This file is indexed.

/usr/share/axiom-20170501/src/algebra/ASP19.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
)abbrev domain ASP19 Asp19
++ Author: Mike Dewar, Godfrey Nolan, Grant Keady
++ Date Created: Mar 1993
++ Date Last Updated: 6 October 1994
++ References:
++ Hawk95 Two more links to NAG numerics involving CA systems
++ Kead93 Production of Argument SubPrograms in the AXIOM -- NAG link
++ Description:
++\spadtype{Asp19} produces Fortran for Type 19 ASPs, evaluating a set of
++functions and their jacobian at a given point, for example:
++
++\tab{5}SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC)\br
++\tab{5}DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N)\br
++\tab{5}INTEGER M,N,LJC\br
++\tab{5}INTEGER I,J\br
++\tab{5}DO 25003 I=1,LJC\br
++\tab{7}DO 25004 J=1,N\br
++\tab{9}FJACC(I,J)=0.0D0\br
++25004   CONTINUE\br
++25003 CONTINUE\br
++\tab{5}FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/(\br
++\tab{4}&XC(3)+15.0D0*XC(2))\br
++\tab{5}FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/(\br
++\tab{4}&XC(3)+7.0D0*XC(2))\br
++\tab{5}FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333\br
++\tab{4}&3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2))\br
++\tab{5}FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/(\br
++\tab{4}&XC(3)+3.0D0*XC(2))\br
++\tab{5}FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)*\br
++\tab{4}&XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2))\br
++\tab{5}FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333\br
++\tab{4}&3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2))\br
++\tab{5}FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)*\br
++\tab{4}&XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2))\br
++\tab{5}FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+\br
++\tab{4}&XC(2))\br
++\tab{5}FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714\br
++\tab{4}&286D0)/(XC(3)+XC(2))\br
++\tab{5}FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666\br
++\tab{4}&6667D0)/(XC(3)+XC(2))\br
++\tab{5}FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3)\br
++\tab{4}&+XC(2))\br
++\tab{5}FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3)\br
++\tab{4}&+XC(2))\br
++\tab{5}FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333\br
++\tab{4}&3333D0)/(XC(3)+XC(2))\br
++\tab{5}FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X\br
++\tab{4}&C(2))\br
++\tab{5}FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3\br
++\tab{4}&)+XC(2))\br
++\tab{5}FJACC(1,1)=1.0D0\br
++\tab{5}FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2)\br
++\tab{5}FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2)\br
++\tab{5}FJACC(2,1)=1.0D0\br
++\tab{5}FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2)\br
++\tab{5}FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2)\br
++\tab{5}FJACC(3,1)=1.0D0\br
++\tab{5}FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/(\br
++\tab{4}&XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)\br
++\tab{4}&**2)\br
++\tab{5}FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666\br
++\tab{4}&666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2)\br
++\tab{5}FJACC(4,1)=1.0D0\br
++\tab{5}FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2)\br
++\tab{5}FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2)\br
++\tab{5}FJACC(5,1)=1.0D0\br
++\tab{5}FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399\br
++\tab{4}&999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2)\br
++\tab{5}FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999\br
++\tab{4}&999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2)\br
++\tab{5}FJACC(6,1)=1.0D0\br
++\tab{5}FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/(\br
++\tab{4}&XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)\br
++\tab{4}&**2)\br
++\tab{5}FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333\br
++\tab{4}&333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2)\br
++\tab{5}FJACC(7,1)=1.0D0\br
++\tab{5}FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/(\br
++\tab{4}&XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)\br
++\tab{4}&**2)\br
++\tab{5}FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428\br
++\tab{4}&571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2)\br
++\tab{5}FJACC(8,1)=1.0D0\br
++\tab{5}FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)\br
++\tab{5}FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)\br
++\tab{5}FJACC(9,1)=1.0D0\br
++\tab{5}FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)*\br
++\tab{4}&*2)\br
++\tab{5}FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)*\br
++\tab{4}&*2)\br
++\tab{5}FJACC(10,1)=1.0D0\br
++\tab{5}FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)\br
++\tab{4}&**2)\br
++\tab{5}FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)\br
++\tab{4}&**2)\br
++\tab{5}FJACC(11,1)=1.0D0\br
++\tab{5}FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)\br
++\tab{5}FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)\br
++\tab{5}FJACC(12,1)=1.0D0\br
++\tab{5}FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)\br
++\tab{5}FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)\br
++\tab{5}FJACC(13,1)=1.0D0\br
++\tab{5}FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)\br
++\tab{4}&**2)\br
++\tab{5}FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)\br
++\tab{4}&**2)\br
++\tab{5}FJACC(14,1)=1.0D0\br
++\tab{5}FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)\br
++\tab{5}FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)\br
++\tab{5}FJACC(15,1)=1.0D0\br
++\tab{5}FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)\br
++\tab{5}FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)\br
++\tab{5}RETURN\br
++\tab{5}END

Asp19(name) : SIG == CODE where
  name : Symbol

  FST    ==> FortranScalarType
  FT     ==> FortranType
  FC     ==> FortranCode
  SYMTAB ==> SymbolTable
  RSFC   ==> Record(localSymbols:SymbolTable,code:List(FC))
  FSTU   ==> Union(fst:FST,void:"void")
  FRAC   ==> Fraction
  POLY   ==> Polynomial
  EXPR   ==> Expression
  INT    ==> Integer
  FLOAT  ==> Float
  MFLOAT ==> MachineFloat
  VEC    ==> Vector
  VF2    ==> VectorFunctions2
  MF2    ==> MatrixCategoryFunctions2(FEXPR,VEC FEXPR,VEC FEXPR,Matrix FEXPR,_
               EXPR MFLOAT,VEC EXPR MFLOAT,VEC EXPR MFLOAT,Matrix EXPR MFLOAT)
  FEXPR  ==> FortranExpression([],['XC],MFLOAT)
  S      ==> Symbol

  SIG ==> FortranVectorFunctionCategory with

    coerce : VEC FEXPR -> $
      ++coerce(f) takes objects from the appropriate instantiation of
      ++\spadtype{FortranExpression} and turns them into an ASP.

