/usr/share/axiom-20170501/src/algebra/ASP19.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 | )abbrev domain ASP19 Asp19
++ Author: Mike Dewar, Godfrey Nolan, Grant Keady
++ Date Created: Mar 1993
++ Date Last Updated: 6 October 1994
++ References:
++ Hawk95 Two more links to NAG numerics involving CA systems
++ Kead93 Production of Argument SubPrograms in the AXIOM -- NAG link
++ Description:
++\spadtype{Asp19} produces Fortran for Type 19 ASPs, evaluating a set of
++functions and their jacobian at a given point, for example:
++
++\tab{5}SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC)\br
++\tab{5}DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N)\br
++\tab{5}INTEGER M,N,LJC\br
++\tab{5}INTEGER I,J\br
++\tab{5}DO 25003 I=1,LJC\br
++\tab{7}DO 25004 J=1,N\br
++\tab{9}FJACC(I,J)=0.0D0\br
++25004 CONTINUE\br
++25003 CONTINUE\br
++\tab{5}FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/(\br
++\tab{4}&XC(3)+15.0D0*XC(2))\br
++\tab{5}FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/(\br
++\tab{4}&XC(3)+7.0D0*XC(2))\br
++\tab{5}FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333\br
++\tab{4}&3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2))\br
++\tab{5}FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/(\br
++\tab{4}&XC(3)+3.0D0*XC(2))\br
++\tab{5}FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)*\br
++\tab{4}&XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2))\br
++\tab{5}FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333\br
++\tab{4}&3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2))\br
++\tab{5}FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)*\br
++\tab{4}&XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2))\br
++\tab{5}FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+\br
++\tab{4}&XC(2))\br
++\tab{5}FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714\br
++\tab{4}&286D0)/(XC(3)+XC(2))\br
++\tab{5}FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666\br
++\tab{4}&6667D0)/(XC(3)+XC(2))\br
++\tab{5}FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3)\br
++\tab{4}&+XC(2))\br
++\tab{5}FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3)\br
++\tab{4}&+XC(2))\br
++\tab{5}FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333\br
++\tab{4}&3333D0)/(XC(3)+XC(2))\br
++\tab{5}FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X\br
++\tab{4}&C(2))\br
++\tab{5}FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3\br
++\tab{4}&)+XC(2))\br
++\tab{5}FJACC(1,1)=1.0D0\br
++\tab{5}FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2)\br
++\tab{5}FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2)\br
++\tab{5}FJACC(2,1)=1.0D0\br
++\tab{5}FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2)\br
++\tab{5}FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2)\br
++\tab{5}FJACC(3,1)=1.0D0\br
++\tab{5}FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/(\br
++\tab{4}&XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)\br
++\tab{4}&**2)\br
++\tab{5}FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666\br
++\tab{4}&666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2)\br
++\tab{5}FJACC(4,1)=1.0D0\br
++\tab{5}FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2)\br
++\tab{5}FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2)\br
++\tab{5}FJACC(5,1)=1.0D0\br
++\tab{5}FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399\br
++\tab{4}&999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2)\br
++\tab{5}FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999\br
++\tab{4}&999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2)\br
++\tab{5}FJACC(6,1)=1.0D0\br
++\tab{5}FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/(\br
++\tab{4}&XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)\br
++\tab{4}&**2)\br
++\tab{5}FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333\br
++\tab{4}&333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2)\br
++\tab{5}FJACC(7,1)=1.0D0\br
++\tab{5}FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/(\br
++\tab{4}&XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)\br
++\tab{4}&**2)\br
++\tab{5}FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428\br
++\tab{4}&571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2)\br
++\tab{5}FJACC(8,1)=1.0D0\br
++\tab{5}FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)\br
++\tab{5}FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)\br
++\tab{5}FJACC(9,1)=1.0D0\br
++\tab{5}FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)*\br
++\tab{4}&*2)\br
++\tab{5}FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)*\br
++\tab{4}&*2)\br
++\tab{5}FJACC(10,1)=1.0D0\br
++\tab{5}FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)\br
++\tab{4}&**2)\br
++\tab{5}FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)\br
++\tab{4}&**2)\br
++\tab{5}FJACC(11,1)=1.0D0\br
++\tab{5}FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)\br
++\tab{5}FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)\br
++\tab{5}FJACC(12,1)=1.0D0\br
++\tab{5}FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)\br
++\tab{5}FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)\br
++\tab{5}FJACC(13,1)=1.0D0\br
++\tab{5}FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)\br
++\tab{4}&**2)\br
++\tab{5}FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)\br
++\tab{4}&**2)\br
++\tab{5}FJACC(14,1)=1.0D0\br
++\tab{5}FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)\br
++\tab{5}FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)\br
++\tab{5}FJACC(15,1)=1.0D0\br
++\tab{5}FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)\br
++\tab{5}FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)\br
++\tab{5}RETURN\br
++\tab{5}END
Asp19(name) : SIG == CODE where
name : Symbol
FST ==> FortranScalarType
FT ==> FortranType
FC ==> FortranCode
SYMTAB ==> SymbolTable
RSFC ==> Record(localSymbols:SymbolTable,code:List(FC))
FSTU ==> Union(fst:FST,void:"void")
FRAC ==> Fraction
POLY ==> Polynomial
EXPR ==> Expression
INT ==> Integer
FLOAT ==> Float
MFLOAT ==> MachineFloat
VEC ==> Vector
VF2 ==> VectorFunctions2
MF2 ==> MatrixCategoryFunctions2(FEXPR,VEC FEXPR,VEC FEXPR,Matrix FEXPR,_
EXPR MFLOAT,VEC EXPR MFLOAT,VEC EXPR MFLOAT,Matrix EXPR MFLOAT)
FEXPR ==> FortranExpression([],['XC],MFLOAT)
S ==> Symbol
SIG ==> FortranVectorFunctionCategory with
coerce : VEC FEXPR -> $
++coerce(f) takes objects from the appropriate instantiation of
++\spadtype{FortranExpression} and turns them into an ASP.
