arr,1,1,17)
setRow_! : (%,Integer,Row) -> %
++ setRow!(m,i,v) sets to ith row of m to v
++
++X T1:=TwoDimensionalArray Integer
++X arr:T1:= new(5,4,0)
++X T2:=OneDimensionalArray Integer
++X arow:=construct([1,2,3,4]::List(INT))$T2
++X setRow!(arr,1,arow)$T1
setColumn_! : (%,Integer,Col) -> %
++ setColumn!(m,j,v) sets to jth column of m to v
++
++X T1:=TwoDimensionalArray Integer
++X arr:T1:= new(5,4,0)
++X T2:=OneDimensionalArray Integer
++X acol:=construct([1,2,3,4,5]::List(INT))$T2
++X setColumn!(arr,1,acol)$T1
--% Map and Zip
map : (R -> R,%) -> %
++ map(f,a) returns \spad{b}, where \spad{b(i,j) = f(a(i,j))}
++ for all \spad{i, j}
++
++X arr : ARRAY2 INT := new(5,4,10)
++X map(-,arr)
++X map((x +-> x + x),arr)
map_! : (R -> R,%) -> %
++ map!(f,a) assign \spad{a(i,j)} to \spad{f(a(i,j))}
++ for all \spad{i, j}
++
++X arr : ARRAY2 INT := new(5,4,10)
++X map!(-,arr)
map : ((R,R) -> R,%,%) -> %
++ map(f,a,b) returns \spad{c}, where \spad{c(i,j) = f(a(i,j),b(i,j))}
++ for all \spad{i, j}
++
++X adder(a:Integer,b:Integer):Integer == a+b
++X arr : ARRAY2 INT := new(5,4,10)
++X map(adder,arr,arr)
map : ((R,R) -> R,%,%,R) -> %
++ map(f,a,b,r) returns \spad{c}, where \spad{c(i,j) = f(a(i,j),b(i,j))}
++ when both \spad{a(i,j)} and \spad{b(i,j)} exist;
++ else \spad{c(i,j) = f(r, b(i,j))} when \spad{a(i,j)} does not exist;
++ else \spad{c(i,j) = f(a(i,j),r)} when \spad{b(i,j)} does not exist;
++ otherwise \spad{c(i,j) = f(r,r)}.
++
++X adder(a:Integer,b:Integer):Integer == a+b
++X arr1 : ARRAY2 INT := new(5,4,10)
++X arr2 : ARRAY2 INT := new(3,3,10)
++X map(adder,arr1,arr2,17)
add
--% Predicates
any?(f,m) ==
for i in minRowIndex(m)..maxRowIndex(m) repeat
for j in minColIndex(m)..maxColIndex(m) repeat
f(qelt(m,i,j)) => return true
false
every?(f,m) ==
for i in minRowIndex(m)..maxRowIndex(m) repeat
for j in minColIndex(m)..maxColIndex(m) repeat
not f(qelt(m,i,j)) => return false
true
size?(m,n) == nrows(m) * ncols(m) = n
less?(m,n) == nrows(m) * ncols(m) < n
more?(m,n) == nrows(m) * ncols(m) > n
--% Size inquiries
# m == nrows(m) * ncols(m)
--% Part extractions
elt(m,i,j,r) ==
i < minRowIndex(m) or i > maxRowIndex(m) => r
j < minColIndex(m) or j > maxColIndex(m) => r
qelt(m,i,j)
count(f:R -> Boolean,m:%) ==
num : NonNegativeInteger := 0
for i in minRowIndex(m)..maxRowIndex(m) repeat
for j in minColIndex(m)..maxColIndex(m) repeat
if f(qelt(m,i,j)) then num := num + 1
num
parts m ==
entryList : List R := nil()
for i in maxRowIndex(m)..minRowIndex(m) by -1 repeat
for j in maxColIndex(m)..minColIndex(m) by -1 repeat
entryList := concat(qelt(m,i,j),entryList)
entryList
--% Creation
copy m ==
ans := new(nrows m,ncols m,NIL$Lisp)
for i in minRowIndex(m)..maxRowIndex(m) repeat