  CODE ==> add

    real : FSTU := ["real"::FST]$FSTU

    syms : SYMTAB := empty()$SYMTAB

    declare!(M,fortranInteger()$FT,syms)$SYMTAB

    declare!(N,fortranInteger()$FT,syms)$SYMTAB

    declare!(LJC,fortranInteger()$FT,syms)$SYMTAB

    xcType : FT := construct(real,[N],false)$FT

    declare!(XC,xcType,syms)$SYMTAB

    fveccType : FT := construct(real,[M],false)$FT

    declare!(FVECC,fveccType,syms)$SYMTAB

    fjaccType : FT := construct(real,[LJC,N],false)$FT

    declare!(FJACC,fjaccType,syms)$SYMTAB

    Rep := FortranProgram(name,["void"]$FSTU,[M,N,XC,FVECC,FJACC,LJC],syms)

    coerce(c:List FC):$ == coerce(c)$Rep

    coerce(r:RSFC):$ == coerce(r)$Rep

    coerce(c:FC):$ == coerce(c)$Rep

    -- Take a symbol, pull of the script and turn it into an integer!!
    o2int(u:S):Integer ==
      o : OutputForm := first elt(scripts(u)$S,sub)
      o pretend Integer

    -- To help the poor old compiler!
    fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR

    localAssign1(s:S,j:Matrix FEXPR):FC == 
      j' : Matrix EXPR MFLOAT := map(fexpr2expr,j)$MF2
      assign(s,j')$FC

    localAssign2(s:S,j:VEC FEXPR):FC ==
      j' : VEC EXPR MFLOAT := map(fexpr2expr,j)$VF2(FEXPR,EXPR MFLOAT)
      assign(s,j')$FC

    coerce(u:VEC FEXPR):$ ==
      -- First zero the Jacobian matrix in case we miss some derivatives which
      -- are zero.
      import POLY INT
      seg1 : Segment (POLY INT) := segment(1::(POLY INT),LJC@S::(POLY INT))
      seg2 : Segment (POLY INT) := segment(1::(POLY INT),N@S::(POLY INT))
      s1 : SegmentBinding POLY INT := equation(I@S,seg1)
      s2 : SegmentBinding POLY INT := equation(J@S,seg2)
      as : FC:= assign(FJACC,[I@S::(POLY INT),J@S::(POLY INT)],0.0::EXPR FLOAT)
      clear : FC := forLoop(s1,forLoop(s2,as))
      j:Integer
      x:S := XC::S
      pu:List(S) := []
      -- Work out which variables appear in the expressions
      for e in entries(u) repeat
        pu := setUnion(pu,variables(e)$FEXPR)
      scriptList : List Integer := map(o2int,pu)$ListFunctions2(S,Integer)
      -- This should be the maximum XC_n which occurs (there may be others
      -- which don't):
      n:Integer := reduce(max,scriptList)$List(Integer)
      p:List(S) := []
      for j in 1..n repeat p:= cons(subscript(x,[j::OutputForm])$S,p)
      p:= reverse(p)
      jac:Matrix(FEXPR) := _
       jacobian(u,p)$MultiVariableCalculusFunctions(S,FEXPR,VEC FEXPR,List(S))
      c1:FC := localAssign2(FVECC,u)
      c2:FC := localAssign1(FJACC,jac)
      [clear,c1,c2,returns()]$List(FC)::$

    coerce(u:$):OutputForm == coerce(u)$Rep

    outputAsFortran(u):Void ==
      p := checkPrecision()$NAGLinkSupportPackage
      outputAsFortran(u)$Rep
      p => restorePrecision()$NAGLinkSupportPackage

    retract(u:VEC FRAC POLY INT):$ ==
      v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR)
      v::$

    retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") ==
      v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR)
      v case "failed" => "failed"
      (v::VEC FEXPR)::$

    retract(u:VEC FRAC POLY FLOAT):$ ==
      v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR)
      v::$

    retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") ==
      v:Union(VEC FEXPR,"failed"):=_
        map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR)
      v case "failed" => "failed"
      (v::VEC FEXPR)::$

    retract(u:VEC EXPR INT):$ ==
      v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR)
      v::$

    retractIfCan(u:VEC EXPR INT):Union($,"failed") ==
      v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR)
      v case "failed" => "failed"
      (v::VEC FEXPR)::$

    retract(u:VEC EXPR FLOAT):$ ==
      v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR)
      v::$

    retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") ==
      v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR)
      v case "failed" => "failed"
      (v::VEC FEXPR)::$

    retract(u:VEC POLY INT):$ ==
      v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR)
      v::$

    retractIfCan(u:VEC POLY INT):Union($,"failed") ==
      v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR)
      v case "failed" => "failed"
      (v::VEC FEXPR)::$

    retract(u:VEC POLY FLOAT):$ ==
      v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR)
      v::$

    retractIfCan(u:VEC POLY FLOAT):Union($,"failed") ==
      v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR)
      v case "failed" => "failed"
      (v::VEC FEXPR)::$