CODE ==> add
real : FSTU := ["real"::FST]$FSTU
syms : SYMTAB := empty()$SYMTAB
declare!(M,fortranInteger()$FT,syms)$SYMTAB
declare!(N,fortranInteger()$FT,syms)$SYMTAB
declare!(LJC,fortranInteger()$FT,syms)$SYMTAB
xcType : FT := construct(real,[N],false)$FT
declare!(XC,xcType,syms)$SYMTAB
fveccType : FT := construct(real,[M],false)$FT
declare!(FVECC,fveccType,syms)$SYMTAB
fjaccType : FT := construct(real,[LJC,N],false)$FT
declare!(FJACC,fjaccType,syms)$SYMTAB
Rep := FortranProgram(name,["void"]$FSTU,[M,N,XC,FVECC,FJACC,LJC],syms)
coerce(c:List FC):$ == coerce(c)$Rep
coerce(r:RSFC):$ == coerce(r)$Rep
coerce(c:FC):$ == coerce(c)$Rep
-- Take a symbol, pull of the script and turn it into an integer!!
o2int(u:S):Integer ==
o : OutputForm := first elt(scripts(u)$S,sub)
o pretend Integer
-- To help the poor old compiler!
fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR
localAssign1(s:S,j:Matrix FEXPR):FC ==
j' : Matrix EXPR MFLOAT := map(fexpr2expr,j)$MF2
assign(s,j')$FC
localAssign2(s:S,j:VEC FEXPR):FC ==
j' : VEC EXPR MFLOAT := map(fexpr2expr,j)$VF2(FEXPR,EXPR MFLOAT)
assign(s,j')$FC
coerce(u:VEC FEXPR):$ ==
-- First zero the Jacobian matrix in case we miss some derivatives which
-- are zero.
import POLY INT
seg1 : Segment (POLY INT) := segment(1::(POLY INT),LJC@S::(POLY INT))
seg2 : Segment (POLY INT) := segment(1::(POLY INT),N@S::(POLY INT))
s1 : SegmentBinding POLY INT := equation(I@S,seg1)
s2 : SegmentBinding POLY INT := equation(J@S,seg2)
as : FC:= assign(FJACC,[I@S::(POLY INT),J@S::(POLY INT)],0.0::EXPR FLOAT)
clear : FC := forLoop(s1,forLoop(s2,as))
j:Integer
x:S := XC::S
pu:List(S) := []
-- Work out which variables appear in the expressions
for e in entries(u) repeat
pu := setUnion(pu,variables(e)$FEXPR)
scriptList : List Integer := map(o2int,pu)$ListFunctions2(S,Integer)
-- This should be the maximum XC_n which occurs (there may be others
-- which don't):
n:Integer := reduce(max,scriptList)$List(Integer)
p:List(S) := []
for j in 1..n repeat p:= cons(subscript(x,[j::OutputForm])$S,p)
p:= reverse(p)
jac:Matrix(FEXPR) := _
jacobian(u,p)$MultiVariableCalculusFunctions(S,FEXPR,VEC FEXPR,List(S))
c1:FC := localAssign2(FVECC,u)
c2:FC := localAssign1(FJACC,jac)
[clear,c1,c2,returns()]$List(FC)::$
coerce(u:$):OutputForm == coerce(u)$Rep
outputAsFortran(u):Void ==
p := checkPrecision()$NAGLinkSupportPackage
outputAsFortran(u)$Rep
p => restorePrecision()$NAGLinkSupportPackage
retract(u:VEC FRAC POLY INT):$ ==
v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR)
v::$
retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") ==
v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR)
v case "failed" => "failed"
(v::VEC FEXPR)::$
retract(u:VEC FRAC POLY FLOAT):$ ==
v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR)
v::$
retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") ==
v:Union(VEC FEXPR,"failed"):=_
map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR)
v case "failed" => "failed"
(v::VEC FEXPR)::$
retract(u:VEC EXPR INT):$ ==
v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR)
v::$
retractIfCan(u:VEC EXPR INT):Union($,"failed") ==
v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR)
v case "failed" => "failed"
(v::VEC FEXPR)::$
retract(u:VEC EXPR FLOAT):$ ==
v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR)
v::$
retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") ==
v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR)
v case "failed" => "failed"
(v::VEC FEXPR)::$
retract(u:VEC POLY INT):$ ==
v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR)
v::$
retractIfCan(u:VEC POLY INT):Union($,"failed") ==
v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR)
v case "failed" => "failed"
(v::VEC FEXPR)::$
retract(u:VEC POLY FLOAT):$ ==
v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR)
v::$
retractIfCan(u:VEC POLY FLOAT):Union($,"failed") ==
v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR)
v case "failed" => "failed"
(v::VEC FEXPR)::$
|