for j in minColIndex(m)..maxColIndex(m) repeat
qsetelt_!(ans,i,j,qelt(m,i,j))
ans
fill_!(m,r) ==
for i in minRowIndex(m)..maxRowIndex(m) repeat
for j in minColIndex(m)..maxColIndex(m) repeat
qsetelt_!(m,i,j,r)
m
map(f,m) ==
ans := new(nrows m,ncols m,NIL$Lisp)
for i in minRowIndex(m)..maxRowIndex(m) repeat
for j in minColIndex(m)..maxColIndex(m) repeat
qsetelt_!(ans,i,j,f(qelt(m,i,j)))
ans
map_!(f,m) ==
for i in minRowIndex(m)..maxRowIndex(m) repeat
for j in minColIndex(m)..maxColIndex(m) repeat
qsetelt_!(m,i,j,f(qelt(m,i,j)))
m
map(f,m,n) ==
(nrows(m) ^= nrows(n)) or (ncols(m) ^= ncols(n)) =>
error "map: arguments must have same dimensions"
ans := new(nrows m,ncols m,NIL$Lisp)
for i in minRowIndex(m)..maxRowIndex(m) repeat
for j in minColIndex(m)..maxColIndex(m) repeat
qsetelt_!(ans,i,j,f(qelt(m,i,j),qelt(n,i,j)))
ans
map(f,m,n,r) ==
maxRow := max(maxRowIndex m,maxRowIndex n)
maxCol := max(maxColIndex m,maxColIndex n)
ans := new(max(nrows m,nrows n),max(ncols m,ncols n),NIL$Lisp)
for i in minRowIndex(m)..maxRow repeat
for j in minColIndex(m)..maxCol repeat
qsetelt_!(ans,i,j,f(elt(m,i,j,r),elt(n,i,j,r)))
ans
setRow_!(m,i,v) ==
i < minRowIndex(m) or i > maxRowIndex(m) =>
error "setRow!: index out of range"
for j in minColIndex(m)..maxColIndex(m) _
for k in minIndex(v)..maxIndex(v) repeat
qsetelt_!(m,i,j,v.k)
m
setColumn_!(m,j,v) ==
j < minColIndex(m) or j > maxColIndex(m) =>
error "setColumn!: index out of range"
for i in minRowIndex(m)..maxRowIndex(m) _
for k in minIndex(v)..maxIndex(v) repeat
qsetelt_!(m,i,j,v.k)
m
if R has _= : (R,R) -> Boolean then
m = n ==
eq?(m,n) => true
(nrows(m) ^= nrows(n)) or (ncols(m) ^= ncols(n)) => false
for i in minRowIndex(m)..maxRowIndex(m) repeat
for j in minColIndex(m)..maxColIndex(m) repeat
not (qelt(m,i,j) = qelt(n,i,j)) => return false
true
member?(r,m) ==
for i in minRowIndex(m)..maxRowIndex(m) repeat
for j in minColIndex(m)..maxColIndex(m) repeat
qelt(m,i,j) = r => return true
false
count(r:R,m:%) == count(x +-> x = r,m)
if Row has shallowlyMutable then
row(m,i) ==
i < minRowIndex(m) or i > maxRowIndex(m) =>
error "row: index out of range"
v : Row := new(ncols m,NIL$Lisp)
for j in minColIndex(m)..maxColIndex(m) _
for k in minIndex(v)..maxIndex(v) repeat
qsetelt_!(v,k,qelt(m,i,j))
v
if Col has shallowlyMutable then
column(m,j) ==
j < minColIndex(m) or j > maxColIndex(m) =>
error "column: index out of range"
v : Col := new(nrows m,NIL$Lisp)
for i in minRowIndex(m)..maxRowIndex(m) _
for k in minIndex(v)..maxIndex(v) repeat
qsetelt_!(v,k,qelt(m,i,j))
v
if R has CoercibleTo(OutputForm) then
coerce(m:%) ==
l : List List OutputForm
l := [[qelt(m,i,j) :: OutputForm _
for j in minColIndex(m)..maxColIndex(m)] _
for i in minRowIndex(m)..maxRowIndex(m)]
matrix l
|